C++11 Threads Surprises

Hans-J. Boehm
HP Labs

W

April 29, 12



Outline

e C++11 Threads and Memory model

* Some surprises:
— Thread cancellation
— Infinite loops
—try_lock()

— Detached threads and destructors

* Conclusions

April 29, 12 @I



Threads in C++11

Threads are finally part of the language! (C11,
too)

Threads API

— Thread creation, synchronization, ...

— Evolved from Boost . Thread.

Memory model

— Carefully defines shared variable behavior.
* Still not quite the naive sequential consistency model.

Atomic operations



Parallel recursive f1b () in C++11:

Warning: Incredibly stupid algorithm, but popular example:

int fib(int n) {

1t (n <=
int fib2;

1) return n;

auto fibl =

async(
fib2 = f1
return f1

¥

=]{return fib(n-1);});
(h-2);

nl.get() + fib2;

@ April 29, 12



C++11 memory model in a nutshell

* Accessing and modifying same ordinary memory

location simultaneously from two different threads is a
data race.

e Dataraces are bad: Think
— Or out-of-bounds array access
— (Better tools would be nice.)

* Otherwise shared variables behave like you hoped they
would

— Interleave steps from all the threads (seq. consistency)
— Even better: Sync-free code acts as single step.

* Breaks some common compiler optimizations:
— Better than breaking user code.

®




Two common ways to eliminate data
races

* Use mutexes:
mutex m; 1nt X;
{
lock_guard<mutex> _(m);
X++;
}
* Use atomics:
atomic<int> X; // datarace exempt
X++;

April 29, 12 @



Atomics preserve interleaving
semantics (by default)

atomic<int> Xx,y; //initally zero

Thread 1 Thread 2
X = 1; y = 1;
rl = y; r2 = X;

e No data races.
 Disallows rl=r2=0.

e Compiler and hardware do whatever it takes.
— Usually insert fences, no compiler reordering



Outline

e C++11 Threads and Memory model

* Some surprises:
— Thread cancellation
— Infinite loops
—try_lock()

— Detached threads and destructors

* Conclusions

April 29, 12 @I



Standardize existing practice?

e Standards committees sometimes view their
charter as standardizing existing tried practice.

— The C++ committee perhaps a bit less so?

* Nobody should be surprised by the outcome
(?)

 Sometimes things don’t work out that way.

— Often, though not always, for good technical
reasons



Thread cancellation

e Terminate another thread.

* Posix has pthread_cancel ()
incl. dubious asynchronous facilities

 Java has thread.interrupt()

— + dubious asynchronous facilities
e C++11 has

April 29, 12 @I



April 29, 12

Nothing.

In spite of agreement that we needed something.

11



Problem: Irreconcilable differences

* Posix:
— Cancellation is not ignorable.

— There is no way to return to mainline code once a
thread is cancelled.

* and that’s viewed as critically important.
— Correct code typically uses pthread_cleanup...
* C++:
— Existing cleanup mechanism: Exceptions.

— Code is written to deal with exceptions, not
pthread cleanup...

— No practical way to prevent swallowing exception.



Outline

e C++11 Threads and Memory model

* Some surprises:
— Thread cancellation
— Infinite loops
—try_lock()

— Detached threads and destructors

* Conclusions



e Consider:

Thread 1
for (i =0; 1 <10; i +=
for (1 = 0; 1 < 10; 1 +=
Thread 2
r=1yY;

e Data race with n =17 Yes.
e Data race with n =07? No.

April 29, 12 @

n) {x++;}
n) {y++;}

14



e After loop fusion:
Thread 1
for (1 =0; 1 < 10; 1 4= n) {x++; y++;}

Thread 2
r=1yY;

e Data race with n =17 Yes.
e Data race with n =07 Yes!

April 29, 12 @|

15



Options

e Qutlaw transformations like loop fusion on
potentially infinite loops.

— Likely to hurt important optimizations.
— Clean semantics.
— Java follows this route.

* Allow transformation.
— Messy spec? Complicated programming rules?
— Allows optimizations.

April 29, 12 @



Deciding factor:

* Existing practice:
— Many compilers eliminate “dead” loops, even if
they’re infinite.

* See John Regehr’s (later) blog “Compilers and
termination revisited”.

— Already really hard to say what infinite loops
mean.

@



C++11 “Solution”

* “The implementation may assume that any thread will
eventually do one of the following:

— terminate,
— make a call to a library 1/0O function,
— access or modify a volatile object, or

— perform a synchronization operation or an atomic
operation.”

* FEffectively outlaws side-effect-free and sync-free
infinite loops.

* Allows loop optimizations.
* Provides a way to write infinite loops.
 Doesn’t break currently portable code.

April 29, 12 @I



Outline

e C++11 Threads and Memory model

* Some surprises:
— Thread cancellation
— Infinite loops
—try_lock()
— Detached threads and destructors

* Conclusions



try_lock ()

Consider:
int X; mutex m;

Thread 1 Thread 2
X = 42; while(m.try_lock())
m.lock(); m.unlock() ;

assert(x == 42);

Can the assertion fail?
In real implementations: Yes.
Thread 1 statements can be reordered.
Preventing this can be expensive. Affectsm. lock () impl.

April 29, 12 @ 20



C++11 treatment of try lock ()

try_lock () can spuriously fail to acquire mutex.
— even when mutex was never held.

— Equivalently: System can acquire mutex.
Implementations shouldn’t really do that!

But try_lock() failure = nothing!

code that could detect reordering now has data race.

Thread 1 Thread 2
X = 42: da. while(m.try_Tock())
m.lock(); (3ce m.unlTock();

assert(x == 42);

April 29, 12 @



Outline

e C++11 Threads and Memory model

* Some surprises:
— Thread cancellation
— Infinite loops
—try_lock()

— Detached threads and destructors

* Conclusions

April 29, 12 @I

22



“Detached” threads

* Threads that can no longer be
“joined” (waited for).

 Posix allows detached threads.
e Boost threads allowed detached threads.

— Destroying an unjoined thread implicitly detaches.
— Seems natural enough, but ...



An implicit detach problem:

int fib(int n) {

1f (n <= 1) return n;

int fibl, fib2;

thread t([=, &fibl]{fibl = fib(n-1);});
* fib2 = fib(n-2);

t.join(Q);

return fibl + fib2;
}

What if an exception is thrown at * ?
1. Callto t.jo1n() is not executed.
. Thread t is destroyed =» detached.

2
3. Child is still running, writes to local f1b1 in parent thread.
4. Undebuggable crash.

24 @l April 29, 12



Complication: Emulating join is hard

thread_local T x; atomic<bool> t2done;

Main thread: Thread 2:
create thread 2;
X = ..}

f2done = true;
while (!t2done) {}

return from main;
destroy T's allocator;

Destroy thread 2’s X

Also important to wait for destruction of thread_locals!
Which might be introduced by libraries you can’t see.

April 29, 12 @I

I g




C++11 treatment

 Some support for detached threads:
—detach()
—quick_ex1t()
—notify_all_at_thread_exit()

« Recommendation: Just call Jo1n()!
* No implicit detach!

* Destruction of unjoined thread invokes
terminate()!

April 29, 12 @



Outline

e C++11 Threads and Memory model

* Some surprises:
— Thread cancellation
— Infinite loops
—try_lock()

— Detached threads and destructors

 Conclusions



Some surprises, usually for good
reasons

No thread cancellation:

— Somewhat political issue, but

— No fully compatible forward path.
Undefined infinite loops:

— Really preserves status quo.

— Which already surprises people.

Disallow common optimizations:
Spurious try_lock () failures:

* No implicit detach:
— Traditional approaches are inherently brittle (or worse).
— C++11 allows robust solutions.

April 29, 12 @



Questions?

April 29, 12 @I



Easily understandable

Memory model references

* Boehm, Adve, You Don't Know Jack About Shared Variables or
Memory Models , Communications of the ACM, Feb 2012.

e Boehm, “Threads Basics”, HPL TR 2009-259.
* Adve, Boehm, “Memory Models: A Case for Rethinking Parallel

Languages and Hardware, Communications of the ACM, August 2010.

« Boehm, Adve, “Foundations of the C++ Concurrency Memory Model’
PLDI 08.

 Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark
Weber, “Mathematizing C++ Concurrency”, POPL 2011.

C++ specific

April 29, 12 @I

)
’

SnoJo311 Ajjeannewayle|p

30



