
A Preliminary Study On the Vectorization
of Multimedia Applications for

Multimedia Extensions

Gang Ren Peng Wu David Padua
University of Illinois IBM T.J. Watson Research University of Illinois

Presented by Gang Ren

A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC ‘03

Multimedia Extensions (MME)
� Additions to accelerate multimedia applications

� For general-purpose processors:
� MAX(HP), VIS(Sun), AltiVec(Motorola/IBM/Apple), SSE(Intel)

� For special-purpose processors:
� PS2(SONY), Graphics Processing Unit(NVIDIA)

� Use SIMD architecture Intel SSE2

128bits128bits

128bits

Vector Unit
Register File (xmm0~xmm7)

16 chars
8 shorts

4 integers

2 doubles
4 singles

A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC ‘03

Programming Multimedia Extensions
�����

�����

�������	�������

�����������	

��������	��	

������	�������	
����� ����������

���������

int a[16],b[16],c[16];
for(i=0; i<16; i++)
c[i] = a[i] + b[i]; vector int a[4],b[4],c[4];

for(i=0; i<4; i++)
c[i] = vec_add(a[i], b[i]);

movaps xmm0, XMMWORD PTR [eax]
addps xmm0, XMMWORD PTR [edx]
movaps XMMWORD PTR [ecx], xmm0

A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC ‘03

Motivation

Scientific
Applications

Traditional Vectorization

Multimedia
Applications

MME VectorizationGAP

Diff

Diff

Vector
Processors

Multimedia
Extensions

A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC ‘03

Gaps From Architecture

Diff

Scientific
Applications

Traditional Vectorization

Multimedia
Applications

MME Vectorization

Vector
Processors

Multimedia
Extensions

Diff

GAP

A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC ‘03

� Differences in memory unit
� MME: No scatter/gather memory operations

� MME: Only support aligned memory access
� Differences in ISA

� MME: Special instructions for media processing
� Example: Saturated Operations

� MME: Non-uniform support for different element types
� SSE2: Max/min operations on 16-bit short integers

MME vs. Vector Processor

for(i=0; i<8; i++)
for(j=0; j<8; j++)

s += a[i*8+j] * b[j*8+i];

A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC ‘03

Gaps From Applications

Diff

Scientific
Applications

Traditional Vectorization

Multimedia
Applications

MME VectorizationGAP

Diff

Vector
Processors

Multimedia
Extensions

A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC ‘03

Berkeley Multimedia Workload
� Evolves from MediaBench
� 12 applications written in C/C++

� Audio compression: ADPCM, GSM, LAME, mpg123
� Image/video compression: DVJU, JPEG, MPEG2
� Graphics: POVray, Mesa, Doom
� Others: Rsynth, Timidity

� Where are the example codes from?
� Important loops in core procedures (>10% total ex. time)

A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC ‘03

Where Are Gaps From?
� Different programming styles

� Pointer access
� Manually unrolled loops

� Mismatches between application and language
� Integer promotion
� Saturated operation

� Different code patterns
� Bit-wise operations
� Lookup tables

A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC ‘03

C Language Issues: Integer Promotion
� Integer promotion

� Forced by ANSI C semantics (ISO/IEC 9899:1999)
� All char or short types are automatically promoted to integer type

before conducting any arithmetic operations.

� Fit traditional scalar architecture well

� MME supports sub-word level parallelism
� Integer promotion will waste computation bandwidth

� How to eliminate unnecessary integer promotion?
� Some analyses needed
to ensure the same result for(i=0; i<1024; i++)

for(j=0; j<1024; j++)
dst[i,j]=src1[i,j]+src2[i,j];

A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC ‘03

C Language Issues: Saturated Operations

/* From BMW/GSM */
ltmp=a+b;
if(((unsigned)ltmp – MIN_WORD) >

(MAX_WORD - MIN_WORD))
if(ltmp>0)

ltmp = MAX_WORD;
else

ltmp = MIN_WORD;

for(i=0; i<1024; i++)
for(j=0; j<1024; j++) {
dst[i,j]=src1[i,j]+src2[i,j];
if(dst[i,j] > 255)

dst[i,j] = 255;
if(dst[i,j] < 0)

dst[i,j] = 0;

}

A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC ‘03

Code Pattern: Lookup Tables
� To implement saturated operations
� To replace expensive math function calls

/* From BMW/Lame */

if (init==0)
for (i=0;i<LUTABSIZE;i++)
lutab[i]=pow(...);

...
for (i=0;i<l_end;i++) {

temp=...;
if (temp<1000.0) {

ix[i]=lutab[(temp*10)];
}

}

A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC ‘03

Some Related Work
� Compilation based on traditional vectorization

� Cheong and Lam’s optimizer for VIS (Sun)
� Krall and Lelait’s traditional vectorizer for VIS
� Sreraman and Govindarajan’s vectorizer for MMX(Intel)
� Aart’s intra-register vectorization for the Intel architecture

� Other compilation techniques
� Krall and Lelait’s “Vectorization by loop unrolling”
� Larsen and Amarasinghe’s “Superword level parallelism”
� Fisher and Dietz’s “SIMD-within-a-register”

� Product compilers
� VAST/AltiVec, CodePlay/VectorC, Intel compiler,…

A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC ‘03

Conclusions
� Gaps exist between traditional vectorization

and compilation for multimedia extensions
� From differences between two architectures
� From different programming styles, mismatch

with language semantics, different code patterns

� Additional compiler techniques need to be
developed or extended to bridge these gaps

A Preliminary Study On the Vectorization of Multimedia Applications for Multimedia Extensions LCPC ‘03

Future Work
� Our first step to unleash the power of MMEs

� Manual vectorization to see how far we can go
� Implement our vectorizer on SUIF

� Propose new techniques to bridge the gaps
� Extend application domain

� Traditional applications: SPECfp, SPECint
� Applications for embedded systems

Thank You

