A Preliminary Study On the Vectorization
of Multimedia Applications for
Multimedia Extensions

Gang Ren Peng Wu David Padua
University of Illinois IBM T.J. Watson Research University of lllinois
I EEEL I

Presented by Gang Ren

—!
Multimedia Extensions (MME)

O Additions to accelerate multimedia applications

For general-purpose processors:
o MAX(HP), VIS(Sun), AltiVec(Motorola/IBM/Apple), SSE(Intel)

For special-purpose processors:
o PS2(SONY), Graphics Processing Unit(NVIDIA)

O Use SIMD architecture Intel SSE2
16 chars 128bits 128bits
8 shorts
4 integers Vector Unit
Register File (xmmO~xmm7)
2 doubles
4 singles L7

7Y A 128bits

] A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC 03

Programming Multimedia Extensions

foo.c
int a[l6],b[16],c[1l6];
for (i=0; i<l6; i++) foo.intrinsic.c

c[i] = a[i] + bI[i]; vector int a[4],b[4],c[4];

for (i=0; i<4; i++)
c[i] = vec_add(a[i],

b[i]);

foo.s

movaps xmmO, XMMWORD PTR [eax]
addps xmmO, XMMWORD PTR [edx]
movaps XMMWORD PTR [ecx], xmmO

a.out

] A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC 03

Motivation

| Scientific L { Diff } | Multimedia

Applications Applications

Diff

A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC 03

Gaps From Architecture

I : I I
Scientific H Multimedia H
Applications Applications

GAP

Diff

A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC 03

LII!!

MME vs. Vector Processor

O Differences in memory unit
MME: No scatter/gather memory operations

for (i=0; i<8; i++)
for (j=0; Jj<8; Jj++)
s += a[i*8+j] * b[j*8+i];

MME: Only support aligned memory access

O Differences in ISA

MME: Special instructions for media processing
o Example: Saturated Operations

MME: Non-uniform support for different element types
0o SSE2: Max/min operations on 16-bit short integers

] A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC 03

———
Gaps From Applications

I : I I
Scientific L . Multimedia H
Applications Applications

A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC 03

—!

Berkeley Multimedia Workload

O Evolves from MediaBench

O 12 applications written in C/C++
Audio compression: ADPCM, GSM, LAME, mpg123

Image/video compression: DVJU, JPEG, MPEG2
Graphics: POVray, Mesa, Doom
Others: Rsynth, Timidity

O Where are the example codes from?

Important loops in core procedures (>10% total ex. time)

] A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC 03

T
Where Are Gaps From?

O Different programming styles

m Pointer access

® Manually unrolled loops

O Mismatches between application and language
m Integer promotion

m Saturated operation

O Different code patterns
= Bit-wise operations
m Lookup tables

] A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC 03

—!

C Language Issues: Integer Promotion

O

Integer promotion
Forced by ANSI C semantics (ISO/IEC 9899:1999)

O All char or short types are automatically promoted to infeger type
before conducting any arithmetic operations.

Fit traditional scalar architecture well

MME supports sub-word level parallelism

Integer promotion will waste computation bandwidth

How to eliminate unnecessary integer promotion?

Some analyses needed

for (i=0; i1<1024; i++)

to ensure the same result
for (§=0; §<1024; j++)

dst[i, j]l=srcl[i, j]l+src2][i,

jl;

A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions

LCPC 03

C Language Issues: Saturated Operations

for (i=0; i<1024; i++)
for (j=0; 3j<1024; j++) {
dst[i, jl=srcl[i, jl+src2]i, j];

/* From BMW/GSM */

ltmp=a+b;

if(((unsigned)ltmp - MIN_WORD) >
(MAX WORD — MIN WORD))

if (1tmp>0)
ltmp = MAX_ WORD,
else

ltmp = MIN_WORD,

] A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC 03

Code Pattern: Lookup Tables

0 To implement saturated operations

0 To replace expensive math function calls

/* From BMW/Lame */

if (init==0)
for (i=0;i<LUTABSIZE; i++)
lutab[i]=pow(...);

for (i=0;i<l_end;i++) {
temp=...;
if (temp<1000.0) {
ix[i]=1lutab[(temp*10)];
}
}

] A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC 03

e
Some Related Work

O Compilation based on traditional vectorization
m Cheong and Lam’s optimizer for VIS (Sun)

m Krall and Lelait’s traditional vectorizer for VIS
m Sreraman and Govindarajan’s vectorizer for MMX(Intel)

m Aart’s intra-register vectorization for the Intel architecture

O Other compilation techniques
» Kirall and Lelait’s “Vectorization by loop unrolling”
» Larsen and Amarasinghe’s “Superword level parallelism”
» Fisher and Dietz’s “SIMD-within-a-register”
O Product compilers
m VAST/AltiVec, CodePlay/VectorC, Intel compiler,...

] A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC 03

—!

Conclusions

0 Gaps exist between traditional vectorization
and compilation for multimedia extensions

From differences between two architectures

From different programming styles, mismatch
with language semantics, different code patterns

0 Additional compiler techniques need to be
developed or extended to bridge these gaps

A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC 03

—!

Future

Work

O Our first step to unleash the power of MMEs

Manual vectorization to see how far we can go

Implement our vectorizer on SUIF

O Propose new techniques to bridge the gaps

O Extenc

Trad

| application domain

1tional applications: SPECip, SPECint

App!

1cations for embedded systems

] A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC 03

Thank You

