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Multimedia Extensions (MME)
� Additions to accelerate multimedia applications

� For general-purpose processors:
� MAX(HP), VIS(Sun), AltiVec(Motorola/IBM/Apple), SSE(Intel)

� For special-purpose processors:
� PS2(SONY), Graphics Processing Unit(NVIDIA)

� Use SIMD architecture Intel SSE2
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Programming Multimedia Extensions
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int a[16],b[16],c[16];
for(i=0; i<16; i++)
c[i] = a[i] + b[i]; vector int a[4],b[4],c[4];

for(i=0; i<4; i++)
c[i] = vec_add(a[i], b[i]);

movaps xmm0, XMMWORD PTR [eax]
addps xmm0, XMMWORD PTR [edx]
movaps XMMWORD PTR [ecx], xmm0
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Motivation
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Gaps From Architecture
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� Differences in memory unit
� MME: No scatter/gather memory operations

� MME: Only support aligned memory access
� Differences in ISA

� MME: Special instructions for media processing
� Example: Saturated Operations

� MME: Non-uniform support for different element types
� SSE2: Max/min operations on 16-bit short integers

MME vs. Vector Processor

for(i=0; i<8; i++)
for(j=0; j<8; j++)

s += a[i*8+j] * b[j*8+i];
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Gaps From Applications
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Berkeley Multimedia Workload
� Evolves from MediaBench
� 12 applications written in C/C++

� Audio compression: ADPCM, GSM, LAME, mpg123
� Image/video compression: DVJU, JPEG, MPEG2
� Graphics: POVray, Mesa, Doom
� Others: Rsynth, Timidity

� Where are the example codes from?
� Important loops in core procedures ( >10% total ex. time)
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Where Are Gaps From?
� Different programming styles

� Pointer access
� Manually unrolled loops

� Mismatches between application and language
� Integer promotion
� Saturated operation

� Different code patterns
� Bit-wise operations
� Lookup tables
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C Language Issues: Integer Promotion
� Integer promotion

� Forced by ANSI C semantics (ISO/IEC 9899:1999)
� All char or short types are automatically promoted to integer type 

before conducting any arithmetic operations.

� Fit traditional scalar architecture well

� MME supports sub-word level parallelism
� Integer promotion will waste computation bandwidth 

� How to eliminate unnecessary integer promotion?
� Some analyses needed 
to ensure the same result for(i=0; i<1024; i++)

for(j=0; j<1024; j++) 
dst[i,j]=src1[i,j]+src2[i,j];
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C Language Issues: Saturated Operations

/* From BMW/GSM */
ltmp=a+b;
if(( (unsigned)ltmp – MIN_WORD ) > 

( MAX_WORD - MIN_WORD ))
if(ltmp>0)

ltmp = MAX_WORD;
else

ltmp = MIN_WORD; 

for(i=0; i<1024; i++)
for(j=0; j<1024; j++) {
dst[i,j]=src1[i,j]+src2[i,j];
if(dst[i,j] > 255)

dst[i,j] = 255;
if(dst[i,j] < 0 )

dst[i,j] = 0;

}
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Code Pattern: Lookup Tables
� To implement saturated operations
� To replace expensive math function calls

/* From BMW/Lame */

if (init==0) 
for (i=0;i<LUTABSIZE;i++) 
lutab[i]=pow(...);

...
for (i=0;i<l_end;i++) {

temp=...; 
if (temp<1000.0) {

ix[i]=lutab[(temp*10)];
}

}
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Some Related Work
� Compilation based on traditional vectorization

� Cheong and Lam’s optimizer for VIS (Sun)
� Krall and Lelait’s traditional vectorizer for VIS
� Sreraman and Govindarajan’s vectorizer for MMX(Intel)
� Aart’s intra-register vectorization for the Intel architecture

� Other compilation techniques
� Krall and Lelait’s “Vectorization by loop unrolling”
� Larsen and Amarasinghe’s “Superword level parallelism”
� Fisher and Dietz’s “SIMD-within-a-register”

� Product compilers
� VAST/AltiVec, CodePlay/VectorC, Intel compiler,…



A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC ‘03

Conclusions
� Gaps exist between traditional vectorization 

and compilation for multimedia extensions
� From differences between two architectures
� From different programming styles, mismatch

with language semantics, different code patterns

� Additional compiler techniques need to be 
developed or extended to bridge these gaps
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Future Work
� Our first step to unleash the power of MMEs

� Manual vectorization to see how far we can go
� Implement our vectorizer on SUIF

� Propose new techniques to bridge the gaps
� Extend application domain

� Traditional applications: SPECfp, SPECint
� Applications for embedded systems
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