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� Compiler and hardware optimizations are legal 
only if the resulting execution is indistinguishable 
from one that follows program order 

� In terms of memory accesses:
� Uniprocessor:  Never reorder accesses with data-

dependencies 
� Multiprocessor: Not enough to just satisfy local 

dependencies

� Programmers intuitively rely on the notion of 
Sequential Consistency for parallel programs
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• If we consider only one thread,
• Access to A,B can be reordered 
• But means both threads can enter critical section

• SC prevents this by restricting reordering on 
shared memory accesses 

• Reordering not allowed on either T1 or T2, 
because the other thread may observe the effect
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� SC is easy to understand, but expensive to enforce
� Naïve approach – insert fences between every 

consecutive pair of shared accesses 
� Bad for performance:

� Most compiler optimizations (pipelining, prefetching, code motion) 
need to reorder memory accesses

� Fences are expensive (drain processor pipeline)
� Especially for GAS (global address space) languages

� Alternative to MPI for distributed memory machines
� Threads can read and write remote memory directly
� Overlapping communication overhead is critical

� Goal: Find the minimal amount of ordering needed to 
guarantee sequential consistency
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� Input: SPMD program with program order P
� Represented as a graph, with shared accesses as 

its nodes

Delay: for u, v on the same thread, 
guarantees that u happens before v
� i.e. there is a fence between u and v
� A “delay set” is a subset of P

� Output:  Find the minimal delay set D s.t. any 
execution consistent with it satisfies SC

� Use the idea of Cycle Detection
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� Conflict Accesses: for u, v on different threads
� u, v are conflicting if they access the same shared 

variable, with at least one write

� A parallel execution instance E defines a happens-
before relation for accesses to the same shared 
memory location.
� E – memory centric, P – thread centric

� E is correct iff it’s consistent with P
� In other words, can’t have cycles in P U E

� But we don’t know E
� Use C, the set of conflict edges, to approximate E



�������

� SC restriction: (x,y) on 
P2 can’t be (0,1)

� Analysis finds a critical 
cycle � enforces all 
delays on the cycle.

� Figure-eight shape –
only way to get cycle 
for straight-line code
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� No restrictions by SC: 
(x,y) on P2 can be 
either (0,0), (0,1) (1,0), 
(1,1)

� Analysis finds no cycles 
in the graph � no 
delays are necessary

����������	


�������������	


�����

�������

�������

���������������������

�	 ��



�����	���������	���	
���	��������

� Krishnamurthy and Yelick created polynomial 
time algorithms for SPMD programs

� Keep two copies PL and PR of P
� Add internal C (conflict) edges to PR

� Remove all edges from PL

� Consider the conflict graph PL U C U PR
� For each pair (uL, vL) in P, check if we can find a 

back-path (vL, uL)
� Algorithm takes O(n3) time – one depth-first search for 

each node (n is number of shared accesses)
� Computes minimal delay set for programs with scalar 

variables
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� For each P edge (uL, vL), we want to know if uL is 
reachable from vL in the conflict graph

� Since graph is static, we can use strongly-
connected-components to cache the reachability

� For (uL, vL),
back-path (vL, uL) exists � �� �� �� � C(uL) reachable 
from C(vL) (or they are the same)

� A O(n2) running time
� Compute same delay set as Krishnamurthy and 

Yelick’s Algorithm
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� Previous algorithm has many 
false delays due to array 
accesses in loops
� Cycle detection finds backpath 

from S2 to S1 
� But each S1, S2 accesses 

different memory location, and 
� Threads iterate the loop in the 

same order � no SC violation
� We can improve the accuracy by 

incorporating array indices into 
our analysis

for (i = 0; i < N; i++) {
A[i] = 1;   (S1)
B[i] = 2;   (S2)

}

S1

S2S2

S1

P edges

C edges

T1 T2
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� Imagine if a loop is fully unrolled

� All cycles have figure-eight shape
� A conflict edge means two array accesses have 

the same subscript
� For a cycle of (uL, vL) with backpath (vL, vR,…, uR, 

uL):
index(vL) == index(vR), index(uL) == index(uR),
iter(vL) >= iter(uL), iter(uR) >= iter(vR)

� Iteration information is encoded in edge direction
� How do we incorporate information about the 

index into the conflict graph?
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� For edge (A[f(i)], B[g(i)]),
assign its weight to be g(i) –
f(i)

� For loop back edge, use 
loop increment

� Conflict edges always have 
zero weight 

New Goal: for (uL, vL), find 
backpath (vR, uR) s.t. 

W(uL, vL) + W(vR, uR) == 0

for (i = 0; i < N; i++) {
A[i] = 1;   (S1)
B[i] = 2;   (S2)

}

S1

S2S2

S1

P edges

T1 T2

1 0 0 1
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� Zero cycle detection

� When all edge weights are constants
� Graph theory to detect zero cycles (simple and non-

simple)
� O(n3) if no negative cycles, O(n5) otherwise

� Data-flow analysis
� Use the signs of the edges to approximate answer
� O(n3) time

� Integer Programming with 4 variables
� Useful for generic affine terms
� For each (u, v), find all possible pairs of (C(u), C(v))
� Create linear systems with 4 equations 
� O(n4) time
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� Check if a cycle must 
have non-zero weight

� (uL, vL) is NOT a delay if 
� sgn(uL, vL) � sgn(vL, uL) 

is in {+,–}

� O(n3) time
� Only 3 * n initial 

conditions for data-flow 
analysis

T

+ –

0

• OUT(B) = IN(B)
• IN(B) = � (Sgn(P,B) �
OUT(P)),
where P is in pred(B).
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S1 (i)

S4 (j)S2 (i’)

S3 (j’)

S1 -> S4:  i = j – 2 S2 -> S3:  i’ + 1 = j’
S1 -> S2:  i’ = i + 3k1, k1 >= 0 S3 -> S4:  j  = j’ + 2k2, k2 >= 0
S2 -> S1:  i = i’ + 3k1, k1 >= 1 S4 -> S3:  j’ = j + 2k2, k2 >= 1

if (MYTHREAD == 1)
for (i = 0; i < N; i+= 3) { 

A[i] = c1;      (S1)
B[i+1] = c2;  (S2)

}
if (MYTHREAD == 2)

for (j = 2; j < N; j+=2) { 
B[j] = c3;      (S3)
A[j-2] = c4;   (S4)

}

• For (S1,S2), any cycle must include (S2,S3), (S4, S1)
• System has no solution � (S1, S2) is not a delay
• Zero cycle � no delay, data-flow � delay 

1 -22 4
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� Speed:  data-flow > IP4 > zero
� Accuracy:  zero > IP4 > data-flow
� Applicability:  data-flow > IP4 > zero
� Ease of implementation: data-flow > zero > IP4
� Possible implementation strategy:

� Use data-flow for most cases
� Use zero cycle detection when it’s applicable, and for 

“hot spot” of the program
� Use Integer Programming to deal with complex affine 

terms
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� Cycle detection is important for efficiently 
enforcing sequential consistency

� We present a O(n2) algorithm for handling 
scalar accesses in SPMD programs

� We present three polynomial time algorithms 
to support array accesses

� Plan to experiment our techniques on UPC, a 
global address space SPMD language
� Communication scheduling (prefetching, 

pipelining)


