
�����������	
���
������

����	�	

������	��

Nasim Mahmood, Guosheng Deng, and James C. Browne

������

� Motivation
� Goals
� Programming Model
� Example
� Case Study
� Conclusions
� Current and Ongoing Work
� Future Directions

�����	����

� Optimization and adaptation of parallel
programs is effort intensive
� Different execution environments
� Different problem instances

� Direct modification of complete application is
effort intensive

� Maintenance and evolution of parallel
programs is a complex task

��	
�

� Order of magnitude productivity
enhancement for program families
� Develop parallel programs from sequential

components
� Reuse components
� Enable development of program families from

multiple versions of components
� Automatic composition of parallel programs from

components

�����	���������

� Component Development
� Domain Analysis
� Component Development
� Encapsulate

� Program Instance Development
� Analyze problem instance and execution environment
� Identify attributes and attribute values
� Identify data flow graph
� Specify the program using the components and their

interfaces

��������

Accepts interface
(profile, transaction, protocol)

Sequential Computation

Requests interface
(selector, transaction, protocol)

���������	��

� Steps for 2D FFT computation
� Partition given matrix row-wise
� Apply 1D FFT to each row of the partition
� Combine the partitions and transpose the matrix
� Partition transposed matrix row-wise
� Apply 1D FFT to each row of the partition
� Combine the partitions and transpose the matrix
� Transposed matrix is the 2D FFT of the original

matrix

���������	��
���������

���������	��
���������

selector:
string domain == "matrix";
string function == "distribute";
string element_type == "complex";
bool distribute_by_row == true;

transaction:
int distribute(out mat2 grid_re,out mat2 grid_im, out int n,

out int m, out int p);
protocol: dataflow;

profile:
string domain = "matrix";
string function = "distribute";
string element_type = "complex";
bool distribute_by_row = true;

transaction:
int distribute(in mat2 grid_re,in mat2 grid_im, in int n,

in int m, in int p);
protocol: dataflow;

���������	��
���������

Requests
interface

of
Initialize

Accepts
interface

of
Distribute

�����
	�������� ��

� Matching of
� Selector and profile
� Transactions
� Profiles

� Matching starts from the selector of the start
component

� Applied recursively to each matched components
� Output is a generalized data flow graph as defined

in CODE (Newton ’92)
� Data flow graph is compiled to a parallel program for

a specific architecture

{selector:
string domain == "fft";
string input == "matrix";
string element_type == "complex";
string algorithm == "Cooley-Tukey";
bool apply_per_row == true;

transaction:
int fft_row(out mat2 out_grid_re[],out mat2

out_grid_im[], out int n/p, out int m);
protocol: dataflow;
}index [p]

profile:
string domain = "fft";
string input = "matrix";
string element_type = "complex";
string algorithm = "Cooley-Tukey";
bool apply_per_row = true;

transaction :
int fft_row(in mat2 grid_re,in mat2 grid_im,in int n,

in int m);
protocol: dataflow;

���������	��
���������

Requests
interface

(partial) of
Distribute

Accepts
interface

of
FFT_Row

selector:
string domain == "matrix";
string function == "gather";
string element_type == "complex";
bool combine_by_row == true;
bool transpose == true;

transaction:
int gather_transpose(out mat2 out_grid_re,out mat2

out_grid_im, out int me);
protocol: dataflow;
profile:
string domain = "matrix";
string function = "gather";
string element_type = "complex";
bool combine_by_row = true;
bool transpose = true;

transaction:
int get_no_of_p(in int n, in int m, in int p,in int state);
>
int gather_transpose(in mat2 grid_re,in mat2 grid_im,

in int inst);
protocol: dataflow;

���������	��
���������

Requests
interface

of
FFT_Row

Accepts
interface

of
Gather_Tr
anspose

���������	��
���������

selector:
string domain == "matrix";
string function == "distribute";
string element_type == "complex";
bool distribute_by_row == true;

transaction:
%{ exec_no == 1 && gathered == p }%
int distribute(out mat2 out_grid_re,out mat2

out_grid_im, out int m, out int n*p,
out int p);

protocol: dataflow;

Requests
interface
(partial)

of
Gather_T
ranspose

� Compute the Coulomb Energy of point charges in linear time

� Transforming the information about a cluster of charge into a
simpler representation which is used to compute the influence of
the cluster on objects at large distances by scaling all particles
into hierarchy of cubes in different levels

� Can be extended and applied to astrophysics, plasma physics,
molecular dynamics, fluid dynamics, partial differential equations
and numerical complex analysis

�	����!
����
 ���"#���

� Many generalized N-body problems can be treated as
multiple FMM problems which share the same geometry.
This feature can be exploited by combining the
generalized charges into a vector

� Generalized FMM is an extension of the FMM algorithm
to multiple “charge types”

� More efficient FMM translation routines could be built
using BLAS routines

���	
�$���	����!
����
 "�
���%

�	�����&�����

� Six Translation Components
� Particle charge to Multipole (finest partitioning level)
� Multipole to Multipole (between all partitioning levels, from

the finest to the coarsest)
� Multipole to Local (all partitioning levels)
� Local to Local (between all partitioning levels)
� Local to Particle potential and forces (finest partitioning

level)
� Direct Interaction (finest partitioning level)

� Two Utility Components
� Distribute – Distribute Pre-Calculated Local Coefficient

matrices according to Interaction list
� Gather – Gather Local coefficients

�������	���'�	
(���

"�) ���!�	�������	�����������	����)

���! �!�������!
	����������#�����'
�����#��

� Simultaneous computation of cell potentials for
multiple charge types

� Use of optimized library routines for vector-matrix
and matrix-matrix multiply

� Loop interchange over the two outer loops to
improve locality

�
�����	�#�����"*!���	
����

Initialization

P2M

M2M

M2L

L2L

Distribute

Collect

L2P

Terminate

Direct

Initialization

P2M

M2M

M2L

L2L

Distribute

Collect

L2P

Terminate

�
�����	�#������#��	�	

�&�����

Direct

P2M

M2M

M2L

L2L

Distribute

Collect

L2P

Direct

P[0] P[1]

Running Time Ratio (New/Old, Expansion Depth = 10)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Number of Flavors

R
at

io

Series1

"*!���	
�+!����������) ,�-�
��

.+���!�/����� #	����(��

���
!�����

� Effort in domain analysis is not trivial
� Suitable for

� Large applications that are to be optimized for
several different execution environments

� Large applications that are expected to evolve
over a substantial period of time

� Large applications with multiple instances

� Competitive program performance

�!�����	�����������.��0

� Implement evolutionary performance models
of programs through composition of
components
� Abstract components
� Concrete components
� Performance model for specific architecture

� Componentize hp-adaptive finite element
code and Method of Lines (MOL) code

�!�!����� �����

� Combine with dynamic linking runtime system
based on associative interfaces [Kane ’02]

� Implement more powerful precedence and
sequencing operators for state machine
specifications

� Integrate with Broadway [Guyer/Lin ’99]
annotational compiler to overcome “many
components” problem

