
C3: A System for Automating Application-level
Checkpointing of MPI Programs

Greg Bronevetsky, Daniel Marques, Keshav Pingali, Paul Stodghill�

Department of Computer Science,
Cornell University, Ithaca, NY 14853

Abstract. Fault-tolerance is becoming necessary on high-performance platforms.
Checkpointing techniques make programs fault-tolerant by saving their state pe-
riodically and restoring this state after failure. System-level checkpointing saves
the state of the entire machine on stable storage, but this usually has too much
overhead. In practice, programmers do manual application-level checkpointing
by writing code to (i) save the values of key program variables at critical points
in the program, and (ii) restore the entire computational state from these values
during recovery. However, this can be difficult to do in general MPI programs.

In ([2],[3]) we have presented a distributed checkpoint coordination protocol
which handles MPI’s point-to-point and collective constructs, while dealing with
the unique challenges of application-level checkpointing. We have implemented
our protocols as part of a thin software layer that sits between the application
program and the MPI library, so it does not require any modifications to the MPI
library. This thin layer is used by the C3 (Cornell Checkpoint (pre-)Compiler), a
tool that automatically converts an MPI application in an equivalent fault-tolerant
version. In this paper, we summarize our work on this system to date. We also
present experimental results that show that the overhead introduced by the proto-
cols are small. We also discuss a number of future areas of research.

1 Introduction

The problem of implementing software systems that can tolerate hardware failures has
been studied extensively by the distributed systems community [6]. In contrast, the
parallel computing community has largely ignored this problem because until recently,
most parallel computing was done on relatively reliable big-iron machines whose mean-
time-between-failures (MTBF) was much longer than the execution time of most pro-
grams. However, trends in high-performancecomputing, such as the popularity of custom-
assembled clusters, the increasing complexity of parallel machines, and the dawn of
Grid computing, are increasing the probability of hardware failures, making it impera-
tive that parallel programs tolerate such failures.

One solution that has been employed successfully for parallel programs is application-
level checkpointing. In this approach, the programmer is responsible for saving compu-
tational state periodically, and for restoring this state after failure. In many programs,

� This work was supported by NSF grants ACI-9870687, EIA-9972853, ACI-0085969, ACI-
0090217, ACI-0103723, and ACI-0121401.

it is possible to recover the full computational state from relatively small amounts of
data saved at key places in the program. For example, in an ab initio protein-folding
application, it is sufficient to periodically save the positions and velocities of the bases
of the protein; this is a few megabytes of information, in contrast to the hundreds of
gigabytes of information that would be saved by a system-level checkpoint.

This kind of manual application-level checkpointing is feasible if the parallel pro-
gram is written in a bulk-synchronous manner, but it is not clear how it can be applied
to a general MIMD program without global barriers. Without global synchronization, it
is not obvious when the state of each process should be saved so as to obtain a global
snapshot of the parallel computation. Protocols such as the Chandy-Lamport [4] proto-
col have been designed by the distributed systems community to address this problem,
but these protocols were designed for system-level checkpointing, and cannot be ap-
plied to application-level checkpointing, as we explain in Section 4.

In two previous papers ([2],[3]), we have present non-blocking, coordinated, application-
level checkpointing protocols for the point-to-point and collective constructs of MPI.
We have implemented these protocols as part of the C 3 (Cornell Checkpoint (pre-
)Compiler), a system that uses program transformation technology to automatically in-
sert application-level checkpointing features into an application’s source code. Using
our system, it is possible to automatically convert an MPI application in an equivalent
fault-tolerant version.

The rest of this paper is organized as follows. In Section 2, we present background
for and define the problem. In Section 3, we define some terminology and describe
our basic approach. In Section 4, we discuss some of the difficulties of adding fault-
tolerance to MPI programs. In Sections 5 and 6 we present non-blocking checkpointing
protocols for point-to-point and collective communication, respectively. In Section 7,
we discuss how our system saves the sequential state of each process. In Section 8, we
present performance results of our system. In Section 9 we discuss related work, and in
Section 10 we describe future work. In Section 11, we offer some conclusions.

2 Background

To address the problem of fault tolerance, it is necessary to define the fault model.
We focus our attention on stopping faults, in which a faulty process hangs and stops
responding to the rest of the system, neither sending nor receiving messages. This model
captures many failures that occur in practice and is a useful mechanism in addressing
more general problems.

We make the standard assumption that there is a reliable transport layer for deliv-
ering application messages, and we build our solutions on top of that abstraction. One
such reliable implementation of the MPI communication library is Los Alamos MPI [7].

We can now state the problem we address in this paper. We are given a long-running
MPI program that must run on a machine that has (i) a reliable message delivery system,
(ii) unreliable processors which can fail silently at any time, and (iii) a mechanism such
as a distributed failure detector [8] for detecting failed processes. How do we ensure
that the program makes progress in spite of these faults?

There are two basic approaches to providing fault-tolerance for distributed applica-
tions. Message-logging techniques require restarting only the computation performed
by the failed process. Surviving processes are not rolled back but must help the restarted
process by replaying messages that were sent to it before it failed. Our experience is that
the overhead of saving or regenerating messages tends to be so overwhelming that the
technique is not practical for scientific applications. Therefore, we focus on Checkpoint-
ing techniques, which periodically save a description of the state of a computation to
stable storage; if any process fails, all processes are rolled back to a previously saved
checkpoint (not necessarily the last), and the computation is restarted from there.

Checkpointing techniques can be classified along two independent dimensions.
(1) The first dimension is the abstraction level at which the state of a process is

saved. In system-level checkpointing (e.g., [9], [11]), the raw process state, including the
contents of the program counter, registers and memory, are saved on stable storage. Un-
fortunately, complete system-level checkpointing of parallel machines with thousands
of processors can be impractical because each global checkpoint can require saving ter-
abytes of data to stable storage. For this reason, system-level checkpointing is not done
on large machines such as the IBM Blue Gene or the ASCI machines.

One alternative which is popular is application-level checkpointing, in which the
application is written such that it correctly restarts from various positions in the code
by storing certain information to a restart file. The benefit of this technique is that that
the programmer needs to save only the minimum amount of data necessary to recover
the program state. In this paper, we explore the use of compiler technology to automate
application-level checkpointing.

(2) The second dimension along which checkpointing techniques can be classified
is the technique used to coordinate parallel processes when checkpoints need to be
taken. In [2], we argue that the best approach for our problem is to use non-blocking
coordinated checkpointing. This means that all of the processes participate in taking
each checkpoint, but they do not stop the computation while they do so. A survey of the
other approaches to checkpointing can be found in [6].

3 Our Approach

3.1 Terminology

We assume that a distinguished process called the initiator triggers the creation of
global checkpoints periodically. We assume that it does not initiate the creation of a
global checkpoint before any previous global checkpoint has been created and commit-
ted to stable storage.

The execution of an application process can therefore be divided into a succession
of epochs where an epoch is the period between two successive local checkpoints (by
convention, the start of the program is assumed to begin the first epoch). Epochs are
labeled successively by integers starting at zero, as shown in Figure 1.

Application messages can be classified depending upon whether or not they are sent
and received in the same epoch.

Start
of program

0

0

0

1

1

1

Intra-epoch

Global Checkpoint 1

2

2

2

Global Checkpoint 2

Late

Early
R

P

Q

Fig. 1. Epochs and message classifica-
tion

Native CompilerPrecompiler

with Checkpointing Code
Application SourceApplication Source Compiled code

Hardware

Co-ordination Layer

MPI

Run Time

Compile Time

Compiled code

Co-ordination Layer

MPI

Compiled code

Fig. 2. System Architecture

Definition 1. Given an application message from process A to process B, let eA be
the epoch number of A at the point in the application program execution when the
send command is executed, and let eB be the epoch number of B at the point when the
message is delivered to the application.

– Late message: If eA < eB , the message is said to be a late message.
– Intra-epoch message: If eA = eB , the message is said to be an intra-epoch message.
– Early message: If eA > eB , the message is said to be an early message.

Figure 1 shows examples of the three kinds of messages, using the execution trace
of three processes named P , Q and R. MPI has several kinds of send and receive com-
mands, so it is important to understand what the message arrows mean in the context of
MPI programs. Consider the late message in Figure 1. The source of the arrow repre-
sents the point in the execution of the sending process at which control returns from the
MPI routine that was invoked to send this message. Note that if this routine is a non-
blocking send, the message may not make it to the communication network until much
later in execution; nevertheless, what is important for us is that if the application tries to
recover from global checkpoint 2, it will not reissue the MPI send. Similarly, the desti-
nation of the arrow represents the delivery of the message to the application program.
In particular, if an MPI Irecv is used by the receiving process to get the message, the
destination of the arrow represents the point at which an MPI Wait for the message
would have returned, not the point where control returns from the MPI Irecv routine.

In the literature, late messages are sometimes called in-flight messages, and early
messages are sometime called inconsistent messages. This terminology was developed
in the context of system-level checkpointing protocols but in our opinion, it is mislead-
ing in the context of application-level checkpointing.

3.2 System Architecture

Figure 2 is an overview of our approach. The C 3 system reads almost unmodified
single-threaded C/MPI source files and instruments them to perform application-level
state-saving; the only additional requirement for the programmer is that he insert calls
to a function called PotentialCheckpoint at points in the application where the
programmer wants checkpointing to occur. The output of this precompiler is compiled
with the native compiler on the hardware platform, and is linked with a library that
constitutes a co-ordination layer for implementing the non-blocking coordination. This
layer sits between the application and the MPI library, and intercepts all calls from the
instrumented application program to the MPI library. Note that MPI can bypass the
co-ordination layer to read and write message buffers in the application space directly.
Such manipulations, however, are not invisible to the protocol layer. MPI may not be-
gin to access a message buffer until after it has been given specific permission to do so
by the application (e.g. via a call to MPI Irecv). Similarly, once the application has
granted such permission to MPI, it should not access that buffer until MPI has informed
it that doing so is safe (e.g. with the return of a call to MPI Wait). The calls to, and
returns from, those functions are intercepted by the protocol layer.

This design permits us to implement the coordination protocol without modifying
the underlying MPI library, which promotes modularity and eliminates the need for
access to MPI library code, which is proprietary on some systems. Further, it allows us
to easily migrate from one MPI implementation to another.

4 Difficulties in Application-level Checkpointing of MPI programs

In this section, we briefly describe the difficulties with implementing application-level,
coordinated, non-blocking checkpointing for MPI programs.

Delayed state-saving A fundamental difference between system-level checkpointing
and application-level checkpointing is that a system-level checkpoint may be taken at
any time during a program’s execution, while an application-level checkpoint can only
be taken when a program executes a PotentialCheckpoint call.

System-level checkpointing protocols, such as the Chandy-Lamport distributed snap-
shot protocol, exploit this flexibility with checkpoint scheduling to avoid the creation
of early messages. This strategy does not work for application-level checkpointing, be-
cause, after being notified to take a checkpoint, a process might need to communicate
with other processes before arriving at a point where it may take a checkpoint.

Handling late and early messages Suppose that an application is restored to Global
Checkpoint 2 in Figure 1. On restart, some processes will expect to receive late mes-
sages that were sent prior to failure. Therefore, we need mechanisms for (i) identifying
late messages and saving them along with the global checkpoint, and (ii) replaying these
messages to the receiving process during recovery. Late messages must be handled by
non-blocking system-level checkpointing protocols as well.

Similarly on recovery, some processes will expect to send early messages that were
received prior to failure. To handle this, we need mechanisms for (i) identifying early
messages, and (ii) ensuring that they are not resent during recovery.

Early messages also pose a separate and more subtle problem: if a non-deterministic
event occurs between a checkpoint and an early message send, then on restart the event
may occur difference and, hence, the message may be different. In general, we must
ensure that if a global checkpoint depends on a non-deterministic event, that the event
will re-occur exactly the same way after restart. Therefore, mechanisms are needed to
(i) record the non-deterministic events that a global checkpoint depends on, so that (ii)
these events can be replayed during recovery.

Non-FIFO message delivery at application level In an MPI application, a process
P can use tag matching to receive messages from Q in a different order than they were
sent. Therefore, a protocol that works at the application-level, as would be the case for
application-level checkpointing, cannot assume FIFO communication.

Collective communication The MPI standard includes collective communications
functions such as MPI Bcast and MPI Alltoall, which involve the exchange of
data among a number of processors. The difficulty presented by such functions occurs
when some processes make a collective communication call before taking their check-
points, and others after. We need to ensure that on restart, the processes that reexecute
the calls do not deadlock or receive incorrect information. Furthermore,MPI Barrier
guarantees specific synchronization semantics, which must be preserved on restart.

Problems Checkpointing MPI Library State The entire state of the MPI library
is not exposed to the application program. Things like the contents of message buffers
and request objects are not directly accessible. Our system must be able to reconstruct
this hidden state on recovery.

5 Protocol for point-to-point operations

We now sketch the coordination protocol for global checkpointing for point-to-point
communication. A complete description of the protocol can be found in [2].

5.1 High-level description of protocol

Initiation As with other non-blocking coordinated checkpointing protocols, we assume
the existence of an initiator that is responsible for deciding when the checkpointing
process should begin. In our system, the processor with rank 0 in MPI COMM WORLD
serves as the initiator, and starts the protocol when a certain amount of time has elapsed
since the last checkpoint was taken.

Phase #1 The initiator sends a control message called pleaseCheckpoint to all ap-
plication processes. After receiving this message, each process can send and receive
messages normally.

Phase #2 When an application process reaches its next potentialCheckpoint
location, it takes a local checkpoint using the techniques described in Section 7. It also
saves the identities of any early messages on stable storage. It then starts recording (i)
every late message it receives, and (ii) the result of every non-deterministic decision it
makes. Once a process has received all of its late messages1, it sends a control message
called readyToStopRecording back to the initiator, but continues recording.

1 We assume the application code receives all messages that it sends.

Phase #3 When the initiator gets a readyToStopRecording message from all pro-
cesses, it sends a control message called stopRecording to all other processes.

Phase #4 An application process stops recording when (i) it receives a stopRecord-
ing message from the initiator, or (ii) it receives a message from a process that has
stopped its recording.

The second condition is required because we make no assumptions about message
delivery order. In particular, it is possible for a recording process to receive a message
from non-recording process before receiving the stopRecording message. In this case,
the saved state might depend upon an unrecorded non-deterministic event. The second
condition prevents this situation from occurring.

Once the process has saved its record on disk, it sends a stoppedRecording message
back to the initiator. When the initiator receives a stoppedRecording message from all
processes, it commits the checkpoint that was just created as the one to be used for
recovery, saves this decision on stable storage, and terminates the protocol.

5.2 Piggybacked information on messages

To implement this protocol, the protocol layer must piggyback a small amount of infor-
mation on each application message. The receiver of a message uses this piggybacked
information to answer the following questions.

1. Is the message a late, intra-epoch, or early message?
2. Has the sending process stopped recording?
3. Which messages should not be resent during recovery?

The piggybacked values on a message are derived from the following values main-
tained on each process by the protocol layer.

– epoch: This integer keeps track of the process epoch. It is initialized to 0 at start
of execution, and incremented whenever that process takes a local checkpoint.

– amRecording: This boolean is true when the process is recording, and false oth-
erwise.

– nextMessageID: This integer is initialized to 0 at the beginning of each epoch,
and is incremented whenever the process sends a message. Piggybacking this value
on each application message in an epoch ensures that each message sent by a given
process in a particular epoch has a unique ID.

A simple implementation of the protocol can piggyback all three values on each
message that is sent by the application. When a message is received, the protocol layer
at the receiver examines the piggybacked epoch number and compares it with the epoch
number of the receiver to determine if the message is late, intra-epoch, or early. By
looking at the piggybacked boolean, it determines whether the sender is still record-
ing. Finally, if the message is an early message, the receiver adds the pair <sender,
messageID> to its suppressList. Each process saves its suppressList to sta-
ble storage when it takes its local checkpoint. During recovery, each process passes
relevant portions of its list of messageID’s to other processes so that resending of these
messages can be suppressed.

By exploiting properties of the protocol, the size of the piggybacked information
can be reduces to two booleans and an integer. By exploiting the semantics of MPI
message tags, it is possible to eliminate the integer altogether, and piggyback only two
boolean values, one to represent epoch and the other amRecording.

5.3 Completing the reception of late messages

Finally, we need a mechanism for allowing an application process in one epoch to de-
termine when it has received all the late messages sent in the previous epoch.

The solution we have implemented is straight-forward. In every epoch, each pro-
cess P remembers how many messages it sent to every other process Q (call this value
sendCount(P → Q)). Each process Q also remembers how many messages it re-
ceived from every other process P (call this value receiveCount(Q ← P)). When a
process P takes its local checkpoint, it sends a mySendCount message to the other
processes, which contains the number of messages it sent to them in the previous
epoch. When process Q receives this control message, it can compare the value with
receiveCount(Q ← P) to determine how many more messages to wait for.

Since the value of sendCount(P → Q) is itself sent in a control message, how
does Q know how many of these control messages it should wait for? A simple solution
is for each process to send its sendCount to every other process in the system. This
solution works, but requires quadratic communication. More efficient solutions can be
obtained by requiring processes that communicate with one another to explicitly open
and close communication “channels”.

5.4 Guarantees provided by the protocol

It can be shown that this protocol provides the following guarantees that are useful for
reasoning about correctness.

Claim.

1. No process stops recording until all processes have taken their local checkpoints.
2. A process that has stopped recording cannot receive a late message. In Figure 3,

this means that a message of the form b1 → g3 cannot occur.
3. A message sent by a process after it has stopped recording can only be received by

a process that has itself stopped recording. In Figure 3, this means that messages of
the form b3 → g2 or b3 → g1 cannot occur.

Figure 3 shows the possible communication patterns, given these guarantees.

6 Protocol for collective operations

In this section, we build on the mechanisms of the point-to-point protocol in order
to implement a protocol for collective communication. A complete description of our
protocols can found in [3].

Q

P

Recovery line

b1 b2 b3

g1 g2 g3

Stop-recording line

Fig. 3. Possible Patterns of Communication

There are two basic approaches to handling MPI’s collective communication func-
tions. The most obvious is to implement these functions on top of our point-to-point
protocol. However, because this approach does not use the low-level network layer di-
rectly, it is likely to be less efficient than the collective functions provided by the native
MPI library.

Instead, what we have chosen to do is to use the basic concepts and mechanisms
of our point-to-point protocol in order to provide fault-tolerant versions of the collec-
tive communication functions that are implemented entirely in terms of the native MPI
collective communication functions.

We will use MPI Allreduce to illustrate how collective communication is han-
dled. In Figure 4, collective communication call A shows an MPI Allreduce call in
which processes P and Q execute the call after taking local checkpoints, and process R
executes the call before taking the checkpoint. During recovery, processes P and Q will
reexecute this collective communication call, but process R will not. Unless something
is done, the program will not recover correctly.

Our solution is to use the record to save the result of the MPI Allreduce call
at processes P and Q. During recovery, when the processes reexecute the collective
communication call, the result is read from the record and returned to the application
program. Process R does not reexecute the collective communication call. To make this
intuitive idea precise, we need to specify when the result of a collective communication
call like MPI Allreduce should be recorded.

A simple solution is to require a process to record the result of every collective com-
munication call it makes during the time it is recording. Collective communication call
B in Figure 4 illustrates a subtle problem with this solution - process R executes the
MPI Allreduce after it has stopped recording, so it would be incorrect for processes
P and Q to record the results of their call. This problem is similar to the problem en-
countered in the point-to-point message case, and the solution is similar (and simpler).
Each process piggybacks its amRecording bit on the application data, and the function
invoked by MPI Allreduce computes the conjunction of these bits. If any process
involved in the collective communication call has stopped recording, all the other pro-
cesses will learn this fact, and they will also stop recording. As a result, no process will
record the result of the call.

P

Q

R

Recovery line

Collective
Communication Call BCommunication Call A

Collective

Stop-recording
line

Fig. 4. Collective Communication

Most of the other collective communication calls can be handled in this way. Iron-
ically, the only one that requires special treatment is MPI Barrier, and the reason is
that the MPI standard requires that no processor finishes a call to MPI Barrier until
every processor has started a call to MPI Barrier.

Suppose that the collective communication call A in Figure 4 is an MPI Barrier.
Upon recovery, processors P and Q will have already finished their calls to MPI Barrier,
while R has not yet started its call. This is a clear violation of the required behavior. The
solution is to ensure that all processes involved in a barrier execute it in the same epoch.
In other words, barriers cannot be allowed to cross recovery lines.

A simple implementation is the following. All processes involved in the barrier ex-
ecute an all-reduce communication just before the barrier to determine if they are all in
the same epoch. If not, processes that have not yet taken their local checkpoints do so,
ensuring that the barrier is executed by all processes in the same epoch. This solution
requires the precompiler to insert the all-reduce communication and the potential check-
pointing locations before each barrier. As shown in [3], the overhead of this addition is
very small in practice.

7 State Saving

The protocols described in the previous sections assume that there is a mechanism for
taking and restoring a local checkpoint on each processor, which we describe in this
section.

Application State-Saving The state of the application running on each node con-
sists of its position in the static text of the program, its position in the dynamic execution
of the program, its local and global variables, and its heap-allocated structures. Our pre-
compiler modifies the application source so that this state is correctly saved, and can
be restarted, at the potentialCheckpoint positions in the original code. Our ap-
proach is similar to that used in the PORCH system[12]. While it currently only saves
somewhat less data than system-level checkpointing, it offers two significant advan-
tages over that approach. First, it is a starting point for optimizing the amount of state
that is saved at a checkpoint. In Section 10, we describe ongoing work towards this

goal. Second, it is much simpler and more portable than system-level checkpointing,
which very often requires modifying the operating system and native MPI library.

MPI Library State-Saving As was already mentioned, our protocol layer inter-
cepts all calls that the application makes to the MPI library. Using this mechanism our
system is able to record the direct state changes that the application makes (e.g., calls
to MPI Attach buffer). In addition, some MPI functions take or return handles to
opaque objects. The protocol layer introduces a level of indirection so that the appli-
cation only sees handles to objects in the protocol layer (hereafter referred to pseudo-
handles), which contain the actual handles to the MPI opaque objects. On recovery, the
protocol layer reinitializes the pseudo-handles in such a way that they are functionally
identical to their counterparts in the original process.

8 Performance

In this section, we present an overview of the full experimental results that can be found
in [2] and [3].

We performed our experimental evaluation on the CMI cluster at the Cornell Ve-
locity supercomputer. This cluster is composed of 64 2-way Pentium III 1GHz nodes,
featuring 2GB of RAM and connected by a Giganet switch. The nodes have 40MB/sec
bandwidth to local disk. The point-to-point experiments were conducted on 16 nodes,
and the collective experiments were conductions on 32 nodes. On each node, we used
only one of the processors.

8.1 Point-to-point

We evaluated the performance of the point-to-point protocol on three codes: a dense
Conjugate Gradient code, a Laplace solver, and Neurosys, a neuron simulator. All the
checkpoints in our experiments are written to the local disk, with a checkpoint interval
of 30 seconds2.

The performance of our protocol was measured by recording the runtimes of each
of four versions of the above codes.

1. The unmodified program
2. Version #1 + code to piggyback data on messages
3. Version #2 + protocol’s records and saving the MPI library state
4. Version #3 + saving the application state

Experimental results are shown in Figure 5.
We observe in the results that the overhead of using our system is small, except in

a few instances. In dense CG, the overhead of saving the application state rises dramat-
ically for the largest problem size. This is as a result of the large amount of state that
must be written to disk. The other extreme is Neurosys, which has a very high commu-
nication to computation ration on the small problem size. In this case, the overhead of
using the protocol becomes evident. For the larger problems it is less so.

2 We chose such a small interval in order to amplify the overheads for the purposes of mea-
surement. In practice, users would choose checkpoint intervals on the order of hours or days,
depending upon the underlying system.

4096x4096 8192x819216384X16384
0

500

1000

1500

2000

2500

3000
Dense Conjugate Gradient

Problem Size

R
un

ni
ng

 T
im

e
(s

ec
)

8.2MB
33MB

131MB

Unmodified Program
Using Protocol Layer, No Checkpoints
Checkpointing, No Application State
Full Checkpoints

512x512 1024x1024 2048x2048
0

500

1000

1500

2000

2500

3000

3500
Laplace Solver

Problem Size

R
un

ni
ng

 T
im

e
(s

ec
)

138KB
532KB

2.1MB

16x16 32x32 64x64 128x128
0

500

1000

1500

2000

2500

Neurosys

Problem Size

R
un

ni
ng

 T
im

e
(s

ec
)

18KB
75KB

308KB

1.24MB

The number above each set of bars
is the size of the application state
for that problem size.

Fig. 5. Point-to-point Overheads

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
4

10
3

10
2

10
1

10
0

10
1

MPI_Allgather, 1 byte protocol block, 32 processes, Absolute Times

Message size, bytes

T
im

e,
 s

ec
on

ds

Standard
Separate
Combined

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

MPI_Allgather, 1 byte protocol block, 32 processes, Absolute Overhead

Message size, bytes

T
im

e,
 s

ec
on

ds

Standard
Separate
Combined

Fig. 6. MPI Allgather

In our experiments, we initiated a new checkpointing 30 seconds after the last
checkpoint was committed. For real applications on real machines, the developer will
want to select a checkpoint frequency that carefully balances the overhead against the
need to make progress. Since our protocol only incurs overhead during the interval
in which a checkpoint is being taken, the developer can arbitrarily reduce the protocol
overhead by reducing the frequency at which checkpoints are taken.

8.2 Collective

MPI supports a very large number of collective communication calls. Here, we com-
pared the performance of the native version of MPI Allgatherwith the performance
of a version modified to utilize our protocol. Those modifications include sending the
necessary protocol data (color and logging bits) and performing the protocol logic.

There are two natural ways to send the protocol data: either via a separate collective
operation that precedes the data operation, or by “piggy-backing” the control data onto
the message data and sending both with one operation. We have measured the overhead
of both methods. The time for the separate operation case includes the time to send both
messages. For the combined case, it includes the time to copy the control and message
data to a contiguous region, to send the combined message, and to separate the message
and protocol data on receipt.

The top graph in Figure 6 shows the absolute time taken by the native and protocol
(both the separate and combined message) versions of MPI Allgather for data mes-
sage ranging in size from 4 bytes to 4 MB. The bottom graph shows the overhead, in
seconds, that the two versions of the protocol add to the communication.

Examining the graphs, we see that for small messages, the relative overhead (per-
centage) might be high but the absolute overhead is small. For large messages sizes,
the absolute overhead might be large, but relative to the cost of the native version, the
cost is very small. This is the expected behavior. The next effect is that the observed
overhead for real applications will be negligible.

9 Existing Work

While much theoretical work has been done in the field of distributed fault-tolerance,
few systems have been implemented for actual distributed application environments.

One such system is CoCheck [14], which provides fault-tolerance for MPI appli-
cations. CoCheck provides only the functionality for the coordination of distributed
checkpoints, relying on the Condor [9] system to take system-level checkpoints of each
process. In contrast to our approach, CoCheck is integrated with its own MPI implemen-
tation, and assumes that collective communications are implemented as point-to-point
messages. We believe that our ability to inter-operate with any MPI implementation is
a significant advantage.

Another distributed fault-tolerance implementation is the Manetho [5] system, which
uses causal message logging to provide for system recovery. Because a Manetho pro-
cess logs both the data of the messages that it sends and the non-deterministic events
that these messages depend on, the size of those logs may grow very large if used with
a program that generates a high volume of large messages, as is the case for many
scientific programs. While Manetho can bound the size of these logs by occasionally
checkpointing process state to disk, programs that perform a large amount of commu-
nication would require very frequent checkpointing to avoid running out of log space.
Furthermore, since the system requires a process to take a checkpoint whenever these
logs get too large, it is not clear how to use this approach in the context of application-
level checkpointing. Note that although our protocol, like the Chandy-Lamport proto-
col, also records message data, recording happens only during checkpointing. Another
difference is that Manetho was not designed to work with any standard message passing
API, and thus does not need to deal with the complex constructs – such as non-blocking
and collective communication – found in MPI.

The Egida [13] system is another fault-tolerant system for MPI. Like CoCheck, it
provides system-level checkpointing, and it has been implemented directly in the MPI
layer. Like Manetho, it is primarily based upon message logging, and uses checkpoint-
ing to flush the logs when they grow too large.

10 Future Work

10.1 State savings

A goal of our project is to provide a highly efficient checkpointing mechanism for MPI
applications. One way to minimize checkpoint overhead is to reduce the amount of data
that must be saved when taking a checkpoint. Previous work in the compiler literature
has looked at analysis techniques for avoiding the checkpointing of dead and read-only

variables [1]. This work focused on statically allocated data structures in FORTRAN
programs. We would like to extend this work to handle the dynamically created mem-
ory objects in C/MPI applications. We are also studying incremental checkpointing
approaches for reducing the amount of saved state.

Another technique we are developing is the detection of distributed redundant data.
If multiple nodes each have a copy of the same data structure, only one of the nodes
needs to include it in its checkpoint. On restart, the other nodes will obtain their copy
from the one that saved it.

Another powerful optimization is to trade off state-saving for recomputation. In
many applications, the state of the entire computation at a global checkpoint can be re-
covered from a small subset of the saved state in that checkpoint. The simplest example
of this optimization is provided by a computation in which we need to save two vari-
ables x and y. If y is some simple function of x, it is sufficient to save x, and recompute
the value of y during recovery, thereby trading off the cost of saving variable y against
the cost of recomputing y during recovery. Real codes provide many opportunities for
applying this optimization. For example, in protein-folding using ab initio methods, it
is sufficient to save the positions and velocities of the bases in the protein at the end of
a time-step because the state of the entire computation can be recovered from that data.

10.2 Extending the protocols

In our current work, we are investigating the scalability of the protocol on large high-
performance platforms with thousands of processors. We are also extending the proto-
col to other types of parallel systems. One API of particular interest is OpenMP [10],
which is an API for shared-memory programming. Many high-performance platforms
consist of clusters in which each node is a shared-memory symmetric multiprocessor.
Applications programmers are using a combination of MPI and OpenMP to program
such clusters, so we need to extend our protocol for this hybrid model.

On a different note, we plan to investigate the overheads of piggybacking control
data on top of application messages. Such piggybacking techniques are very common
in distributed protocols but the overheads associated with the piggybacking of data can
be very complex, as our performance numbers demonstrate. Therefore, we believe that
a detailed, cross-platform study of such overheads would be of great use for parallel
and distributed protocol designers and implementors.

11 Conclusions

In this paper, we have shown that application-level non-blocking coordinated check-
pointing can be used to add fault-tolerance to C/MPI programs. We have argued that
existing checkpointing protocols are not adequate for this purpose and we have devel-
oped protocols for both point-to-point [2] and collective [3] operations to meet the need.
These protocol can be used to provide fault tolerance for MPI programs without making
any demands on or having knowledge of the underlying MPI implementation.

Used in conjunction with the method for automatically saving uniprocessor state de-
scribed in [2], we have built a system that can be used to add fault-tolerance to C/MPI

programs. We have shown how the state of the underlying MPI library can be recon-
structed by the implementation of our protocol. Experimental measurements show that
the overhead introduced by the protocol implementation layer and program transforma-
tions is small.

Acknowledgments: This work was inspired by a sabbatical visit by Keshav Pingali
to the IBM Blue Gene project. We would like to thank the IBM Corporation for its sup-
port, and Marc Snir, Pratap Pattnaik, Manish Gupta, K. Ekanadham, and Jose Moreira
for many valuable discussions on fault-tolerance.

References

1. M. Beck, J. S. Plank, and G. Kingsley. Compiler-assisted checkpointing. Technical Report
UT-CS-94-269, Dept. of Computer Science, University of Tennessee, 1994.

2. G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. Automated application-level
checkpointing of mpi programs. In Principles and Practices of Parallel Programming, San
Diego, CA, June 2003.

3. G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. Collective operations in an
application-level fault tolerant MPI system. In International Conference on Supercomputing
(ICS) 2003, San Francisco, CA, June 23–26 2003.

4. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed
systems. ACM Transactions on Computing Systems, 3(1):63–75, 1985.

5. E. N. Elnozahy and W. Zwaenepoel. Manetho: Transparent rollback-recovery with low over-
head, limited rollback and fast output. IEEE Transactions on Computers, 41(5), May 1992.

6. M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson. A survey of rollback-recovery pro-
tocols in message passing systems. Technical Report CMU-CS-96-181, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, USA, Oct. 1996.

7. R. Graham, S.-E. Choi, D. Daniel, N. Desai, R. Minnich, C. Rasmussen, D. Risinger, and
M. Sukalski. A network-failure-tolerant message-passing system for tera-scale clusters. In
Proceedings of the International Conference on Supercomputing 2002, 2002.

8. I. Gupta, T. Chandra, and G. Goldszmidt. On scalable and efficient distributed failure de-
tectors. In Proc. 20th Annual ACM Symp. on Principles of Distributed Computing, pages
170–179, 2001.

9. J. B. M. Litzkow, T. Tannenbaum and M. Livny. Checkpoint and migration of UNIX pro-
cesses in the Condor distributed processing system. Technical Report 1346, University of
Wisconsin-Madison, 1997.

10. OpenMP. Overview of the OpenMP standard. Online at http://www.openmp.org/, 2003.
11. J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent checkpointing under

UNIX. Technical Report UT-CS-94-242, Dept. of Computer Science, University of Ten-
nessee, 1994.

12. B. Ramkumar and V. Strumpen. Portable checkpointing for heterogenous architectures. In
Symposium on Fault-Tolerant Computing, pages 58–67, 1997.

13. S. Rao, L. Alvisi, and H. M. Vin. Egida: An extensible toolkit for low-overhead fault-
tolerance. In Twenty-Ninth Annual International Symposium on Fault-Tolerant Computing,
Madison, Wisconsin, June 15 - 18, 1999.

14. G. Stellner. CoCheck: Checkpointing and Process Migration for MPI. In Proceedings of the
10th International Parallel Processing Symposium (IPPS ’96), Honolulu, Hawaii, 1996.

