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Abstract. Dynamic Mapping is an approach to cope with a loss of
performance due to cache interference and to improve performance pre-
dictability of blocked algorithms for modern architectures. An example
is matrix multiply: tiling matrix multiply for a data cache of 16KB using
optimal tiles size achieves an average data-cache miss rate of 3%, but
with peaks of 16% due to interference.

Dynamic Mapping is a software-hardware approach for which the map-
ping in cache is determined at compile time, by manipulating the address
used by the data cache. The reduction in the cache misses translates into
a 2-fold speed-up for matrix multiply and FFT by eliminating data-cache
miss spikes.

Dynamic mapping has the same goal as other proposed approaches, but
it determines the cache mapping before issuing a load. It uses the compu-
tational power of the processor - instead of the memory controller or the
data cache mapping - and it has no effect on the access time in memory
and cache. It is an approach combining several concepts, such as non-
standard cache mapping functions and data layout reorganization and,
potentially, without any overhead.

1 Introduction

The increasing gap between memory access latency time and CPU clock cycle
makes it extremely hard to feed a processor with useful instructions or data.
This problem is exacerbated in multiprocessor systems and distributed systems
because of extremely high demand of data and instructions, and because of
communication through relatively slow devices. To avoid CPU stalls due to data
and instruction starvation, several approaches have been proposed. We can divide
them in three broad and, somewhat arbitrary, classes.1

Memory hierarchies and utilization bounds: we consider in this class
hardware implementations of memory systems, interconnection of memory sys-
tems and performance bounds for families of algorithms on architectures with
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1 Arbitrary because approaches in different classes may share several goals and prop-
erties, and incomplete because the literature is so rich that is difficult to keep record.



memory hierarchy. For example of hardware implementation, Smith offers a sur-
vey [26] on caches, an excellent start reference for uniprocessor systems is Hen-
nesy and Patterson [16]. For examples of performance bounds, Hong and Kung
propose lower bounds for simple memory architectures with 1-level of cache [17],
Aggarwal et al. and others researchers generalize the bounds to multiple level of
caches [3, 4, 29, 30, 2].

Application reorganization: in this class we consider projects related to
the trade-off between portability and performance across different architectures
with multiple level of caches. For example, we find in this class optimizations by
code reorganization through tiling [1, 32], by selective copying [19], by tailoring
the application at installation time [31, 22], or by utilization of memory hierarchy
independent optimizations [7].

Hardware-software adaptive approaches: we consider in this class on-
the-fly hardware and software adaptations. An example of at-run-time hardware
adaptation is cache-associativity adaptation, and an example of the software
adaptation is the at-run-time reorganization of registers allocation to reduce
register file power dissipation, [10, 15, 6]. Another example of algorithm adapta-
tion is the work by Gatlin et al. [13], where data-copy strategies are applied to
exploit cache locality.

Our approach is a software-hardware approach and we propose it to solve the
problem of cache interference in blocked algorithms. Blocked algorithms, such as
blocked Matrix multiply and FFT, achieve good cache performance on average;
however, we notice a quite erratic cache behavior on individual input sets - due
to cache interference. We propose an approach to minimize cache misses due
to cache interference changing the cache mapping for some memory references
dynamically.

We aim at the optimization of blocked algorithms because of their data lo-
cality properties. A blocked algorithm applies a divide and conquer approach: a
blocked algorithm divides the problem in smaller problems and it solves them
locally. The advantage is clear when the decomposition of the problem exploits
the available parallelism and the memory hierarchy (i.e., the data of every sub-
problem fit the local memory or the data cache of a processor). The divide and
conquer approach improves data reuse and it reduces communication among
processors as well as between cache and memory. Avoiding data interference in
cache is the last, and final, step to exploit data locality fully.

We enforce the problem by an example quantitatively. We implement an op-
timal blocked implementation of matrix multiply for an architecture with a di-
rected mapped data cache of size 16KB. We opt for matrices stored in row-major
format, which are used commonly. We design the algorithm with no pre-fetching
- pre-fetching hides the latency but does not reduce cache misses. The blocked
algorithm can be the result of tiling exploiting cache locality on a uniprocessor
system, or the result of a parallelizing compiler for shared-memory multiproces-
sor systems (or both). We achieve on a uniprocessor system an average 3% data
cache miss rate. The average cache miss is close to the optimal cache performance
(roughly 0.5%, [17]). When we observe only the cache performance for square



matrices of size 2k × 2k, the miss rate is higher than the average. In particular
for square matrix of size 2048× 2048, the data cache miss rate is 16% and this
is due to data cache interference only.
We propose a software-hardware approach to remove data cache miss spikes,

changing the cache mapping only when needed, our approach is calledDynamic

Mapping:

1. We produce a blocked algorithm, either by tiling of a loop nest or by a
recursive implementation, so that we maximize temporal locality for the
cache level we are interested into.

2. The blocked algorithm has each elementary block computation (i.e., loop
tile) accessing rectangular tiles of the data (i.e., tile of matrices).

3. For each memory reference in the elementary block computation, we deter-
mine a physical address and an alternative - and unique - address, twin

address. The physical address is used to map the element in memory; the
twin address is used to map the element in cache (the details, how to de-
termine and use twin addresses are explained for an example in Section 2.1)
.
The twin address space does not need to be physically present and, in prac-
tice, the twin space is larger than the physical space. A 64bit-register can
address 264 ∼ 1 ∗ 1019 bytes of memory, relatively few bytes are physically
available.

4. The physical address is used whenever there is a miss in cache to access the
second level of cache or memory; we assume the cache is physical tagged,
and we can modify the processor and the load queue for our purpose (we
shall give more details in Section 2.3).

We can apply our approach to a family of blocked algorithms. A blocked
algorithm in this family has the following properties:

– Fixed decomposition. The algorithm does not change at runtime.
– Convexity. The algorithm solve a problem by dividing the problem in
smaller problems. The problem and each sub-problem work on data with
similar shape and properties; that is, if we solve a problem on square matri-
ces, every subproblem works on square tiles - with the property that elements
in different tiles cannot use the same cache line.

– Total reuse. If a data is used by two different subproblems, both use the
common data consistently: every element in a tile is always mapped with
the same twin address to the same location in cache.

– Leaf Size. The decomposition stops as soon as each sub-problem fits a
target cache. We can copy all tiles, without overlapping, in a common space
no larger than the cache size.

Our approach analyzes the application at compile time. The analysis is used
to determine a data cache mapping to minimize data cache misses. Such mapping
is introduced in the code as affine functions. The affine functions are computed at
run time and the results used as alternative addresses. These addresses are used



to map data in cache. It has the same effect to have the data layout reorganized
in memory at runtime [11], using the computational power of the processor,
with no data movement [19], no overhead or extra accesses. It is in practice a
data mapping in cache that uses only partial information about the operations
schedule (for example of cache mapping using a DAG computation see Bilardi
and Preparata [2] and D’Alberto [8])
Dynamic mapping differs from IMPULSE project [18, 24], which introduces

a new memory controller leaving the memory hierarchy untouched. IMPULSE
supports a configurable physical address mapping and pre-fetching at memory
controller. Our approach is simpler in the sense that it does not require either
an operating system layer and any changes to the memory controller. The cache
mapping is defined completely by the application, and it can be driven automat-
ically by a compiler.
Dynamic mapping does not need any profile-based approach or dynamic com-

putation changes [13]; it improves portability and let the developer focus on the
solution of the original problem. We differ from Johnson et al. work [20, 21],
our approach does not keep any track of memory references using dedicated
hardware, the reference pattern is recognized statically.
Dynamic mapping does not change the physical data cache mapping [25, 14,

33] and, potentially, it has no increase of data cache latency.
Dynamic mapping is not a bypass technique: we are able to exploit more

efficiently data locality - for a level of cache - for algorithms that have data
locality; the processor does not need bypass a cache entirely. Cache bypassing
is an efficient technique designed to increase the bandwidth between processor
and memory hierarchy. In general, cache bypassing increases traffic on larger
caches, which are slower and more energy demanding (see processors as R5k),
and it does not aim to reduce data cache misses. Furthermore, cache bypassing
makes the design more complicated and suitable for a general-purpose and high-
performance processor.
Dynamic mapping is a 1-1 mapping among spaces; therefore it assures cache

mapping consistency for any loads and writes to/from the same memory location.
Hardware verification approaches for stale-data in registers - used by processors-
compilers that allow speculative loads; for example, IA64 microprocessor [9] -
can be safely applied.
The paper is organized as follows. Our software-hardware approach is pre-

sented in Section 2. In Section 2.2 we apply our approach to recursive FFT
algorithms. FFT does not satisfy the convexity property of the decomposition,
but we can apply successfully dynamic mapping. In Section 2.3 we propose the
potential architectural modifications to support our approach. We present the
experimental setup and results in Section 3. Then we conclude in Section 4.

2 Dynamic Mapping

In this section we investigate a software-hardware approach to minimize data
cache interferences for perfect loop nest with memory references expressed by



affine function of the loop indexes. This is a common scenario, where other
approaches have been presented and powerful analysis techniques can be applied;
for example, the analysis techniques proposed by Ghosh et al. [27], by Clauss et
al. [5], by D’Alberto et al. [28] or other approaches based on Omega Test [23],
are worth to be applied even though they are time expensive.
In Section 2.1, we propose our approach in conjunction with tiling to perfect

loop nests, and in Section 2.2, we show that the approach can be successfully
applied to recursive algorithms as FFT, which does not satisfy the convexity
property - because the algorithms cannot always access continuous elements.

2.1 Matrix Multiply

In matrix multiply, every memory reference in the loop body is determined by an
affine function of loop indexes, for short, index function (note: scalar references,
if any, are array references with constant index function). An index function
determines an address used to access the memory and the cache at a certain
loop iteration. The idea is to compute, in parallel to a regular index function,
a twin function. The twin function is an affine function of the indexes and it
maps a regular address to an alternative address space, or shadow address.
The index function is used to access the memory; the twin function is used to
access the cache. In practice, a compiler can determine the twin functions as
result of an index function analysis and it can tailor the data cache mapping for
each load in the inner loop.

Example 1. We consider square matrices of size N ×N .

for (i=0;i<N;i++)

for (k=0;k<N;k++)

for (j=0;j<N;j++)

C[i][j] += A[i][k]*B[k][j];

The reference A[i][k] is a constant in the inner loop and it has index function
A0 +N ∗ i+ 1 ∗ k+ 0 ∗ j. The index function for C[i][j] (respectively, B[k][j]) is
C0 +N ∗ i+ 0 ∗ k + 1 ∗ j (respectively, B0 + 0 ∗ i+N ∗ k + 1 ∗ j).
Matrix multiply loop nest can be reorganized to exploit temporal locality.

Example 2. Let us tile the loop nest by square tiles of size s× s; we assume that
N is a multiple of s, and matrices are aligned to the line size, and s is a multiple
of the line size L:

for (i=0;i<N/s; i++)

for (j=0;j<N/s;j++)

for (k=0;k<N/s;k++)

for (kk=0;kk<s;kk++)

for (ii=0;ii<s;ii++)

for (jj=0;jj<s;jj++)

C[i*s+ii][j*s+jj] += A[i*s+ii][k*s+kk]*B[k*s+kk][j*s+jj];



When 3s2 < S, we achieve 2
sLN3 + N2

L memory accesses (cache misses).
Cache misses may be more, due to interference.

When we tile the loop as in Example 2, the index function can be described
concisely by three vectors (or projections onto 1-dimensional space), one for each
matrix: α1 = [Ns, 0, s, 1, N, 0], β1 = [0, s,Ns,N, 0, 1] and γ1 = [Ns,N, 0, 0, N, 1].
If we indicate with ι = [i, j, k, kk, ii, jj]

t
an iteration in the loop nest, the index

function for A, B and C are α1 ∗ ι+A0, β1 ∗ ι+B0 and γ1 ∗ ι+ C0.

When matrix N = 2n > S, S = 2k and all matrices are stored continuously
one after the other (A0 + N2 ∗ ` = B0 and B0 + N2 ∗ ` = C0), there is cross
interference between references to different tiles (e.g., C[i ∗ s+ ii][j ∗ s+ jj] and
B[k ∗ s + kk][j ∗ s + jj]) and there is self interference between any two rows in
the same tile (e.g., A[i ∗ s+ ii][k ∗ s+ kk] and A[i ∗ s+ ii+ 1][k ∗ s+ kk]).

When we tile the loop nest, we tile each matrix as well. Every tile is a square,
as the matrix, and it has size s× s. When matrices are aligned to the cache line
(i.e.; A0%L = B0%L = C0%L = 0) and all tiles are aligned to the cache line
(i.e., s%L = 0 and N%L = 0), we can change the data-cache mapping for all
memory reference safely.

An element in the 6-dimensional space is associated to a twin element

in a 6-dimensional space. The difference is that we enforce the projection of a
twin tile to be a convex space on a 1-dimensional space. The twin tile is stored
continuously in memory - but the tile, with which is associated, needs not. Any
two twin tiles are spaced at interval of S elements; so different twin tiles will be
mapped into the same cache portion.

The twin function uses the following vectors: αs =
[

N
s S, 0, S, 1, s, 0

]

, βs =
[

0, S, Ns S, s, 0, 1
]

and γs =
[

N
s S, S, 0, 0, s, 1

]

. The twin functions for A, B and C
are αs ∗ ι, βs ∗ ι+ s2 and γs ∗ ι+ 2 ∗ s2.

We consider in details the construction of αs =
[

N
s S, 0, S, 1, s, 0

]

from α1 =
[Ns, 0, s, 1, N, 0] for matrix A. The components α1[0] and α1[2] allow the compu-
tation to access different tiles of matrix A: α1[0] = Ns allows to go from tiles to
tiles of size s2 = S in the same column, and α1[2] = s allows to go from tiles to
tiles in the same row. These two components become αs[0] =

N
s S and αs[0] = S

respectively. The coefficients α1[4] = N and α1[3] = 1 allow the computation to
access elements in a tile: α1[4] allows to access element in the same column of
the tile, and α1[3] allows to access elements in the same row of the tile - and
stored continuously in memory. They become αs[4] = s and αs[3] = 1.

The original coefficient that is unitary is left unchanged (e.g., α1[3] = 1 and
αs[3] = 1) so a line in memory is a line in cache.

Dynamic mapping, as described for matrix multiply, has a fundamental prop-
erty: consider for example, αs and α1, they define a mapping I → R so that
As = αsI and A1 = α1I and, by construction, there is a bijective relation be-
tween As and A1 (|As| = |A1| and As ∗ ι1 = As ∗ ι2 if and only if ι1 = ι2 and
ι1, ι2 ∈ I).



2.2 Fast Fourier Transform

A n-point Fourier Transform, n-FT, can be represented as matrix by vector
product y = Fn ∗ x with x,y ∈ Cn and Fn ∈ Cn×n. Each component of y is the
following sum: yk =

∑n−1
i=0 xiω

ik
n , where ωn is called twiddle factor.

When n is the product of two factors p and q (i.e., n = pq) we can apply
Cooley-Tookey’s algorithm. The input vectors x can be seen as q × p matrix X
stored in row major. The output vector y can be seen as a matrix Y of size q×p
but stored column major. We can write the n-FT algorithm as follows:

1. for every i ∈ [0, p − 1] we compute X[0,q−1],i = FqX[0,q−1],i - this is a com-
putation on the columns of matrix X;

2. distribute the twiddle factors Xi,j = ωijn Xj,i;
3. for every i ∈ [0, q − 1] we compute Xi,[0,p−1] = FpXi,[0,p−1];
4. Y = Xt.

Algorithms implementing n-FT on n = 2µ points are well known, and at-
tractive, because the designer can reduce the number of computations (twiddle
factors reductions). However, they are inefficient when the cache has size S = 2k

due to their intrinsic self interference. Implementations, such as FFTW [12],
may exploit temporal locality through copying the input data on a temporary
work space. Nonetheless, it is difficult to exploit fully spatial locality between
the computation of X[0,q−1],i = FqX[0,q−1],i and X[0,q−1],i+1 = FqX[0,q−1],i+1.
Two elements in the same column of X will be mapped to the same cache line
(self interference), therefore preventing the spatial reuse across the computation
of X[0,q−1],i and X[0,q−1],i+1. The number of misses due to interference are rela-
tively few, but for large n and in a multilevel memory hierarchy, they are misses
at every level - memory pages too. Any improvement in the number of misses
at the first level of cache, even small, is very beneficial for a multilevel cache
system.
Sub-problems of n-FT access data in non-convex set, therefore our algorithm

cannot be applied as it is. We follow a very simple implementation of a recursive
algorithm. When we execute the algorithms on the columns of X, the original
input matrix X of size p × q is associated with its twin image in X ′ of size
p × (q + `) where ` is the number of matrix elements that can be stored in a
cache line. If q%` 6= 0 , elements in the last and first column of X share the same
cache line. If the input vector does not fit the cache, the first and the last column
of X are not accessed at the same time; the cache coherence is unaffected.

2.3 Architecture

To describe the effects of the dynamic mapping approach on the architecture de-
sign we use the block structure of MIPS R10K microprocessor, Figure 1. We use
MIPS but these modifications can be applied to other processors like SPARC64
processors as well. SPARC64 has a large integer register file (RF), 32 registers
directly addressable but a total of 56 for register renaming; it is a true 64 bits
architecture, and it has only one level of cache.
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Fig. 1. Proposed architecture, designed based on MIPS R12K

The twin function is performed in parallel with the regular index function.
The computations share the same resources, Integer Units and Register file. The
twin function result will be stored in the register file, but it is not really an
address. The Address Calculation Unit (ACU) and TLB do not process the twin
function result. The twin functions need not to be valid addresses in memory at
all.

The architecture is as follows. The instruction set is augmented with a new
load instruction with three operands, or registers: the destination register, the
index function register and the twin function register. The load instruction be-
comes like any other instructions, with two source operands and one destination.
To improve performance, a load can be issued as soon as the twin index function
is computed to speed up the access in cache. The twin function can be used
directly by the cache without further manipulations. The regular index function
is really necessary in case of a miss and ACU and TLB must process it. We can
imagine that a possible implementation may decide to execute the regular index
function only when a miss happens. We can see there is potential to change cache
mapping without increasing the hit latency time in cache. The design remains
simple: the functional units communicates only with the register files and the
register file only with the first level of cache. The design can be applied even
when a cache is multi-ported; that is, when multiple loads and writes can be
issued to cache.

The proposed approach increases integer register pressure and it issues more
integer instructions because of the index computations. The compiler may in-
troduce register spills on the stack, but in general, they are not misses in cache



(having temporal and spatial locality). Index function and twin index function
are independent and we can issue them in parallel. If the number of pipelined
ALUs does not suffice the parallelism available, the index function can lead to
a slow down. The slow-down factor is independent from the number of index
functions and it is no larger than 2. (The slow-down factor and the total work
can be reduced issuing the index function only in case of a miss; we increase only
the cache miss latency.)
To avoid consistency problems the data cache is virtually indexed and phys-

ically tagged. The new type of load does not affect how many load instructions
can be issued or executed per cycle. We assume that an additional Integer RF
output port has a negligible effect on the register file access time. (Otherwise,
twin functions can be processed in parallel with the index functions and dedi-
cated RF can be used.)

3 Experimental Results

Dynamic Mapping is applied to two applications, Matrix Multiply (Section 3.1,
Example 2) and FFT (Section 3.2). We show the potential performance on 5 dif-
ferent systems. Indeed, the algorithms are performed only using the twin function
(no regular index function is performed). Here we describe the 5 architectures.
Sun Ultra 5 is based on a Sparc-Ultra-IIi processor 333MHz and Sun Enter-

prise 250 is based on two Sparc-Ultra-IIe processors 300MHz, both implement
32-bit V8+ instruction set. Their memory hierarchy is: L1 composed of I1=16KB
2-way 32B line and D1=16KB 1-way 32B line 16B sub-block, and L2 is unified
off chip U2=1MB 1-way. We have compiled our code with gcc/2.95.3 (g77) and
cc (Sun WorkShop 6 update 1 FORTRAN 95 6.1 2000/09/11). We present the
best performance.
Sun Blade 100 is based on a Sparc-Ultra-IIe processor 500MHz. Sun Blade im-

plements 64-bit V9 instruction set. The memory hierarchy is: level L1 composed
of I1=16KB 2-way 32B line composed of two block of size 16B and D1=16KB
1-way 32B line 16B sub-block, and L2 is unified U2=256KB 4-way on-chip. We
have compiled our code with gcc version 2.95.3 20010315 (release) .
Silicon Graphics O2 is based on a MIPS R12K IP32 333MHz, O2 implements

64-bit MIPS IV instruction set. The memory hierarchy is: L1 is composed of
I1=32KB 2-way and 64B line and D1=32KB 2-way 32B line and L2 is unified
U2=1MB 2-way. We have used f90/cc MIPSpro Compilers Version 7.30.
Fujitsu HAL Station 300 is based on SPARC64 100MHz processor, HAL

implements a V9 instruction set. Its memory hierarchy is composed on one level
of cache with an instruction cache of 128KB 4-way associative and an identical
data cache. We have compiled our code with the native compiler HaL SPARC
C/C++/Fortran Compiler Version 1.0 Feb.

3.1 Matrix Multiply

We implemented the matrix multiply as described in Example 2 in Section 2.1.
The application has spatial and temporal locality. Our goal is to show the cache
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Fig. 2. Matrix Multiply on Blade 100, miss rate comparison.

improvements due to dynamic mapping, Figure 2. We measure the cache perfor-
mance of matrix multiplication with standard index function and with dynamic
mapping. The two algorithms have the same number of operations, memory ac-
cesses and most probably the same instruction schedule. The only difference is
the access pattern. The dynamic mapping allows a stable miss ratio across dif-

ferent input size (2% which is close to the expected, roughly 1

`
√
C/3

=
√

3
2
√

2048
)

removing cache miss spikes all together.
We always improve cache performance (and therefore execution time). This

is expected. We can see a cache miss reduction of 30% in average and up to 8
times cache miss reduction for power of two matrixes.
In this section we do not take in account the effects of register allocation,

which can improve cache and overall performance. An optimal register allocation,
for tiled and recursive algorithms, can reduce the number of memory accesses and
exploits a better data reuse at register level. But at best of our knowledge, there
is no known optimal register allocation for matrix multiplication, and no register
allocation is able to reduce to zero cache interference for matrix multiplication.
Furthermore, register allocation is machine dependent and different libraries use
different register allocations (see for examples of register allocation for matrix
multiply kernel [7, 31]). We opted to show the cache performance, without the
application of other optimizations, in a such a way to quantify the benefits of
dynamic mapping alone.

3.2 n-FFT

We implemented our variation of Cooley-Tookey algorithm. Our algorithm aims
to a balance decomposition of n in factors, such as n = p ∗ q and p ∼ q. If
we can represent the decomposition of a problem in two subproblems as an
internal node of a binary tree, the leaves are the codelets from FFTW [12]
(small FFTs of size between 2 and 16 written as a sequence of straight-line code).



The binary tree can have hight between 1 (n is prime, we need to perform O(n2)
operations) and O(log2 n) (n = 2k, we need to perform (n log2 n) operations).
For some n, a balanced decomposition has a tree of hight log2 log2 n and it
executes O(n log2 log2 n) operations. The decomposition is static and it is not
based on any execution measurements or cost model.

We show the performance of our FFT with and without dynamic mapping in
Figure 3 and 4. The bars represent normalized MFLOPS: given an input of size
n, the measure reported is n ∗ log n/(106 ∗ timeOneFFT ), where timeOneFFT
is the average running time for one FFT. Since our implementation does not
have the same number of FLOPS of FFTW, we opted to measure the execution
time and determine a normalized number of FLOPS. Every complex point is
composed of two float point numbers of 4 byte each (we want to have spatial
locality for 16 B cache line size).

We choose to show performance in MFLOPS for two reasons: first, we fixed
the leaves computation (codelets) and therefore the register allocation is fixed
as well; second, the reduction of cache misses is small, but the performance
improvement is extremely significant.

We collected experimental results for four algorithms: we identify with our

FFT, our implementation of Cooley-Tookey algorithm; Dynamic Mapping is
our FFT when dynamic mapping is applied; we identify with Upper Bound a
recursive algorithm for FFT that accesses the cache with an ideal pattern (but
invalid). When present, FFTW is the Fastest Fourier Transform in the West [12].
FFTW is used as reference to understand the relation between the performance
of our implementation, the potential performance of dynamic mapping and the
performance of a well known FFT. Dynamic mapping could be applied to the
FFTW as well, and the improvements would be proportional to the ones shown
in the following.

In Figure 3, we show that our implementation is efficient for large power-of-
two inputs, but also, it has no steady performance - as FFTW. The performance
is a function of the input size. Indeed, the performance is a function of the
input decomposition. Large leaves allow fewer computations, therefore better
performance. Since the decomposition does not assure that all leaves have the
best size, this behavior is expected.

We can notice that for small n, the performance of our implementations may
be faster than expected (or slower). This is due to several reasons. One of them is
the accuracy problem: the execution of other processes effect the execution-time
measure under investigation (e.g., caches, register file, ALU and FPU pipeline
trashing). For fairly large to very large problems, where the memory hierarchy
is utilized intensely, dynamic mapping lays between its upper bound and our
implementation of FFT, as expected.

The characterization of the worst and best performance is twofold: first, it
shows the performance we can achieve, the performance we can achieve with
dynamic mapping and ideal performance if cache locality is fully exploited; sec-
ond, when there is no reference for execution time, we are still able to have an
estimation of execution time and potential performance.
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UltraSparcII 300MHz server
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UltraSparcII 500MHz Blades
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Fig. 3. FFT Ultra 5 (330Mhz), Enterprise 250 (300Mhz) and Blade 100 (500MHz).
Normalized performance: n ∗ log n/(106 ∗ timeOneFFT ), where timeOneFFT is the
average running time for one FFT. The bars from left to right:Upper Bound, Dy-

namic Mapping,our FFT and FFTW
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SPARC64 100MHz
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Fig. 4. FFT Silicon Graphics O2 and Fujitsu HAL 300 Normalized performance: n ∗
logn/(106 ∗ timeOneFFT ), where timeOneFFT is the average running time for one
FFT. The higher the bar the better the performance. The bars from left to right:Upper

Bound, Dynamic Mapping,our FFT

FFT is an excellent example of application with high self interference. Even
caches with large associativity are affected negatively. In Figure 4, we present
performance for two systems with associative caches: Silicon Graphic O2 system
and Fujitsu HAL 300.

4 Conclusions

We have presented a software-hardware approach to cope with the loss of perfor-
mance due to cache interference. Dynamic Mapping exploits spatial and temporal
locality, tailoring the cache mapping through a manipulation of the memory ad-
dresses. The cache mapping in itself does not change. In general the approach is
effective when interference is present, otherwise some slowdown may appear. We
present two tests case: matrix multiply and FFT. For matrix multiply we achieve
30% data cache miss reduction and a 8-fold data cache reduction for matrix of
size of power of two. For FFT the data cache miss reduction are quantitatively
sensitive for large problems and with high interference. We achieve a 4-fold cache



miss reduction and such reduction translates into an equal performance speed
up.
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