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Motivation

• Frequent occurrence of path-expressions in OO 
programs:

l1 = o.f1.f2

...

l2 = o.f1.f2

t1 = ld(o, f1);
t2 = ld(t1, f2);
l1  = t2;
...
t3 = ld(o, f1);
t4 = ld(t3, f2);
l2  = t4;

• Large number of (indirect) memory accesses
• Irregular access patterns (pointer-chasing)
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Load elimination

Goal:  Reduce # of memory accesses
“Promote” heap to local vars / registers

t1 = ld(o, f1);
t2 = ld(t1, f2);
l1  = t2;
...
t3 = ld(o, f1);
t4 = ld(t3, f2);
l2 = t4;

t1 = ld(o, f1);
t2 = ld(t1, f2);
l1 = t2;
...
l2 = t2;

• Precise exceptions
• Multi-threading

Implementation for Java must consider …

• Control- and data-flow

• Side-effects at call sites



4

Multi-threading (1/3)

// thread 1
l1 = ld(s1);
l2 = ld(s2);
if (l2 != 0) {

l3 = ld(s1);
}

s1,s2 = 0;    // shared
l1,l2,l3 = 0; // local to thread1

// thread 2
st(s1, 1);
st(s2, 1);

Original program:

Subset correctness [Lee et. al. PPoPP 99]:
Results of optimized programs must be in that set.

SC: {(0,0),(1,1)} 
JC : {(0,0),(1,1),(1,0)} Possible results : (l2,l3)
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Multi-threading (2/3)

Correctness depends on memory model
Access to s1,s2 not “correctly synchronized”

// thread 1
l1 = ld(s1);
l2 = ld(s2);
if (l2 != 0) {

l3 = l1;
}

// thread 2
st(s1, 1);
st(s2, 1);

Optimized (load-elimination):

! originaloptimized
SC: {(0,0),(1,0),(1,1)} ⊆ {(0,0),(1,1)}
JC:  {(0,0),(1,0),(1,1)}  ⊆ {(0,0),(1,0),(1,1)} 
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Multi-threading (3/3)
Synchronization “kills”:

= ld(o, f)

lock l;
...
unlock l;

= ld(o, f)

st(o, f, value)

lock l;
...
unlock l;

Must not be optimized!

synchronization order

4

5

2

3

1 2 3 4 5execution / causal order

1

program order

consistency

Similar: access to volatile variable “kills”.
Criterion for correct optimization of Java.
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2 Strategies …
... to determine the  absence of “killing” interference:

Strategy 1: Synchronization kills
+  simple, all fields, all accesses treated equally
- only correct for Java Consistency (JC)
- optimization potential not fully exploited

Strategy 2: Exploit synchronization information
Aggressive optimization of thread-local and shared 
non-conflicting data
No optimization of shared conflicting data

+  independent of memory model (correct for SC)
- needs concurrency and side-effect info
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Procedure

Whole program analysis
Side-effect analysis
Conflict analysis (Strategy 2)

Intra-procedural load-elimination
based on SSA-PRE-based [Chow et. al., PLDI 97]
lexical equivalence of path expressions
Extensions that account for

side-effects
precise exceptions
concurrency (Strategy 2)
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Conflict analysis

Criterions for absence of a conflict?

1. object is stack/thread-local
2. accesses between NEW and orderly ESCAPE
3. accesses before all STARTs
4. accesses after all JOINs
5. common protection through a unique lock

Enhanced and improved version of 
[PraunGross PLDI03]
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Strategy 2: Aggressive optimization

Absence of conflict on object o and field f allows for
aggressive optimization across synchronization
statements:

l1 = ld(o,f);
lock l;
...
unlock l;
l2 = ld(o,f);

l1 = ld(o,f);
lock l;
...
unlock l;
l2 = l1;

Reasoning:
If o is not conflicting, then … 
… lock l is not involved in protecting o
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Evaluation

Application and library (GNU 2.96)

Configurations:

(orig)  no load elimination
(A)      basic (call and synchronization kill)
(B)      side-effect + synchronization-kills
(C)      side-effect + conflict info
(D)      side-effect + “perfect” synchronization

Strategy 1

Strategy 2
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Optimized expressions (compile-time)
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Eliminated accesses (runtime)
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Related work

• SSAPRE: Chow et. al. [PLDI 97]
• Load reuse analysis: Bodik et al. [PLDI 99]
• Register promotion by sparse PRE of loads and 

stores: Lo et al. [PLDI 98]
• Concurrent SSA for SPMD programs: 

Lee, et. al. [PPoPP 99]
• PRE-based load elimination for Java: 

Hosking et. al. [SP&E 2001]
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Concluding remarks

• Load elimination is effective: up to 55% (avg. 25%) 
fewer loads than in the original program.

• Side-effect information reduces the number of loads 
on avg. by another 5%.

• Simple load elimination requires a weak memory 
model for correctness.

• Accurate information about concurrency can… 
• … make the optimization independent of the MM
• … enable aggressive opt. across synchronization stmts.
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Thank you for your attention.
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Eliminated accesses (runtime)
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