Domain Engineering
with Concepts

Magne Haveraaen

Bergen Language Design Laboratory (BLDL)
Department of Informatics, University of Bergen, Norway

Workshop on Quality Software: A Festschrift for Bjarne Stroustrup

TAMU, College Station, 2012-04-28

Software Product Line Benefits

Software product line development versus normal development
* Productivity improvement: up to a factor of 10

* Quality improvement: up to a factor of 10

» Decreased cost: by as much as 60%

» Decreased labour needs: by as much as 87%

» Decreased time to market: by as much as 98%

« Ability to move into new markets: in months, not years

Each of the above is based on a documented product line effort
http://www.sei.cmu.edu/library/assets/spl-essentials.pdf
Linda Northrop, 2008

Magne Haveraaen e Domain Engineering with Concepts e http://bldl.ii.uib.no

Software Product Line

Also called a product family
» A set of software-intensive systems
 Built for a particular market segment (domain)

 Created from a common set of core assets
— Libraries, architectures, tests, tools, project planning

Core asset development:

Domain engineering

Application development: Application engineering

Magne Haveraaen e Domain Engineering with Concepts e http://bldl.ii.uib.no

Defining the Core Assets of a Domain

Must fit the language of software

Algorithms + Data Structures = Programs
Niklaus Wirth 1976

« A Data Structure abstracts to a type
— Values of a type can be compared for equality

« An Algorithm abstracts to a function
— Input argument list
— Result type

* Properties of a type are defined by predicates on expressions
T a,b,c;
assert ((at+b)+c == a+(b+c));

Magne Haveraaen e Domain Engineering with Concepts e http://bldl.ii.uib.no

Questions to ask of a Domain

* What are the types
« What are the functions
« What are the axioms

What are the (C++) concepts

template<typename m>
concept monoid (binary<m> bin, nullary<m> unit) {
axiom associative (m a, m b, m c) {
assert bin(bin(a,b),c) == bin(a,bin(b,c));
}
axiom neutral (m a) {
assert bin(a,unit()) == a;
assert bin(unit(),a) == a;
}
}

Magne Haveraaen e Domain Engineering with Concepts e http://bldl.ii.uib.no

Data Structure Algebra

Isomorphisms

« The same information content for different declarations

struct { struct D {
int a[100]; int a;
int b[100]; int b;
}d1; X
D d2[100];

« Alternative data structures
— Different access patterns
— Different abstractions

Magne Haveraaen e Domain Engineering with Concepts e http://bldl.ii.uib.no

The Heat Problem: Norway

en ¢ Domain Engineering with Concepts e http://bldl.ii.uib.no

The Heat Problem: Texas

en o Domain Engineering with Concepts e http://bldl.ii.uib.no

The Heat Equation

Temperature across

the wall %uza*(v'(vu))ﬂ(

X Variables, in space and time

u — temperature, scalar field
a — thermal diffusivity, scalar field
f — heat source, scalar field

warm Derivatives

dlot — partial derivative in time

V — gradient, scalar field to vector field

V- — divergence, vector field to scalar field

cold

Operations
: * — scalar field multiplication
Grid for the wall + — scalar field addition

and surroundings

Magne Haveraaen e Domain Engineering with Concepts e http://bldl.ii.uib.no

Concepts for Arithmetic Operations

template<typename r>
concept unit_ring(binary<r> plus, unary<r> minus, binary<r> mult) {
axiom abelian_group(ra, rb, rc){
assert plus(plus(a,b),c) == plus(a,plus(b,c));
assert plus(a,b) == plus(b,a);
assert plus(a,r(0)) == a;
assert plus(a, minus(a)) == r(0);
}
axiom monoid(ra, rb, rc){
assert mult(mult(a,b),c) == mult(a,mult(b,c));
assert mult(a,r(1)) == a;
assert mult(r(1),a) == a;
}
axiom distributive(r a, rb, r ¢) {
assert mult(a,plus(b,c)) == plus(mult(a,b),mult(a,c));
assert mult(plus(a,b),c) == plus(mult(a,c),mult(b,c));
}
}

Magne Haveraaen e Domain Engineering with Concepts e http://bldl.ii.uib.no

Magne Haveraaen e

Magne Haveraaen e Domain Engineering with Concepts e http://bldl.ii.uib.no

Engineering the PDE domain

« Data field df<r>: a value of type r at every point in space-time
— Scalar field sf<real>, ring with pointwise +,-,* and d/at, d/ox, ..

« Matrix matrix<r> with +,-,mm from any ring r

o Matrix field with V-, V
— df<matrix<real>>
— matrix<sf<real>>

Choosing matrix field format: consider the derivation operations
— Derivatives require access to neighbouring data
— Scalar field has partial derivatives d/dt, d/ox, ..
» The derivations can be defined from partial derivatives

Domain Engineering with Concepts e http://bldl.ii.uib.no

Dot Product Problem

template<typename r> r dot(vector<r> a, vector<r> b) {
return 3 afi] * bi];

}

template<typename r> vector<r> new_coordinate(matrix<r> m, vector<r> v) {
return mm(m,v);

}

template<typename r>
concept dot_properties () {
axiom coordinate_system_invariance(matrix<r> m, vector<r> u, vector<r> v) {
assert dot(u,v) == dot(new_coordinate(m,u),new_coordinate(m,v));

}
...
}

Dot algorithm is wrong? Take coordinate system into account
Typing is wrong? Vector and covector
Change of coordinate algorithm is wrong? Covectors are different

Seismic Waves
) JUR I
;;‘,j"l' w0V ﬁtm)iﬂn!!- ALV g’ !! \‘2‘“‘?’; ; 0 0 0 u=V-o+f,
Bipse T AL, :*i\‘f‘“%"* i PIRTIE | 0t 0t
TR ;3.-«.-3“@-2241‘5 ‘]& 5 o= Aoe
s !:qﬁﬁﬁm&xfg‘ ’“" 2-2:;(&‘&.‘. : _ ’
:" ﬂ-c‘:&!ﬁgg_.e .‘c((ch : e—L(u,g)
W2, .-4‘5‘@” <d~l ‘1
I“g""‘?ﬂ* Lo 1, § ; Elastic wave equation
ST :
Variables Derivatives
p — density, scalar field dlot — partial derivative in time
u — displacement, vector field V- — divergence, matrix field to vector field
o — stress, matrix field L — Lie derivative, matrix field to matris field
f — external force, vector field
N\ — stiffness, tensor field Operations
e — strain, matrix field o — tensor application, returns matrix field
g — metric, matrix field + — vector field addition

Magne Haveraaen e Domain Engineering with Concepts e http://bldl.ii.uib.no

Conclusions

« Domain engineering
— Defines the core assets of a software domain
— Essential for software product lines
— Precedes application engineering

» C++ style concepts for core asset development
— Libraries
» Declares types, declares functions, defines axioms
» Drives towards a comprehensive API
— Architectural considerations
— Testing
« Axioms as test oracles
— Tools: refactoring and optimisation
« Equational axioms as refactoring rules

Magne Haveraaen e Domain Engineering with Concepts e http://bldl.ii.uib.no

