
MPJava: High-Performance Message
Passing in Java using Java.nio

Bill Pugh
Jaime Spacco

University of Maryland, College Park

Message Passing Interface (MPI)
� MPI standardized how we pass data on a cluster

� MPI:

– Single Processor Multiple Data (SPMD)
– Provides point-to-point as well as collective

communications
– Is a set of library routines
– Is an interface with several free and commercial

implementations available
– source code is portable
– Has C, Fortran and C++ bindings, but not Java

Previous Java + MPI work:

� mpiJava (Carpenter)

– Native wrappers to C libraries

– Worse performance than native MPI

� jmpi

– Pure-Java implementation of proposed standard for
Java/MPI bindings

– Also bad performance compared to native MPI

MPJava
� Pure-Java Message Passing framework

� Makes extensive use of java.nio
– select() mechanism

– direct buffers

– efficient conversions between primitive types

� Provides point-to-point and collective communications
similar to MPI

� We experiment with different broadcast algorithms

� We try to use threads
– More work needed to get this right

� Performance is pretty good

Benchmarks

� PingPong

� Alltoall

� NAS Parallel Benchmarks Conjugate Gradient

Results
• 50 650 MHz PIII machines

• 768 MB memory

• RedHat 7.3

• two 100 Mbps channel-bonded NICs

• Fortran compiler: g77 v2.96

• tried a commercial compiler (pgf90) but no difference
for these benchmarks

• LAM-MPI 6.5.8

• JDK 1.4.2-b04

��������

�

��

��

��

��

��

��

��

	�

� � �� �� �	 	
 ��
�

��

��
�
��
��
�
��

��
��
�
��

�
�

��
�

��
��
��
��
��
��
��
	�
��
��

��
��

�

�	
	�
��

��
��
��

����	
��
���
�

�
��
�
�
�

��
��
��
��
	�

�
����

�����
�

��������������

���������!�"�#��

a

0

b

1

c

2

d

3

a

b

c

d

0

a

b

c

d

1

a

b

c

d

2

a

b

c

d

3

�		���		����

�

��

��

��

	�

���

���

���

�

�		���		�������

�

��

��

��

	�

���

���

���

�

a

0

b

1

c

2

d

3

a

b

0

a

b

1

c

d

2

c

d

3

a

b

c

d

0

a

b

c

d

1

a

b

c

d

2

a

b

c

d

3

�		���		����

�

��

��

��

	�

���

���

���

�

�		���		�����������
�����	��������

�

��

��

��

	�

���

���

���

�

NAS PB Conjugate Gradient

Class C Spare Matrix is 150,000 X 150,000
241 nonzero elements per row
36,121,000 total nonzero elements

Class B Sparse Matrix is 75,000 X 75,000
183 nonzero elements per row
13,708,000 total nonzero elements

a b c d
e f g h
i j k l
m n o p

* =

aw + bx + cy + dz
ew + fx + gy + hz
iw + jx + ky + lz
mw + nx + oy + pz

w
x
y
z

Simple approach to parrallelizing matrix-vector multiple:
Stripe across rows

Requires an all-to-all broadcast to reconstruct the vector p

A . p = q

0 a b c d
1 e f g h
2 i j k l
3 m n o p

* =

aw + bx + cy + dz
ew + fx + gy + hz
iw + jx + ky + lz
mw + nx + oy + pz

w
x
y
z

a b c d
e f g h
i j k l
m n o p

* =

aw + bx + cy + dz
ew + fx + gy + hz
iw + jx + ky + lz
mw + nx + oy + pz

w
x
y
z

0 1 2 3

4 5 6 7

Multi-Dimensional matrix-vector multiply decomposition

a b c d
e f g h
i j k l
m n o p

* =

aw + bx + cy + dz
ew + fx + gy + hz
iw + jx + ky + lz
mw + nx + oy + pz

w
x
y
z

0 1 2 3

4 5 6 7

Multi-Dimensional matrix-vector multiply decomposition

Reduction along decomposed rows

a b c d
e f g h
i j k l
m n o p

* =

aw + bx + cy + dz
ew + fx + gy + hz
iw + jx + ky + lz
mw + nx + oy + pz

w
x
y
z

0 1 2 3

4 5 6 7

Multi-Dimensional matrix-vector multiply decomposition

Node 4 needs w, and has y,z
Node 3 needs z, has w,x
SWAP

Node 2 needs y, and has w,x
Node 5 needs x, and has y,z
SWAP

Conclusion
� A pure-Java message passing framework can provide

performance competitive with widely available Fortran and
MPI implementations

� java.nio is much faster than the older I/O model

� Java Just-In-Time compilers can deliver competitive
performance

� Java has many other useful features
– type safety

– bounds checks

– extensive libraries

– portable
� Is performance portable too?

– easy to integrate with databases, webservers, GRID applications

Future Work
� Exploiting asynchronous pipes

– Great for work-stealing and work-sharing algorithms,
but…

– subject to Thread scheduling woes

� What about clusters of SMPs?
– Different bottlenecks
– More use for multiple threads on a single node
– Importance of interleaving communication and

computation

� Is MPI the right target?
– BLAS, LAPACK, Netsolver, etc. suggest that

programmers will use libraries

Where do we go next?
� Java has the reputation that it’s too slow for

scientific programming!
– Is this still accurate?
– Or were we lucky with our benchmarks?

� Interest in message passing for Java was high a
couple of years ago, but has waned
– Because of performance?

� Does anyone care?
– Are people happy with Fortran?
– Is there enough interest in Java for scientific

computing?

Java may be fast enough but...

� No operator overloading

� No multiarrays package (yet)

– Also need syntactic sugar to replace .get()/.set()
methods with brackets!

� Autoboxing

� Generics (finally available in 1.5)

� Fast, efficient support for a Complex datatype

– Stack-allocatable objects in general?

� C# provides all/most of these features

a w

x

y

z

b c d

a b c d

a b c d
e f g h
i j k l
m n o p

* =

aw + bx + cy + dz
ew + fx + gy + hz
iw + jx + ky + lz
mw + nx + oy + pz

w
x
y
z

0 1 2 3

4 5 6 7

Multi-Dimensional matrix-vector multiply decomposition

NAS PB implementation uses a better algorithm

Note the additional swap required for “inner” nodes

