
Konstantin Berlin1, Jun Huan2, Mary Jacob3,
Garima Kochhar3, Jan Prins2, Bill Pugh1,

P. Sadayappan3, Jaime Spacco1, Chau-Wen Tseng1

1 University of Maryland, College Park
2 University of North Carolina, Chapel Hill

3 Ohio State University

Evaluating the Impact of
Programming Language Features on the

Performance of Parallel Applications
on Cluster Architectures

Motivation

• Irregular, fine-grain remote accesses
– Several important applications
– Message passing (MPI) is inefficient

• Language support for fine-grain remote accesses?
– Less programmer effort than MPI
– How efficient is it on clusters?

Contributions

• Experimental evaluation of language features
• Observations on programmability & performance
• Suggestions for efficient programming style
• Predictions on impact of architectural trends

Findings not a surprise, but we quantify penalties for
language features for challenging applications

Outline

• Introduction
• Evaluation

– Parallel paradigms
– Fine-grain applications
– Performance

• Observations & recommendations
• Impact of architecture trends
• Related work

Parallel Paradigms
• Shared-memory

– Pthreads, Java threads, OpenMP, HPF
– Remote accesses same as normal accesses

• Distributed-memory
– MPI, SHMEM
– Remote accesses through explicit (aggregated) messages
– User distributes data, translates addresses

• Distributed-memory with special remote accesses
– Library to copy remote array sections (Global Arrays)
– Extra processor dimension for arrays (Co-Array Fortran)
– Global pointers (UPC)
– Compiler / run-time system converts accesses to messages

Global Arrays
• Characteristics

– Provides illusion of shared multidimensional arrays
– Library routines

• Copy rectangular shaped data in & out of global arrays
• Scatter / gather / accumulate operations on global array

– Designed to be more restrictive, easier to use than MPI

• Example

NGA_Access(g_a, lo, hi, &table, &ld);

for (j = 0; j < PROCS; j++) { for (i = 0; i < counts[j]; i++) {

table[index-lo[0]] ^= stable[copy[i] >> (64-LSTSIZE)]; } }

NGA_Release_update(g_a, lo, hi);

UPC
• Characteristics

– Provides illusion of shared one-dimensional arrays
– Language features

• Global pointers to cyclically distributed arrays
• Explicit one-sided msgs (upc_memput(), upc_memget())

– Compilers translate global pointers, generate communication

• Example
shared unsigned int table[TABSIZE];
for (i=0; i<NUM_UPDATES/THREADS; i++) {

int ran = random();
table[(ran & (TABSIZE-1))] ^= stable[(ran >> (64-LSTSIZE))];

}
barrier();

UPC

• Most flexible method for arbitrary remote references
• Supported by many vendors
• Can cast global pointers to local pointers

– Efficiently access local portions of global array

• Can program using hybrid paradigm
– Global pointers for fine-grain accesses
– Use upc_memput(), upc_mempget() for coarse-grain accesses

Target Applications

• Parallel applications
– Most standard benchmarks are easy

• Coarse-grain parallelism
• Regular memory access patterns

• Applications with irregular, fine-grain parallelism
– Irregular table access
– Irregular dynamic access
– Integer sort

Options for Fine-grain Parallelism
• Implement fine-grain algorithm

– Low user effort, inefficient

• Implement coarse-grain algorithm
– High user effort, efficient

• Implement hybrid algorithm
– Most code uses fine-grain remote accesses
– Performance critical sections use coarse-grain algorithm
– Reduce user effort at the cost of performance

• How much performance is lost on clusters?

Experimental Evaluation

• Cluster : Compaq Alphaserver SC (ORNL)
– 64 nodes, 4-way Alpha EV67 SMP, 2 GB memory each
– Single Quadrics adapter per node

• SMP : SunFire 6800 (UMD)
– 24 processors, UltraSparc III, 24 GB memory total
– Crossbar interconnect

Irregular Table Update

• Applications
– Parallel databases, giant histogram / hash table

• Characteristics
– Irregular parallel accesses to large distributed table
– Bucket version (aggregated non-local accesses) possible

• Example

for (i=0; i<NUM_UPDATES; i++) {
ran = random();
table[ran & (TABSIZE-1)] ^= stable[ran >> (64-LSTSIZE)];

}

Table Update (AlphaServer, 2^22 table)

1

10

100

1000

10000

1 2 4 8 16 32

Processors

U
pd

at
es

 /
m

se
c

/
pr

oc
es

so
r MPI

UPC (bucket)

UPC

Global Arrays

• UPC / Global Array fine-grain accesses inefficient (100x)
• Hybrid coarse-grain (bucket) version closer to MPI

Table Update (Sun SMP, 2^25 table)

0

500

1,000

1,500

2,000

2,500

1 3 5 7 9 11 13 15 17 19 21 23

Processors

U
pd

at
es

 /
m

se
c

/
pr

oc
es

so
r Java

C / OpenMP

C / Pthreads

UPC

• UPC fine-grain accesses inefficient even on SMP

Irregular Dynamic Accesses

• Applications
– NAS CG (sparse conjugate gradient)

• Characteristics
– Irregular parallel accesses to sparse data structures
– Limited aggregation of non-local accesses

• Example (NAS CG)

for (j = 0; j < n; j++) {
sum = 0.0;
for (k = rowstr[j]; k < rowstr[j+1]; k++)

sum = sum + a[k] * v[colidx[k]];
w[j] = sum;

}

NAS Conjugate Gradient (AlphaServer, Class B)

0

20

40

60

80

100

120

1 2 4 8 16 32

Processors

M
FL

O
P

S
 /

pr
oc

es
so

r

MPI

OpenMP

UPC (MPI)

UPC (OpenMP)

• UPC fine-grain accesses inefficient (4x)
• Hybrid coarse-grain version slightly closer to MPI

Integer Sort

• Applications
– NAS IS (integer sort)

• Characteristics
– Parallel sort of large list of integers
– Non-local accesses can be aggregated

• Example (NAS IS)

for (i=0; i<NUM_KEYS; i++) { /* sort local keys into buckets */
key = key_array[i];
key_buff1[bucket_ptrs[key >> shift]++] = key; }

upc_reduced_sum(…) ; /* get bucket size totals */
for (i = 0; i < THREADS; i++) { /* get my bucket from every proc */

upc_memget(…); }

NAS Integer Sort (AlphaServer, 128K keys)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32

Processors

E
ffi

ci
en

cy MPI

UPC

• UPC fine-grain accesses inefficient
• Coarse-grain version closer to MPI (2-3x)

UPC Microbenchmarks

• Compare memory access costs
– Quantify software overhead

• Private
– Local memory, local pointer

• Shared-local
– Local memory, global pointer

• Shared-same-node
– Non-local memory (but on same SMP node)

• Shared-remote
– Non-local memory

UPC Microbenchmarks

• Architectures
– Compaq AlphaServer SC, v1.7 compiler (ORNL)
– Compaq AlphaServer Marvel, v2.1 compiler (Florida)
– Sun SunFire 8600 (UMD)
– AMD Athlon PC cluster (OSU)
– Cray T3E (MTU)
– SGI Origin 2000 (UNC)

2.5

1450

18000 16000

1.7

187 191

10

1630 1700

2

90

18800 50350

83

1306
3098

119

876 876

1

100

10000

Ti
m

e
pe

r
op

er
at

io
n

(n
s)

Alpha SC
(v1.7)

Alpha
Marvel (v2.1)

Sun SunFire
6800

AMD
Athalon PC

Cluster

Cray T3E SGI Origin
2000

UPC Point-wise Data Access Costs (read-modify-write double)

Private Shared-local Shared-same-node Shared-remote

• Global pointers significantly slower
• Improvement with newer UPC compilers

Observations

• Fine-grain programming model is seductive
– Fine-grain access to shared data
– Simple, clean, easy to program

• Not a good reflection of clusters
– Efficient fine-grain communication not supported in hardware
– Architectural trend towards clusters, away from Cray T3E

Observations

• Programming model encourages poor performance
– Easy to write simple fine-grain parallel programs
– Poor performance on clusters
– Can code around this, often at the cost of complicating your

model or changing your algorithm

• Dubious that compiler techniques will solve this problem
– Parallel algorithms with block data movement needed for clusters
– Compilers cannot robustly transform fine-grained code into

efficient block parallel algorithms

Observations

• Hybrid programming model is easy to use
– Fine-grained shared data access easy to program
– Use coarse-grain message passing for performance
– Faster code development, prototyping
– Resulting code cleaner, more maintainable

• Must avoid degrading local computations
– Allow compiler to fully optimize code
– Usually not achieved in fine-grain programming
– Strength of using explicit messages (MPI)

Recommendations

• Irregular coarse-grain algorithms
– For peak cluster performance, use message passing
– For quicker development, use hybrid paradigm

• Use fine-grain remote accesses sparingly
– Exploit existing code / libraries where possible

• Irregular fine-grain algorithms
– Execute smaller problems on large SMPs
– Must develop coarse-grain alternatives for clusters

• Fine-grain programming on clusters still just a dream
– Though compilers can help for regular access patterns

Impact of Architecture Trends

• Trends
– Faster cluster interconnects (Quadrics, InfiniBand)
– Larger memories
– Processor / memory integration
– Multithreading

• Raw performance improving
– Faster networks (lower latency, higher bandwidth)
– Absolute performance will improve

• But same performance limitations!
– Avoid small messages
– Avoid software communication overhead
– Avoid penalizing local computation

Related Work

• Parallel paradigms
– Many studies
– PMODELs (DOE / NSF) project

• UPC benchmarking
– T. El-Ghazawi et al. (GWU)

• Good performance on NAS benchmarks
• Mostly relies on upc_memput(), upc_memget()

– K. Yelick et al. (Berkeley)
• UPC compiler targeting GASNET
• Compiler attempts to aggregate remote accesses

End of Talk

