
Putting Polyhedral Loop Transformations to Work

Unified Model and Compiler Interface

Albert Cohen

with Cédric Bastoul, Sylvain Girbal, Saurabh Sharma, Olivier Temam

A3 Group

LCPC’03

Research Context

Whole program optimization for peak performance
Uniprocessor
OpenMP

Iterative, feedback-directed optimization
11. Implement the useful transformations
22. Choose the transformation sequence and parameters

This talk: promote the polytope model as a viable
representation and transformation framework for
semi-automatic program optimization and parallelization

LCPC’03 2

Research Context

Whole program optimization for peak performance
Uniprocessor
OpenMP

Iterative, feedback-directed optimization
11. Implement the useful transformations
22. Choose the transformation sequence and parameters

This talk: promote the polytope model as a viable
representation and transformation framework for
semi-automatic program optimization and parallelization

LCPC’03 2

Example: Matrix Multiplication

Alpha EV67, dynamic analysis with Compaq’s Alpha simulator
95% of peak performance (Parello and Temam, SuperComputing’02)

Transformations Speedup

Original ikj loop nest, Compaq f90 -O2 -unroll 1 -nopipeline 1.00

Compaq f90 -O5 + KAP 3.37

3D blocking for L1 and TLB 2.62

3D + interchange for store queue + unrolling for ILP 3.71

3D + int + unroll + register blocking 9.90

3D + int + unroll + reg block + prefetch 10.37

3D for L1 and L2 + copy for TLB + int + unroll + reg block + prefetch 12.75

3D + copy + int + unroll + reg block + prefetch + low level opt 13.56

LCPC’03 3

Example of Composition of Transformations

for (i=0; i<1000; i++)
for (j=0; j<m; j++)

B[j] = A[i][j] + ...

for (j=0; j<n; j++)
... = B[j] + ...

fuse
−→

for (i=0; i<1000; i++)
for (j=0; j<max(m,n); j++)

if (j<m)
B[j] = A[i][j] + ...

if (j<n)
... = B[j] + ...

LCPC’03 4

Example of Composition of Transformations

for (i=0; i<1000; i++)
for (j=0; j<max(m,n); j++)

if (j<m)
B[j] = A[i][j] + ...

if (j<n)
... = B[j] + ...

shift
−→

for (i=0; i<1000; i++)
for (j=0; j<max(m,n+1); j++)

if (j<m)
B[j] = A[i][j] + ...

if (j>0 && j<=n)
... = B[j-1] + ...

LCPC’03 5

Example of Composition of Transformations

for (i=0; i<1000; i++)
for (j=0; j<max(m,n+1); j++)

if (j<m)
B[j] = A[i][j] + ...

if (j>0 && j<=n)
... = B[j-1] + ...

strip-mine
−→

for (ii=0; ii<1000; ii+=10)
for (i=ii; i<ii+10; i++)

for (j=0; j<max(m,n+1); j++)
if (j<m)

B[j] = A[i][j] + ...

if (j>0 && j<=n)
... = B[j-1] + ...

LCPC’03 6

Example of Composition of Transformations

for (ii=0; i<1000; i+=10)
for (i=ii; i<ii+10; i++)

for (j=0; j<max(m,n+1); j++)
if (j<m)

B[j] = A[i][j] + ...

if (j>0 && j<=n)
... = B[j-1] + ...

prefetch
−→

for (ii=0; i<1000; i+=10)
for (i=ii; i<ii+10; i++)

for (j=0; j<max(m,n+1); j++)
if (j<m)

if (j%4==0)
prefetch A[i+1][j]

B[j] = A[i][j] + ...

if (j>0 && j<=n)
... = B[j-1] + ...

LCPC’03 7

Some Problems With Syntax-Based Approaches

Control overhead
Regenerate
control structures
after each
transformation
Fixed
transformation
sequence
Non-local
transformations

if (m<n && m%4==0)
for (ii=0; i<1000; i+=10)
for (i=ii; i<ii+10; i++)

for (j=0; j+3<m; j+=4)
prefetch A[i+1][j]
B[0] = A[i][j] + ...

... = B[j-1] + ...

B[j] = A[i][j+1] + ...

... = B[j] + ...

B[j] = A[i][j+2] + ...

... = B[j+1] + ...

B[j] = A[i][j+3] + ...

... = B[j+2] + ...

for (j=m; j<n; j++)
... = B[j-1] + ...

else if (m<n && m%4==1)
...

LCPC’03 8

1. POLYHEDRAL REPRESENTATION

LCPC’03

Unified Loop Nest Transformation Framework

FF Operated by optimization and architecture experts

FF Express any composition of analyses and transformations

FF Domain-specific, representation of loop nests

FF No intermediate translation to syntax-tree

Polyhedral Representation LCPC’03 10

Unified Loop Nest Transformation Framework

FF Operated by optimization and architecture experts

FF Express any composition of analyses and transformations

FF Domain-specific, representation of loop nests

FF No intermediate translation to syntax-tree

Polyhedral Representation LCPC’03 10

Unified Loop Nest Transformation Framework

FF Operated by optimization and architecture experts

FF Express any composition of analyses and transformations

FF Domain-specific, representation of loop nests

FF No intermediate translation to syntax-tree

Polyhedral Representation LCPC’03 10

Unified Loop Nest Transformation Framework

FF Operated by optimization and architecture experts

FF Express any composition of analyses and transformations

FF Domain-specific, representation of loop nests

FF No intermediate translation to syntax-tree

Polyhedral Representation LCPC’03 10

Static Control Parts (SCoPs)

for (i=1; i<3; i++)
..
S1 ... SCoP 1, one statement

..
while (A[j]!=0)

..
S2 ... SCoP 2, three statements

for (k=0; k<j; k++) parameters: i,j
if (j>=2) iterators: k

S3 ...

S4 ...

..
for (p=0; p<6; p++) SCoP 3, two statements

S5 ... iterators: p
S6 ...

Polyhedral Representation LCPC’03 11

SCoP Coverage (SpecFP)

SCoPs Statements Array References

All Param. ifs All in SCoPs All Affine

applu 19 15 1 757 84% 1245 100%

apsi 80 80 25 2192 84% 977 78%

art 28 27 4 499 69% 52 100%

lucas 4 4 2 2070 99% 411 40%

mgrid 12 12 2 369 100% 176 99%

quake 20 14 4 639 77% 218 100%

swim 6 6 1 123 100% 192 100%

Polyhedral Representation LCPC’03 12

SCoP Size (SpecFP)

Polyhedral Representation LCPC’03 13

SCoP Depth (SpecFP)

Polyhedral Representation LCPC’03 14

SCoP Polyhedral Representation

Describes each statement separately

Captures control and array access semantics
Through parameterized affine (in)equalities

11. A domain
The bounds of the enclosing loops

22. A schedule
An affine function assigning logical dates to iterations

33. A list of access functions
To describe array references

Polyhedral Representation LCPC’03 15

Existing Polyhedral Representations

A few facts
11. Polytopes are very expressive

AX ≥ 0 suffices to characterize all executions of a statement
(schedule, domain and memory accesses)

22. Affine schedules emerged in automatic parallelization
33. Affine schedules are not popular for optimization

(too expensive, too restrictive, too general, non intuitive...)

Some common biases
?? Schedules are only meant to describe parallelism
?? Only one-dimensional schedules are useful
?? Schedule and domains can be merged in one matrix

We use separate matrices and full-dimensional sequential
schedules

Polyhedral Representation LCPC’03 16

Existing Polyhedral Representations

A few facts
11. Polytopes are very expressive

AX ≥ 0 suffices to characterize all executions of a statement
(schedule, domain and memory accesses)

22. Affine schedules emerged in automatic parallelization
33. Affine schedules are not popular for optimization

(too expensive, too restrictive, too general, non intuitive...)

Some common biases
?? Schedules are only meant to describe parallelism

?? Only one-dimensional schedules are useful
?? Schedule and domains can be merged in one matrix

We use separate matrices and full-dimensional sequential
schedules

Polyhedral Representation LCPC’03 16

Existing Polyhedral Representations

A few facts
11. Polytopes are very expressive

AX ≥ 0 suffices to characterize all executions of a statement
(schedule, domain and memory accesses)

22. Affine schedules emerged in automatic parallelization
33. Affine schedules are not popular for optimization

(too expensive, too restrictive, too general, non intuitive...)

Some common biases
?? Schedules are only meant to describe parallelism

?? Only one-dimensional schedules are useful
?? Schedule and domains can be merged in one matrix

We use separate matrices and full-dimensional sequential
schedules

Polyhedral Representation LCPC’03 16

Affine Schedule

Dense, totally ordered (sequential) schedule

Unimodular matrix for iteration ordering

(A)

Matrix for parameterization and iteration shifting

(Γ)

Vector for instruction scattering

(β)

θ(~ı, ~q) =

0 · · · 0 0 · · · 0 β0

A1,1 · · · A1,d Γ1,1 · · · Γ1,g Γ1,g+1

0 · · · 0 0 · · · 0 β1

A2,1 · · · A2,d Γ2,1 · · · Γ2,g Γ2,g+1

...
...

... 0 · · · 0
...

Ad,1 · · · Ad,d Γd,1 · · · Γd,g Γd,g+1

0 · · · 0 0 · · · 0 βd

i1
...
id

q1

...
qg

1

Polyhedral Representation LCPC’03 17

Affine Schedule

Dense, totally ordered (sequential) schedule

Unimodular matrix for iteration ordering (A)

Matrix for parameterization and iteration shifting (Γ)

Vector for instruction scattering (β)

θ(~ı, ~q) =

0 · · · 0 0 · · · 0 β0

A1,1 · · · A1,d Γ1,1 · · · Γ1,g Γ1,g+1

0 · · · 0 0 · · · 0 β1

A2,1 · · · A2,d Γ2,1 · · · Γ2,g Γ2,g+1

...
...

... 0 · · · 0
...

Ad,1 · · · Ad,d Γd,1 · · · Γd,g Γd,g+1

0 · · · 0 0 · · · 0 βd

i1
...
id

q1

...
qg

1

Polyhedral Representation LCPC’03 17

Domain and Access Functions

Domain matrix
Exact characterization of the valid iteration vectors
Parameterized by symbolic constants

Access function
Iteration Vector 7→ (Array Name, Vector)
Parameterized by symbolic constants

Polyhedral Representation LCPC’03 18

Domain and Access Functions

Domain matrix
Exact characterization of the valid iteration vectors
Parameterized by symbolic constants

Access function
Iteration Vector 7→ (Array Name, Vector)
Parameterized by symbolic constants

Polyhedral Representation LCPC’03 18

Polyhedral Representation Example

for (i=0; i<m; i++)
S1 ...

for (j=5; j<n; j++)
S2 ...

S3 A[2*i][j+1] = ...

Access function
for A[2*i][j+1]

i j m n 1

2 0 0 0 0

0 1 0 0 1

2-dimensional domain of S3

(with parameters m and n)

i j m n 1

1 0 0 0 0

−1 0 1 0 −1

0 1 0 0 −5

0 −1 0 1 −1

≥ 0

5-dimensional schedule for S3

(i, j) 7→ (p0, p1, p2, p3, p4)

p0 p1 p2 p3 p4 i j m n 1

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0 0 −1

0 0 0 1 0 0 −1 0 0 0

0 0 0 0 1 0 0 0 0 −1

= 0

Polyhedral Representation LCPC’03 19

2. UNIFIED TRANSFORMATION MODEL

LCPC’03

Primitives

Syntax Prerequisites Effect

RIGHTU(S, U) | det(U)| = 1 AS ← AS.U

SHIFT(S, M) ΓS ← ΓS + M

FUSE(P, o) b = max{βS

dim(P)+1 | (P, o) v βS}+ 1;

Move((P, o + 1), (P, o + 1), b);

Move(P, (P, o + 1),−1)

Unified Transformation Model LCPC’03 21

Composition of Primitives

Syntax Prerequisites Effect

RIGHTU(S, U) | det(U)| = 1 AS ← AS.U

SHIFT(S, M) ΓS ← ΓS + M

FUSE(P, o) b = max{βS

dim(P)+1 | (P, o) v βS}+ 1;

Move((P, o + 1), (P, o + 1), b);

Move(P, (P, o + 1),−1)

TILE(S, o, k) S ∈ S S ← STRIPMINE(S, o, k);

Tiling ∧ o < dS S ← STRIPMINE(S, o + 2, k);

∧ k > 0 S ← INTERCHANGE(S, o + 1)

Unified Transformation Model LCPC’03 22

Transformation Language

Script “generative” language
To produce the implementation of primitives
To compose primitives

Benefits
Regenerate the syntax tree after the last transformation
Few ordering constraints
Complex optimizations, e.g., forward array substitution
Combined transformations to reduce search space
Example, “smart” register tiling: strip-mining + privatization for
permutability + interchange + array contraction + register promotion

Unified Transformation Model LCPC’03 23

Transformation Language

Script “generative” language
To produce the implementation of primitives
To compose primitives

Benefits
Regenerate the syntax tree after the last transformation
Few ordering constraints
Complex optimizations, e.g., forward array substitution
Combined transformations to reduce search space
Example, “smart” register tiling: strip-mining + privatization for
permutability + interchange + array contraction + register promotion

Unified Transformation Model LCPC’03 23

3. SOFTWARE TOOLS

LCPC’03

Code Generation with CLooG

Robust version of Quilleré and Rajopadhye’s algorithm
Parameterized unions of linearly bounded lattices
Depth recursion with direct optimization of conditionals
Tradeoff between code expansion and control overhead

.

.

.

1

6

7

1 2 6 7 n

n

. . .

3

3 4 5

2

4

5

i

j

for (i=1; i<=6; i+=2)
for (j=1; j<=7-i; j++)
S1; S2

for (j=8-i; j<=n; j++)
S1

for (i=7; i<=n; i+=2)
for (j=1; j<=n; j++)
S1

Software Tools LCPC’03 25

Implementation Within Open64/ORC

WRaP: WHIRL Represented as Polyhedra
Syntax tree of static control parts→ tree of polyhedral
representations
Mapping polytopes to the syntax tree

From matrix columns to symbol table entries
From abstract arrays to symbol table entries
From abstract statements to statement nodes

Enables whole program optimization
Combined transformations of loops and syntactic
expressions may be applied to the whole WRaP
Array regions, interprocedural analysis
Correctness and compatibility with non-affine sections

Software Tools LCPC’03 26

Implementation Within Open64/ORC

WRaP: WHIRL Represented as Polyhedra
Syntax tree of static control parts→ tree of polyhedral
representations
Mapping polytopes to the syntax tree

From matrix columns to symbol table entries
From abstract arrays to symbol table entries
From abstract statements to statement nodes

Enables whole program optimization
Combined transformations of loops and syntactic
expressions may be applied to the whole WRaP
Array regions, interprocedural analysis
Correctness and compatibility with non-affine sections

Software Tools LCPC’03 26

WRaP-IT: an Open64/ORC Interface-Tool

11. Suspend the WHIRL compilation flow after loop
normalization, induction variables, and scalar optimizations

22. W2P: recognition of Static Control Parts (SCoPs)
Affine loop bounds, conditionals and array subscripts
Build polyhedral domains, sequential schedules and array
accesses
Graceful degradation when all conditions are not met

33. URUK: apply WRaP analyses and transformations

44. WLooG: code generator (CLooG) with WHIRL output
Generate new loops, conditionals and variables
Move/duplicate the original statement nodes

55. Resume the compilation flow, redoing scalar optimization

Software Tools LCPC’03 27

WRaP-IT: an Open64/ORC Interface-Tool

11. Suspend the WHIRL compilation flow after loop
normalization, induction variables, and scalar optimizations

22. W2P: recognition of Static Control Parts (SCoPs)
Affine loop bounds, conditionals and array subscripts
Build polyhedral domains, sequential schedules and array
accesses
Graceful degradation when all conditions are not met

33. URUK: apply WRaP analyses and transformations

44. WLooG: code generator (CLooG) with WHIRL output
Generate new loops, conditionals and variables
Move/duplicate the original statement nodes

55. Resume the compilation flow, redoing scalar optimization

Software Tools LCPC’03 27

WRaP-IT: an Open64/ORC Interface-Tool

11. Suspend the WHIRL compilation flow after loop
normalization, induction variables, and scalar optimizations

22. W2P: recognition of Static Control Parts (SCoPs)
Affine loop bounds, conditionals and array subscripts
Build polyhedral domains, sequential schedules and array
accesses
Graceful degradation when all conditions are not met

33. URUK: apply WRaP analyses and transformations

44. WLooG: code generator (CLooG) with WHIRL output
Generate new loops, conditionals and variables
Move/duplicate the original statement nodes

55. Resume the compilation flow, redoing scalar optimization

Software Tools LCPC’03 27

WRaP-IT: an Open64/ORC Interface-Tool

11. Suspend the WHIRL compilation flow after loop
normalization, induction variables, and scalar optimizations

22. W2P: recognition of Static Control Parts (SCoPs)
Affine loop bounds, conditionals and array subscripts
Build polyhedral domains, sequential schedules and array
accesses
Graceful degradation when all conditions are not met

33. URUK: apply WRaP analyses and transformations

44. WLooG: code generator (CLooG) with WHIRL output
Generate new loops, conditionals and variables
Move/duplicate the original statement nodes

55. Resume the compilation flow, redoing scalar optimization

Software Tools LCPC’03 27

WRaP-IT: an Open64/ORC Interface-Tool

11. Suspend the WHIRL compilation flow after loop
normalization, induction variables, and scalar optimizations

22. W2P: recognition of Static Control Parts (SCoPs)
Affine loop bounds, conditionals and array subscripts
Build polyhedral domains, sequential schedules and array
accesses
Graceful degradation when all conditions are not met

33. URUK: apply WRaP analyses and transformations

44. WLooG: code generator (CLooG) with WHIRL output
Generate new loops, conditionals and variables
Move/duplicate the original statement nodes

55. Resume the compilation flow, redoing scalar optimization

Software Tools LCPC’03 27

Some Related Works

Codesign and synthesis of specialized coprocessors
MMAlpha
PICO

Analysis and transformation frameworks
Omega/Petit
PIPS, Polaris, SUIF
Stratego

Generative programming
ATLAS (BLAS library generator)

FFTW (FFT algorithm customization and optimization)

SPIRAL (signal-processing language, customization and optimization)

Software Tools LCPC’03 28

4. THANK YOU

HTTP://WWW-ROCQ.INRIA.FR/A3/WRAP-IT

LCPC’03

	Research Context
	Research Context

	Example: Matrix Multiplication
	Example of Composition of Transformations
	Example of Composition of Transformations
	Example of Composition of Transformations
	Example of Composition of Transformations
	Some Problems With Syntax-Based Approaches
	Unified Loop Nest Transformation Framework
	Unified Loop Nest Transformation Framework
	Unified Loop Nest Transformation Framework
	Unified Loop Nest Transformation Framework

	Static Control Parts (SCoPs)
	SCoP Coverage (SpecFP)
	SCoP Size (SpecFP)
	SCoP Depth (SpecFP)
	SCoP Polyhedral Representation
	Existing Polyhedral Representations
	Existing Polyhedral Representations
	Existing Polyhedral Representations

	Affine Schedule
	Affine Schedule

	Domain and Access Functions
	Domain and Access Functions

	Polyhedral Representation Example
	Primitives
	Composition of Primitives
	Transformation Language
	Transformation Language

	Code Generation with CLooG
	Implementation Within Open64/ORC
	Implementation Within Open64/ORC

	WRaP-IT: an Open64/ORC Interface-Tool
	WRaP-IT: an Open64/ORC Interface-Tool
	WRaP-IT: an Open64/ORC Interface-Tool
	WRaP-IT: an Open64/ORC Interface-Tool
	WRaP-IT: an Open64/ORC Interface-Tool

	Some Related Works

