
1

Load Elimination in the Presence
of Side-Effects, Concurrency and

Precise Exceptions

Christoph von Praun
Florian Schneider and

Thomas R. Gross

Laboratory for Software Technology
ETH Zurich,

Zurich, Switzerland

2

Motivation

• Frequent occurrence of path-expressions in OO
programs:

l1 = o.f1.f2

...

l2 = o.f1.f2

t1 = ld(o, f1);
t2 = ld(t1, f2);
l1 = t2;
...
t3 = ld(o, f1);
t4 = ld(t3, f2);
l2 = t4;

• Large number of (indirect) memory accesses
• Irregular access patterns (pointer-chasing)

3

Load elimination

Goal: Reduce # of memory accesses
“Promote” heap to local vars / registers

t1 = ld(o, f1);
t2 = ld(t1, f2);
l1 = t2;
...
t3 = ld(o, f1);
t4 = ld(t3, f2);
l2 = t4;

t1 = ld(o, f1);
t2 = ld(t1, f2);
l1 = t2;
...
l2 = t2;

• Precise exceptions
• Multi-threading

Implementation for Java must consider …

• Control- and data-flow

• Side-effects at call sites

4

Multi-threading (1/3)

// thread 1
l1 = ld(s1);
l2 = ld(s2);
if (l2 != 0) {

l3 = ld(s1);
}

s1,s2 = 0; // shared
l1,l2,l3 = 0; // local to thread1

// thread 2
st(s1, 1);
st(s2, 1);

Original program:

Subset correctness [Lee et. al. PPoPP 99]:
Results of optimized programs must be in that set.

SC: {(0,0),(1,1)}
JC : {(0,0),(1,1),(1,0)} Possible results : (l2,l3)

5

Multi-threading (2/3)

Correctness depends on memory model
Access to s1,s2 not “correctly synchronized”

// thread 1
l1 = ld(s1);
l2 = ld(s2);
if (l2 != 0) {

l3 = l1;
}

// thread 2
st(s1, 1);
st(s2, 1);

Optimized (load-elimination):

! originaloptimized
SC: {(0,0),(1,0),(1,1)} ⊆ {(0,0),(1,1)}
JC: {(0,0),(1,0),(1,1)} ⊆ {(0,0),(1,0),(1,1)}

6

Multi-threading (3/3)
Synchronization “kills”:

= ld(o, f)

lock l;
...
unlock l;

= ld(o, f)

st(o, f, value)

lock l;
...
unlock l;

Must not be optimized!

synchronization order

4

5

2

3

1 2 3 4 5execution / causal order

1

program order

consistency

Similar: access to volatile variable “kills”.
Criterion for correct optimization of Java.

7

2 Strategies …
... to determine the absence of “killing” interference:

Strategy 1: Synchronization kills
+ simple, all fields, all accesses treated equally
- only correct for Java Consistency (JC)
- optimization potential not fully exploited

Strategy 2: Exploit synchronization information
Aggressive optimization of thread-local and shared
non-conflicting data
No optimization of shared conflicting data

+ independent of memory model (correct for SC)
- needs concurrency and side-effect info

8

Procedure

Whole program analysis
Side-effect analysis
Conflict analysis (Strategy 2)

Intra-procedural load-elimination
based on SSA-PRE-based [Chow et. al., PLDI 97]
lexical equivalence of path expressions
Extensions that account for

side-effects
precise exceptions
concurrency (Strategy 2)

9

Conflict analysis

Criterions for absence of a conflict?

1. object is stack/thread-local
2. accesses between NEW and orderly ESCAPE
3. accesses before all STARTs
4. accesses after all JOINs
5. common protection through a unique lock

Enhanced and improved version of
[PraunGross PLDI03]

10

Strategy 2: Aggressive optimization

Absence of conflict on object o and field f allows for
aggressive optimization across synchronization
statements:

l1 = ld(o,f);
lock l;
...
unlock l;
l2 = ld(o,f);

l1 = ld(o,f);
lock l;
...
unlock l;
l2 = l1;

Reasoning:
If o is not conflicting, then …
… lock l is not involved in protecting o

11

Evaluation

Application and library (GNU 2.96)

Configurations:

(orig) no load elimination
(A) basic (call and synchronization kill)
(B) side-effect + synchronization-kills
(C) side-effect + conflict info
(D) side-effect + “perfect” synchronization

Strategy 1

Strategy 2

12

Optimized expressions (compile-time)

159.6145.3131.7avg.

120.6

123.1

126.7

121.2

192.0

128.9

109.3

(B)
%

jess

db

compress

tsp (*)

mtrt (*)

montecarlo (*)

moldyn (*)

149.1142.7

132.2127.8

146.6146.6

176.2176.2

184.2184.2

118.037.3

210.9

(D)
%

202.6

(C)
%

Percentage of eliminated expressions
basic configuration (A) = 100%.

(*) multi-threaded Strategy 1 Strategy 2

13

Eliminated accesses (runtime)

28.528.623.4avg.

17.4

11.9

29.3

25.3

9.1

66.1

41.1

(B)
%

jess

db

compress

tsp (*)

mtrt (*)

montecarlo (*)

moldyn (*)

70.355.6

25.025.6

30.121.5

32.711.9

17.817.4

14.641.1

9.1

(C)
%

0.6

(A)
%

(*) multi-threaded Strategy 1 Strategy 2

Percentage of eliminated accesses
un-optimized (orig) = 100%.

14

Related work

• SSAPRE: Chow et. al. [PLDI 97]
• Load reuse analysis: Bodik et al. [PLDI 99]
• Register promotion by sparse PRE of loads and

stores: Lo et al. [PLDI 98]
• Concurrent SSA for SPMD programs:

Lee, et. al. [PPoPP 99]
• PRE-based load elimination for Java:

Hosking et. al. [SP&E 2001]

15

Concluding remarks

• Load elimination is effective: up to 55% (avg. 25%)
fewer loads than in the original program.

• Side-effect information reduces the number of loads
on avg. by another 5%.

• Simple load elimination requires a weak memory
model for correctness.

• Accurate information about concurrency can…
• … make the optimization independent of the MM
• … enable aggressive opt. across synchronization stmts.

16

Thank you for your attention.

17

Eliminated accesses (runtime)

323.5

446.6

2423.5

899.0

366.9

478.6

1651.3

(orig) 100%
mio. accs

71.571.476.6avg.

82.6

88.1

70.7

74.7

90.9

33.9

58.9

(B)
%

jess

db

compress

tsp (*)

mtrt (*)

montecarlo (*)

moldyn (*)

29.744.4

75.074.4

69.978.5

67.388.1

82.282.6

85.458.9

90.9

(C)
%

99.4

(A)
%

(*) multi-threaded Strategy 1 Strategy 2

