
���������	
��������	�����������	

��	
���	��������	����	������	

Wei Chen
Arvind Krishnamurthy
Katherine Yelick

����������

� Compiler and hardware optimizations are legal
only if the resulting execution is indistinguishable
from one that follows program order

� In terms of memory accesses:
� Uniprocessor: Never reorder accesses with data-

dependencies
� Multiprocessor: Not enough to just satisfy local

dependencies

� Programmers intuitively rely on the notion of
Sequential Consistency for parallel programs

��������	��	
�	���������

��
����������	
� �

�
�
�
�
�
��
�
��
��

��������
�������

��
//initially A, B = 0

�
�
��
��
��
��
��������
�������

• If we consider only one thread,
• Access to A,B can be reordered
• But means both threads can enter critical section

• SC prevents this by restricting reordering on
shared memory accesses

• Reordering not allowed on either T1 or T2,
because the other thread may observe the effect

�������	����	
��������	�����������
� SC is easy to understand, but expensive to enforce
� Naïve approach – insert fences between every

consecutive pair of shared accesses
� Bad for performance:

� Most compiler optimizations (pipelining, prefetching, code motion)
need to reorder memory accesses

� Fences are expensive (drain processor pipeline)
� Especially for GAS (global address space) languages

� Alternative to MPI for distributed memory machines
� Threads can read and write remote memory directly
� Overlapping communication overhead is critical

� Goal: Find the minimal amount of ordering needed to
guarantee sequential consistency

�������	
��������

� Input: SPMD program with program order P
� Represented as a graph, with shared accesses as

its nodes

Delay: for u, v on the same thread,
guarantees that u happens before v
� i.e. there is a fence between u and v
� A “delay set” is a subset of P

� Output: Find the minimal delay set D s.t. any
execution consistent with it satisfies SC

� Use the idea of Cycle Detection

�����	���������

� Conflict Accesses: for u, v on different threads
� u, v are conflicting if they access the same shared

variable, with at least one write

� A parallel execution instance E defines a happens-
before relation for accesses to the same shared
memory location.
� E – memory centric, P – thread centric

� E is correct iff it’s consistent with P
� In other words, can’t have cycles in P U E

� But we don’t know E
� Use C, the set of conflict edges, to approximate E

�������

� SC restriction: (x,y) on
P2 can’t be (0,1)

� Analysis finds a critical
cycle � enforces all
delays on the cycle.

� Figure-eight shape –
only way to get cycle
for straight-line code

����������	

��������������	

����

�������

�������

���������������������

�	 ��

������

�������	��

� No restrictions by SC:
(x,y) on P2 can be
either (0,0), (0,1) (1,0),
(1,1)

� Analysis finds no cycles
in the graph � no
delays are necessary

����������	

�������������	

�����

�������

�������

���������������������

�	 ��

�����	���������	���	
���	��������

� Krishnamurthy and Yelick created polynomial
time algorithms for SPMD programs

� Keep two copies PL and PR of P
� Add internal C (conflict) edges to PR

� Remove all edges from PL

� Consider the conflict graph PL U C U PR
� For each pair (uL, vL) in P, check if we can find a

back-path (vL, uL)
� Algorithm takes O(n3) time – one depth-first search for

each node (n is number of shared accesses)
� Computes minimal delay set for programs with scalar

variables

���������	��	 ��!

������������

����������

����������

����������

����������

�������������� ��������������

������������
������������ ��!�
"��#
��������$$#
�������%#
����$$#�

�����&��

��������
��������

�������

�������

PL PR

"�����	
���	�����	���������		

� For each P edge (uL, vL), we want to know if uL is
reachable from vL in the conflict graph

� Since graph is static, we can use strongly-
connected-components to cache the reachability

� For (uL, vL),
back-path (vL, uL) exists � �� �� �� � C(uL) reachable
from C(vL) (or they are the same)

� A O(n2) running time
� Compute same delay set as Krishnamurthy and

Yelick’s Algorithm

�����#���	�����	���������	��	�����	

��������

� Previous algorithm has many
false delays due to array
accesses in loops
� Cycle detection finds backpath

from S2 to S1
� But each S1, S2 accesses

different memory location, and
� Threads iterate the loop in the

same order � no SC violation
� We can improve the accuracy by

incorporating array indices into
our analysis

for (i = 0; i < N; i++) {
A[i] = 1; (S1)
B[i] = 2; (S2)

}

S1

S2S2

S1

P edges

C edges

T1 T2

�������	�����#	
���	�����	���������	

���	������
� Imagine if a loop is fully unrolled

� All cycles have figure-eight shape
� A conflict edge means two array accesses have

the same subscript
� For a cycle of (uL, vL) with backpath (vL, vR,…, uR,

uL):
index(vL) == index(vR), index(uL) == index(uR),
iter(vL) >= iter(uL), iter(uR) >= iter(vR)

� Iteration information is encoded in edge direction
� How do we incorporate information about the

index into the conflict graph?

���������	��������	$����	����	 ������

� For edge (A[f(i)], B[g(i)]),
assign its weight to be g(i) –
f(i)

� For loop back edge, use
loop increment

� Conflict edges always have
zero weight

New Goal: for (uL, vL), find
backpath (vR, uR) s.t.

W(uL, vL) + W(vR, uR) == 0

for (i = 0; i < N; i++) {
A[i] = 1; (S1)
B[i] = 2; (S2)

}

S1

S2S2

S1

P edges

T1 T2

1 0 0 1

%����	����������&����	����������
� Zero cycle detection

� When all edge weights are constants
� Graph theory to detect zero cycles (simple and non-

simple)
� O(n3) if no negative cycles, O(n5) otherwise

� Data-flow analysis
� Use the signs of the edges to approximate answer
� O(n3) time

� Integer Programming with 4 variables
� Useful for generic affine terms
� For each (u, v), find all possible pairs of (C(u), C(v))
� Create linear systems with 4 equations
� O(n4) time

����&����	��������	�������������

� Check if a cycle must
have non-zero weight

� (uL, vL) is NOT a delay if
� sgn(uL, vL) � sgn(vL, uL)

is in {+,–}

� O(n3) time
� Only 3 * n initial

conditions for data-flow
analysis

T

+ –

0

• OUT(B) = IN(B)
• IN(B) = � (Sgn(P,B) �
OUT(P)),
where P is in pred(B).

�������	�����������	�������

S1 (i)

S4 (j)S2 (i’)

S3 (j’)

S1 -> S4: i = j – 2 S2 -> S3: i’ + 1 = j’
S1 -> S2: i’ = i + 3k1, k1 >= 0 S3 -> S4: j = j’ + 2k2, k2 >= 0
S2 -> S1: i = i’ + 3k1, k1 >= 1 S4 -> S3: j’ = j + 2k2, k2 >= 1

if (MYTHREAD == 1)
for (i = 0; i < N; i+= 3) {

A[i] = c1; (S1)
B[i+1] = c2; (S2)

}
if (MYTHREAD == 2)

for (j = 2; j < N; j+=2) {
B[j] = c3; (S3)
A[j-2] = c4; (S4)

}

• For (S1,S2), any cycle must include (S2,S3), (S4, S1)
• System has no solution � (S1, S2) is not a delay
• Zero cycle � no delay, data-flow � delay

1 -22 4

���������	���������

� Speed: data-flow > IP4 > zero
� Accuracy: zero > IP4 > data-flow
� Applicability: data-flow > IP4 > zero
� Ease of implementation: data-flow > zero > IP4
� Possible implementation strategy:

� Use data-flow for most cases
� Use zero cycle detection when it’s applicable, and for

“hot spot” of the program
� Use Integer Programming to deal with complex affine

terms

���������

� Cycle detection is important for efficiently
enforcing sequential consistency

� We present a O(n2) algorithm for handling
scalar accesses in SPMD programs

� We present three polynomial time algorithms
to support array accesses

� Plan to experiment our techniques on UPC, a
global address space SPMD language
� Communication scheduling (prefetching,

pipelining)

