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Message Passing Interface (MPI)
� MPI standardized how we pass data on a cluster

� MPI:

– Single Processor Multiple Data (SPMD)
– Provides point-to-point as well as collective 

communications
– Is a set of library routines
– Is an interface with several free and commercial 

implementations available
– source code is portable
– Has C, Fortran and C++ bindings, but not Java



Previous Java + MPI work:

� mpiJava (Carpenter)

– Native wrappers to C libraries

– Worse performance than native MPI

� jmpi

– Pure-Java implementation of proposed standard for 
Java/MPI bindings

– Also bad performance compared to native MPI



MPJava
� Pure-Java Message Passing framework

� Makes extensive use of java.nio
– select() mechanism

– direct buffers

– efficient conversions between primitive types

� Provides point-to-point and collective communications 
similar to MPI

� We experiment with different broadcast algorithms

� We try to use threads
– More work needed to get this right

� Performance is pretty good



Benchmarks

� PingPong

� Alltoall

� NAS Parallel Benchmarks Conjugate Gradient



Results
• 50 650 MHz PIII machines

• 768 MB memory

• RedHat 7.3

• two 100 Mbps channel-bonded NICs

• Fortran compiler: g77 v2.96

• tried a commercial compiler (pgf90) but no difference 
for these benchmarks

• LAM-MPI 6.5.8

• JDK 1.4.2-b04
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NAS PB Conjugate Gradient

Class C Spare Matrix is 150,000 X 150,000
241 nonzero elements per row
36,121,000 total nonzero elements

Class B Sparse Matrix is 75,000 X 75,000
183 nonzero elements per row
13,708,000 total nonzero elements
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Simple approach to parrallelizing matrix-vector multiple:
Stripe across rows

Requires an all-to-all broadcast to reconstruct the vector p
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Multi-Dimensional matrix-vector multiply decomposition

Reduction along decomposed rows
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Multi-Dimensional matrix-vector multiply decomposition

Node 4 needs w, and has y,z
Node 3 needs z, has w,x
SWAP

Node 2 needs y, and has w,x
Node 5 needs x, and has y,z
SWAP







Conclusion
� A pure-Java message passing framework can provide 

performance competitive with widely available Fortran and 
MPI implementations

� java.nio is much faster than the older I/O model

� Java Just-In-Time compilers can deliver competitive 
performance

� Java has many other useful features
– type safety

– bounds checks

– extensive libraries

– portable
� Is performance portable too?

– easy to integrate with databases, webservers, GRID applications



Future Work
� Exploiting asynchronous pipes

– Great for work-stealing and work-sharing algorithms, 
but…

– subject to Thread scheduling woes

� What about clusters of SMPs?
– Different bottlenecks
– More use for multiple threads on a single node
– Importance of interleaving communication and 

computation

� Is MPI the right target?
– BLAS, LAPACK, Netsolver, etc. suggest that 

programmers will use libraries



Where do we go next?
� Java has the reputation that it’s too slow for 

scientific programming!
– Is this still accurate?
– Or were we lucky with our benchmarks?

� Interest in message passing for Java was high a 
couple of years ago, but has waned
– Because of performance?

� Does anyone care?
– Are people happy with Fortran?
– Is there enough interest in Java for scientific 

computing?



Java may be fast enough but...

� No operator overloading

� No multiarrays package (yet)

– Also need syntactic sugar to replace .get()/.set() 
methods with brackets!

� Autoboxing

� Generics (finally available in 1.5)

� Fast, efficient support for a Complex datatype

– Stack-allocatable objects in general?

� C# provides all/most of these features
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Multi-Dimensional matrix-vector multiply decomposition

NAS PB implementation uses a better algorithm

Note the additional swap required for “inner” nodes


