PERCS: IBM Effort in HPCS

Mootaz Elnozahy IBM Austin Research Lab

Overview

- Team
- Design constraints
- Vision
- Technical overview
- Conclusion

The Team

- IBM
 - Austin Research
 - Watson Research
 - Server Group
 - Software Group
 - Microelectronics

- Partners
 - UIUC
 - UT
 - MIT
 - Pittsburgh
 - LANL
 - RPI
 - New Mexico
 - Cornell
 - UC Berkeley
 - Purdue
 - Wisconsin
 - U of Del
 - Vanderbilt
 - Dartmouth

Design Constraints

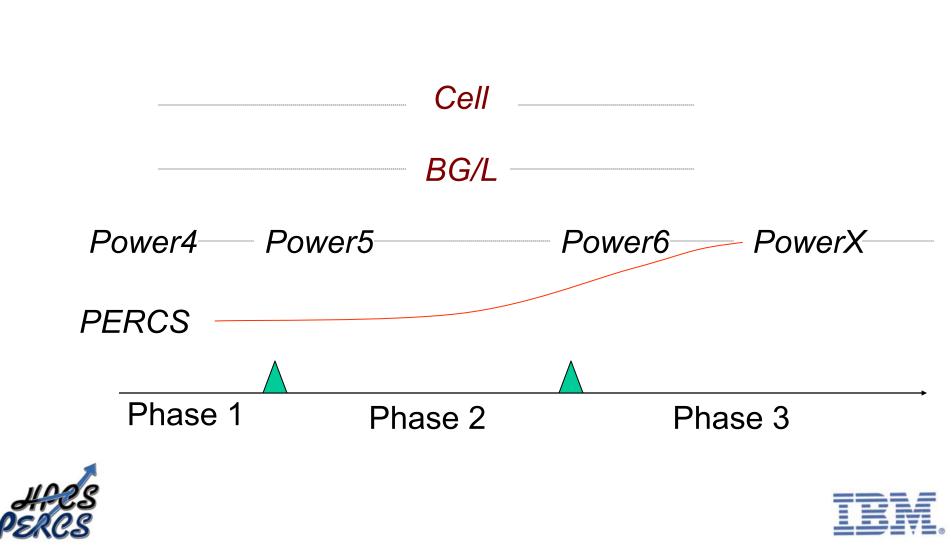
- Legacy investments
- Looming technology crisis
- HPC customer diversity
- Business model
 - Must do well both on commercial and scientific workloads
- Cost issues
 - Threat of commoditization
- Productivity as a main theme

IBM's Vision

A dynamic system that adapts to application needs

The strategy

- Aggressive productivity targets
- Commercial viability
- Link into product cycle toward end of phase 2


Innovation with Commercial Viability

- Adaptability is key
 - Architecture gets closer to application needs, yielding better performance and broader application range
- Backward compatibility with PowerPC
 - Leverages existing infrastructure, training and investment
 - Exploits proven ability of the current architecture to perform well for *many* apps
- Leverage open source
- Modular design packaged in different configurations

Suggested PERCS Roadmap

Technical Overview

Scope

- Application focus
 - Commercial
 - Security
 - HPC

- Bioinformatics
- Data streaming
- New 2010-apps ??

Integrated solution

Programming & user interfaceSystem softwareArchitectureTechnology

Productivity Metrics

A theory for productivity that

- Reflects the importance of time-to-solution
- Incorporates
 - Software development
 - Maintenance costs
 - Hardware costs
 - Tradeoffs among the three
- Uses \$ as a common denominator

Measurable system metrics:

- Characterize the productivity of programming environments and execution platforms
 - Experiments with programmers
- Weighted according to application set and customer goals

Architecture Innovations

Adaptation

- Vector/stream processor morphs
- Memory-in-processor morph (PIM-like programming model with practical hardware)
- SMT and conventional caches for commercial apps

Proactive memory architecture

- Embedding intelligence across memory hierarchy for better performance and lower latency
- Leverage IBM's technology advantages
 - Aggressive hardware design
 - New revolutionary packaging and device
 - technologies subject to practicality & cost

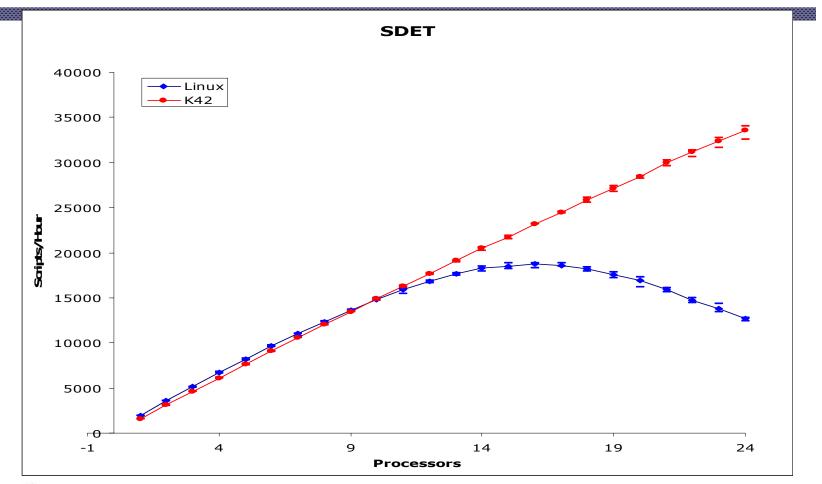
Programming Model Work

- Support for newer programming languages
 UPC, StreamIt, and domain-specific language
- Morphogenic software process
 - Bridging the gap between domain experts and programmers
- New and revised abstractions
 - Enclaves, atomic actions and asynchronous calls
- Aggressive compiler support
- Integrated development environments, visual tools & component-based software

Integrate best practices from commercial into HPC

Infrastructure Work

- K-42 operating system
 - Design for scalability from scratch
- High-level automated verification
 - Hardware and software
- Design for low-power, high-performance circuits
- Continuous performance monitoring and automatic tuning
- Robustness:
 - New programmer-transparent efficient checkpointing
 - Self-healing autonomic middleware


Getting It Right! PERCSim

- Feedback to hardware & software designers
 - Test-bed for quick evaluation of "what if" questions across all system levels
- Pre-hardware software development
 - Tuning and evaluation well before design freeze
- Speeds up verification and enhance methodology
- Execution-driven
 - Better represents scalable multiprocessors compared to traditional tracing (e.g. synchronization traffic)
- Power management support

Example: SPEC SDET

Summary

- An ambitious vision for adapting systems to applications
 - Solve productivity problems of HPC community
 - Explore technologies otherwise deemed too risky
 - Economic viability
- Breadth and depth of IBM's R&D behind the effort
 - Record of innovation with reliability & delivery
- HPCS will have a strong impact on IBM and universities
 - We hope to change status quo

