Enforcing Sequential Consistency
in SPMD Programs with Arrays

Wei Chen
Arvind Krishnamurthy
Katherine Yelick

Motivation

Compiler and hardware optimizations are legal
only if the resulting execution is indistinguishable
from one that follows program order

In terms of memory accesses:

o Uniprocessor: Never reorder accesses with data-
dependencies

o Multiprocessor: Not enough to just satisfy local
dependencies

Programmers intuitively rely on the notion of
Sequential Consistency for parallel programs

Examples of SC violation

T1 T2

//initially A,B=0 /finitially A, B = 0

Az=1 B=1

If (B==0) If (A==0)
critical section critical section

* If we consider only one thread,

* Access to A,B can be reordered
 But means both threads can enter critical section

» SC prevents this by restricting reordering on
shared memory accesses

* Reordering not allowed on either T1 or T2,
because the other thread may observe the effect

Problem with Sequential Consistency

SC is easy to understand, but expensive to enforce

Naive approach — insert fences between every
consecutive pair of shared accesses

Bad for performance:

o Most compiler optimizations (pipelining, prefetching, code motion)
need to reorder memory accesses

o Fences are expensive (drain processor pipeline)
Especially for GAS (global address space) languages
o Alternative to MPI for distributed memory machines

o Threads can read and write remote memory directly
o Overlapping communication overhead is critical

Goal: Find the minimal amount of ordering needed to
guarantee sequential consistency

Problem Statement

Input: SPMD program with program order P

o Represented as a graph, with shared accesses as
its nodes

Delay: for u, v on the same thread,
guarantees that u happens before v
o l.e. there is a fence between u and v

o A “delay set” is a subset of P

Output: Find the minimal delay set D s.t. any
execution consistent with it satisfies SC

Use the idea of Cycle Detection

Cycle Detection

Conflict Accesses: for u, v on different threads
o u, v are conflicting if they access the same shared
variable, with at least one write

A parallel execution instance E defines a happens-
before relation for accesses to the same shared
memory location.

o E — memory centric, P — thread centric

E is correct iff it's consistent with P

o In other words, can’'t have cycles in P U E

But we don’t know E

o Use C, the set of conflict edges, to approximate E

Example

SC restriction: (x,y) on
P2 can't be (0,1)

Analysis finds a critical
cycle - enforces all
delays on the cycle.
Figure-eight shape —
only way to get cycle
for straight-line code

(initially x =y = 0)

P1

P2

Write X = 1% 4 Read Y

!

\ 4

\

/

\n /7

\ W4

/

\

'

\
Write Y = 1k ﬁ Read X

P edges

C edges
Delays

Example 11

(initially x =y = 0)

No restrictions by SC: - P>

(x,y) on P2 can be
either (0,0), (0,1) (1,0), |write X = 1/« --» Read X

(1,1)

Analysis finds no cycles ' '
in the graph = no Write Y = 1/« - -» Read Y
delays are necessary

- P edges

- C edges

Cycle Detection tor SPMD programs

Krishnamurthy and Yelick created polynomial
time algorithms for SPMD programs

Keep two copies P, and Py of P
Add internal C (conflict) edges to Pg
Remove all edges from P

Consider the conflict graph P, U C U Py

o For each pair (uy, v,) in P, check if we can find a
back-path (v, u,)

o Algorithm takes O(n3) time — one depth-first search for
each node (n is number of shared accesses)

o Computes minimal delay set for programs with scalar
variables

Algorithm at Work

While (turn '= MYPROCQ);
numTrans++;

fund = c;
turn++;

The Code

P edges
C edges

P

\

\
\

\
\

Read numTransSy

A

d
d

Write turn r

N
¥
A

Write numTranf- -7

>

\
\I

1

Write fund [---}»

]
e
I

N
I

Pr

1

Read turn L 4 Readm

1
/
/

;

I
I/

1o

4

Read numTrans

v

N
N\

- #Write numTrans

'

Write fund

\

'

* Write turn

Faster SPMD Cycle Detection

For each P edge (u, v,), we want to know if u, is
reachable from v in the conflict graph

Since graph is static, we can use strongly-
connected-components to cache the reachability
o For (ug, vy),

back-path (v, u,) exists <-> C(u,) reachable
from C(v,) (or they are the same)

A O(n?) running time
Compute same delay set as Krishnamurthy and
Yelick’'s Algorithm

Extending Cycle Detection to Array

Accesses
for (i = 0; i < N; i++) {

Previous algorithm has many Alil =1; (S1)
false delays due to array } Bli]=2; (S2)
accesses in loops

o Cycle detection finds backpath

from S2 to S1 T T2
0 But each S1, S2 accesses 31 «--» g1
different memory location, and
o Threads iterate the loop in the
same order - no SC violation
We can improve the accuracy b S2 «--» S2
Incorporating array indices into
our analysis — Pedges

- — 9 Cedges

Concept behind SPMD Cycle Detection

for Arrays

Imagine if a loop is fully unrolled
o All cycles have figure-eight shape

o A conflict edge means two array accesses have
the same subscript

o For a cycle of (ug, v,) with backpath (v, Vg,...5 Ug,
u,):
index(v,) == index(vg), index(u,) == index(ug),
iter(v,) >= iter(u,), iter(ug) >= iter(vg)

o lteration information is encoded in edge direction

o How do we incorporate information about the
index into the conflict graph?

Augmenting Conflict Graph with Weights

For edge (A[f(1)], B[g(i)]),
assign its weight to be g(i) —
(i)

For loop back edge, use
loop increment

Conflict edges always have
zero weight

New Goal: for (u,, v,), find
backpath (vg, Ug) S.1.

W(ug, vi) + W(vg, ug) == 0

for (i=0;1<N;i++) {
Alil=1; (S1)
B[i] =2; (S2)

}

T1

ST

<+--» Si

o

S2

Three Polynomial-time Algorithms

Zero cycle detection
o When all edge weights are constants

o Graph theory to detect zero cycles (simple and non-
simple)

o O(n3) if no negative cycles, O(n%) otherwise
Data-flow analysis

o Use the signs of the edges to approximate answer
o O(n3) time

Integer Programming with 4 variables

o Useful for generic affine terms

a For each (u, v), find all possible pairs of (C(u), C(v))
o Create linear systems with 4 equations

o O(n%) time

Data-flow Analysis Approximation

Check if a cycle must » OUT(B) = IN(B)
have non-zero weight * IN(B) =[] (Sgn(P,B) []
. , OUT(P)),
(u, v) is NOT adelay it \yhere Pis in pred(B).
o sgn(ug, v) [1sgn(v,, uy)
is in {+,—}

O(nd) time N

a2 Only 3 * ninitial

+
conditions for data-flow
analysis \ /
0

Integer Programming Example

if MYTHREAD == 1)
for (i = 0;i < N; i+= 3) {

Alil=c1; (S1) . -
B[i+1] = ¢2; (S2) S1 (i) . /A S3 ()

} 2 |1 X
if (MYTHREAD == 2) l PN .
for (j = 2;j < N; j+=2) { s2() ¥ "{ S4 ())

Blil=c3; (S3)
A[j-2] = c4; (S4)

} S1->54: i=j-2 S2->S83: i'+1=j
S1->82: ' =i+3k,k;>=0 S3->S54: j =) +2K,, k,>=0
S2->S1: i=1+3k, k;>=1 S4->83: =]+ 2K,, k,>=1

- For (51,S2), any cycle must include (S2,S3), (S4, S1)
» System has no solution 2 (S1, S2) is not a delay
« Zero cycle - no delay, data-flow - delay

Algorithm FEvaluation

Speed: data-flow > IP4 > zero

Accuracy: zero > |IP4 > data-flow

Applicability: data-flow > |IP4 > zero

Ease of implementation: data-flow > zero > |IP4

Possible implementation strategy:
o Use data-flow for most cases

o Use zero cycle detection when it's applicable, and for
“hot spot” of the program

o Use Integer Programming to deal with complex affine
terms

Conclusion

Cycle detection is important for efficiently
enforcing sequential consistency

We present a O(n?) algorithm for handling
scalar accesses in SPMD programs

We present three polynomial time algorithms
to support array accesses

Plan to experiment our techniques on UPC, a
global address space SPMD language

o Communication scheduling (prefetching,
pipelining)

