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Motivation

• Irregular, fine-grain remote accesses
– Several important applications
– Message passing (MPI) is inefficient

• Language support for fine-grain remote accesses?
– Less programmer effort than MPI
– How efficient is it on clusters?



Contributions

• Experimental evaluation of language features
• Observations on programmability & performance
• Suggestions for efficient programming style
• Predictions on impact of architectural trends

Findings not a surprise, but we quantify penalties for 
language features for challenging applications
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Parallel Paradigms
• Shared-memory

– Pthreads, Java threads, OpenMP, HPF
– Remote accesses same as normal accesses

• Distributed-memory
– MPI, SHMEM
– Remote accesses through explicit (aggregated) messages
– User distributes data, translates addresses

• Distributed-memory with special remote accesses
– Library to copy remote array sections (Global Arrays)
– Extra processor dimension for arrays (Co-Array Fortran)
– Global pointers (UPC)
– Compiler / run-time system converts accesses to messages



Global Arrays
• Characteristics

– Provides illusion of shared multidimensional arrays
– Library routines 

• Copy rectangular shaped data in & out of global arrays
• Scatter / gather / accumulate operations on global array

– Designed to be more restrictive, easier to use than MPI

• Example

NGA_Access(g_a, lo, hi, &table, &ld);

for (j = 0; j < PROCS; j++) {    for (i = 0; i < counts[j]; i++) {

table[index-lo[0]] ^= stable[copy[i] >> (64-LSTSIZE)];  } }

NGA_Release_update(g_a, lo, hi);



UPC
• Characteristics

– Provides illusion of shared one-dimensional arrays
– Language features

• Global pointers to cyclically distributed arrays
• Explicit one-sided msgs (upc_memput(),  upc_memget())

– Compilers translate global pointers, generate communication

• Example
shared unsigned int table[TABSIZE];
for (i=0; i<NUM_UPDATES/THREADS; i++) {

int ran = random();
table[ (ran & (TABSIZE-1)) ] ^= stable[ (ran >> (64-LSTSIZE)) ];

}
barrier();



UPC

• Most flexible method for arbitrary remote references
• Supported by many vendors
• Can cast global pointers to local pointers

– Efficiently access local portions of global array

• Can program using hybrid paradigm
– Global pointers for fine-grain accesses
– Use upc_memput(), upc_mempget() for coarse-grain accesses



Target Applications

• Parallel applications
– Most standard benchmarks are easy

• Coarse-grain parallelism
• Regular memory access patterns

• Applications with irregular, fine-grain parallelism
– Irregular table access
– Irregular dynamic access
– Integer sort



Options for Fine-grain Parallelism
• Implement fine-grain algorithm

– Low user effort, inefficient

• Implement coarse-grain algorithm
– High user effort, efficient

• Implement hybrid algorithm
– Most code uses fine-grain remote accesses
– Performance critical sections use coarse-grain algorithm
– Reduce user effort at the cost of performance

• How much performance is lost on clusters?



Experimental Evaluation

• Cluster : Compaq Alphaserver SC (ORNL)
– 64 nodes, 4-way Alpha EV67 SMP, 2 GB memory each
– Single Quadrics adapter per node

• SMP : SunFire 6800 (UMD)
– 24 processors, UltraSparc III, 24 GB memory total
– Crossbar interconnect



Irregular Table Update

• Applications
– Parallel databases, giant histogram / hash table

• Characteristics
– Irregular parallel accesses to large distributed table
– Bucket version (aggregated non-local accesses) possible

• Example

for ( i=0; i<NUM_UPDATES; i++ ) {
ran = random();
table[ran & (TABSIZE-1)] ^= stable[ran >> (64-LSTSIZE)];

}



Table Update (AlphaServer, 2^22 table)
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Table Update (Sun SMP, 2^25 table)
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Irregular Dynamic Accesses

• Applications
– NAS CG (sparse conjugate gradient)

• Characteristics
– Irregular parallel accesses to sparse data structures
– Limited aggregation of non-local accesses

• Example (NAS CG)

for (j = 0; j < n; j++) {
sum = 0.0;
for (k = rowstr[j]; k < rowstr[j+1]; k++)

sum = sum + a[k] * v[colidx[k]];
w[j] = sum;

}



NAS Conjugate Gradient (AlphaServer, Class B)
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Integer Sort

• Applications
– NAS IS (integer sort)

• Characteristics
– Parallel sort of large list of integers
– Non-local accesses can be aggregated

• Example (NAS IS)

for ( i=0; i<NUM_KEYS; i++ ) {    /* sort local keys into buckets */
key = key_array[i];
key_buff1[bucket_ptrs[key >> shift]++] = key; }

upc_reduced_sum(…) ;                /* get bucket size totals */
for ( i = 0; i < THREADS; i++ ) {    /* get my bucket from every proc */

upc_memget(…); }



NAS Integer Sort (AlphaServer, 128K keys)
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UPC Microbenchmarks

• Compare memory access costs
– Quantify software overhead

• Private
– Local memory, local pointer

• Shared-local
– Local memory, global pointer

• Shared-same-node
– Non-local memory (but on same SMP node)

• Shared-remote
– Non-local memory



UPC Microbenchmarks

• Architectures
– Compaq AlphaServer SC, v1.7 compiler (ORNL)
– Compaq AlphaServer Marvel, v2.1 compiler (Florida)
– Sun SunFire 8600 (UMD)
– AMD Athlon PC cluster (OSU)
– Cray T3E (MTU)
– SGI Origin 2000 (UNC)
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• Global pointers significantly slower
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Observations

• Fine-grain programming model is seductive
– Fine-grain access to shared data
– Simple, clean, easy to program

• Not a good reflection of clusters
– Efficient fine-grain communication not supported in hardware
– Architectural trend towards clusters, away from Cray T3E



Observations

• Programming model encourages poor performance
– Easy to write simple fine-grain parallel programs
– Poor performance on clusters
– Can code around this, often at the cost of complicating your 

model or changing your algorithm

• Dubious that compiler techniques will solve this problem
– Parallel algorithms with block data movement needed for clusters
– Compilers cannot robustly transform fine-grained code into  

efficient block parallel algorithms



Observations

• Hybrid programming model is easy to use
– Fine-grained shared data access easy to program
– Use coarse-grain message passing for performance
– Faster code development, prototyping
– Resulting code cleaner, more maintainable

• Must avoid degrading local computations
– Allow compiler to fully optimize code
– Usually not achieved in fine-grain programming
– Strength of using explicit messages (MPI)



Recommendations

• Irregular coarse-grain algorithms
– For peak cluster performance, use message passing
– For quicker development, use hybrid paradigm

• Use fine-grain remote accesses sparingly
– Exploit existing code / libraries where possible

• Irregular fine-grain algorithms
– Execute smaller problems on large SMPs
– Must develop coarse-grain alternatives for clusters

• Fine-grain programming on clusters still just a dream
– Though compilers can help for regular access patterns



Impact of Architecture Trends

• Trends
– Faster cluster interconnects (Quadrics, InfiniBand)
– Larger memories
– Processor / memory integration
– Multithreading

• Raw performance improving
– Faster networks (lower latency, higher bandwidth) 
– Absolute performance will improve

• But same performance limitations!
– Avoid small messages
– Avoid software communication overhead
– Avoid penalizing local computation



Related Work

• Parallel paradigms
– Many studies
– PMODELs (DOE / NSF) project

• UPC benchmarking
– T. El-Ghazawi et al. (GWU)

• Good performance on NAS benchmarks 
• Mostly relies on upc_memput(), upc_memget()

– K. Yelick et al. (Berkeley)
• UPC compiler targeting GASNET
• Compiler attempts to aggregate remote accesses



End of Talk


