Cetus — An Extensible Compiler Infrastructure
for Source-to-Source Transformation

Sang-Ik Lee, Troy A. Johnson, and Rudolf Eigenmann

Purdue University*, West Lafayette IN 47906, USA,
{sangik,troyj,eigenman}@ecn.purdue.eduy,
WWW home page: http://paramount .www.ecn.purdue. edu

Abstract. Cetus is a compiler infrastructure for the source-to-source
transformation of programs. We created Cetus out of the need for a
compiler research environment that facilitates the development of inter-
procedural analysis and parallelization techniques for C, C++4, and Java
programs. We will describe our rationale for creating a new compiler in-
frastructure and give an overview of the Cetus architecture. The design
is intended to be extensible for multiple languages and will become more
flexible as we incorporate feedback from any difficulties we encounter in-
troducing other languages. We will characterize Cetus’ runtime behavior
of parsing and IR generation in terms of execution time, memory usage,
and parallel speedup of parsing, as well as motivate its usefulness through
examples of projects that use Cetus. We will then compare these results
with those of the Polaris Fortran translator.

1 Introduction

Parallelizing compiler technology is most mature for the Fortran 77 language [4,
5,16, 18]. The simplicity of the language without pointers or user-defined types
makes it easy to analyze and to develop many advanced compiler passes. By
contrast, parallelization technology for modern languages, such as Java, C++,
or even C, is still in its infancy. When trying to engage in such research, we were
faced with a serious challenge. We were unable to find a parallelizing compiler
infrastructure that supports interprocedural analysis, exhibits state-of-the-art
software engineering techniques to achieve shorter development time, and which
would allow us to compile large, realistic applications. However, we feel these
properties are of paramount importance. They enable a compiler writer to de-
velop “production strength” passes. Production strength passes, in turn, can
work in the context of the most up-to-date compiler technology and lead to
compiler research that can be evaluated with full suites of realistic applications.
The lack of such thorough evaluations in many current research papers has been
observed and criticized by many. The availability of an easy-to-use compiler in-
frastructure would help improve this situation significantly. Hence, continuous

* This material is based upon work supported in part by the National Science Foun-
dation under Grant No. 9703180, 9975275, 9986020, and 9974976.

research and development in this area are among the most important tasks of
the compiler community. Our paper contributes to this effort.

During an early development stage, Cetus was used in a class project. Ten
students of a graduate compiler class were challenged to create a source-to-
source C compiler with a number of passes fundamental to parallelization, in-
cluding induction variable substitution, dependence analysis, and privatization.
The students were free to choose the compiler infrastructure. Among the serious
contenders were the GNU Compiler Collection (GCC) [21], the SUIF 2 [24] com-
piler (a.k.a. the National Compiler Infrastructure), and a “from-scratch” design
building on Cetus. After an initial feasibility study, half of the students decided
to pursue the GCC option and the other half the Cetus option. This provided
an excellent opportunity to see if Cetus could meet our goals. The discussion of
Cetus versus GCC will reflect some of the findings of the class, given in the final
project review. The success of the class project led to a new infrastructure that
will be made available to the research community.

Cetus has the following goals, which will be explored throughout this paper:

— The Internal Representation (IR) is visible to the pass writer (the user)
through an interface, which we will refer to as the IR-API. Designing a sim-
ple, easy-to-use IR-API, that is extensible for future capabilities — especially
to support other languages — is the most difficult engineering task.

— It must be easy to write source-to-source transformations and optimization
passes. The implementation is an object-oriented class hierarchy with a mini-
mal number of IR-API method names (using virtual functions and consistent
naming), easy-to-use IR traversal methods, and information that can be in-
ferred from other data strictly hidden from the user.

— Ease of debugging can be decisive for the success of any compiler projects
that make use of the infrastructure. The IR-API should make it impossible
to create inconsistent program representations, but we still need tools that
catch common mistakes and environments that make it easy to track down
bugs if problems occur.

— Cetus should run on multiple platforms with no or minimal modification.
Portability of the infrastructure to a wide variety of platforms will make
Cetus useful to a larger community.

2 Design Rationale and Comparison with Existing
Infrastructures

From a substantial list of compiler infrastructures, we choose to discuss three
open-source projects that most closely match our goals. The goals are to cre-
ate a source-to-source infrastructure that supports C and is extensible to other
languages. The three projects are the Polaris, SUIF, and GNU compilers. We
explain our reasons for not using these infrastructures as our basis, and also
discuss important features of these compilers that we want to adopt in Cetus.

2.1 The Polaris Compiler

The Polaris [5] compiler, which we have co-developed in prior work, was an im-
portant influence on the design of our new infrastructure. Polaris is written in
C++ and operates on Fortran 77 programs. So far, no extensions have been
made to handle Fortran 90, which provides a user-defined type system and other
modern programming language features. Polaris’ IR is Fortran-oriented [7] and
extending it to other languages would require substantial modification. In gen-
eral, Polaris is representative of compilers that are designed for one particular
language, serve their purpose well, but are difficult to extend. Cetus should not
be thought of as “Polaris for C” because it is designed to avoid that problem.
However, there are still several Polaris features that we wanted to adopt in Ce-
tus. Polaris’ IR can be printed in the form of code that is similar to the source
program. This property makes it easy for a user to review and understand the
steps involved in Polaris-generated transformations. Also, Polaris’ API is such
that the IR is in a consistent state after each call. Common mistakes that pass
writers make can be avoided in this way.

2.2 SUIF — National Compiler Infrastructure

The SUIF [24] compiler is part of the National Compiler Infrastructure (NCI),
along with Zephyr [3], whose design began almost a decade ago. The infras-
tructure was intended as a general compiler framework for multiple languages.
It is written in C++4, like Polaris, and the currently available version supports
analysis of C programs. SUIF 1 is a parallelizing compiler and SUIF 2 performs
interprocedural analysis [2].

Both SUIF and Cetus fall into the category of extensible source-to-source
compilers, so at first SUIF looked like the natural choice for our infrastructure.
Three main reasons eliminated our pursuit of this option. The first was the
perception that the project is no longer active — the last major release was in
2001 and does not appear to have been updated recently. The second reason was,
although SUIF intends to support multiple languages, we could not find complete
front ends other than for C and an old version of Java. Work began on front ends
for Fortran and C++ [1,2,11], but they are not available in the current release.
Hence, as is, SUIF essentially supports a single language, C. Finally, we had a
strong preference for using Java as the compiler implementation language. Java
offers several features conducive to good software engineering. It provides good
debugging support, high portability, garbage collection (contributing to the ease
of writing passes), and its own automatic documentation system. These facts
prompted us to pursue other compiler infrastructures.

2.3 GNU Compiler Collection

GCC [21] is one of the most robust compiler infrastructures available to the
research community. GCC generates highly-optimized code for a variety of ar-
chitectures, which rivals in many cases the quality generated by the machine

vendor’s compiler. Its open-source distribution and continuous updates make
it attractive. However, GCC was not designed for source-to-source transforma-
tions. Most of its passes operate on the lower-level RTL representation. Only
recent versions of GCC (version 3.0 onward) include an actual syntax tree rep-
resentation. This representation was used in our class project for implementing
a number of compiler passes. Other limitations are GCC compiles one source
file at a time, performs separate analysis of procedures, and requires extensive
modification to support interprocedural analysis across multiple files.

The most difficult problem faced by the students was that GCC does not
provide a friendly API for pass writers. The API consists largely of macros.
Passes need to be written in C and operations lack logical grouping (classes,
namespaces, etc), as would be expected from a compiler developed in an object-
oriented language.

GCC’s IR [20] has an ad-hoc type system, which is not reflected in its im-
plementation language (C). The type system is encoded into integers that must
be decoded and manipulated by applying a series of macros. It is difficult to
determine the purpose of fields in the IR from looking at the source code, since
in general every field is represented by the same type. This also makes it difficult
for debuggers to provide meaningful information to the user.

Documentation for GCC is abundant. The difficulty is that the sheer amount
([21] and [20] combined approach 1000 pages) easily overwhelms the user. Gen-
erally, we have found that there is a very steep learning curve in modifying GCC,
with a big time investment to implement even trivial transformations.

The above difficulties were considered primarily responsible for the students
that used GCC proceeding more slowly than those creating a new compiler
design. The demonstrated higher efficiency of implementation was the ultimate
reason for the decision to pursue the full design of Cetus.

2.4 Cetus

Among the most important Cetus design choices were the implementation lan-
guage, the parser, and the internal representation with its pass-writer interface.
We will not present any language discussion in this paper. As mentioned above,
the language of choice for the new infrastructure is Java.

Cetus does not contain any proprietary code and relies on freely available
tools. For creating a Cetus parser we considered using the parser generators
Yacc [13] and Bison [9], which use lex [14] or flex [10] for scanning, and Antlr [17],
which is bundled with its own scanner generator. Yacc and Bison generate effi-
cient code in C for an LALR(1) parser, which handles most languages of interest.
However, neither generates Java code. By contrast, Antlr generates code in C,
C++, Java, or C#. It is an LL(k) parser, which can be more restrictive; however,
there is good support for influencing parse decisions using semantic information.
Antlr grammars for C and Java exist, but to our knowledge there have not
been any successful attempts to use Antlr for parsing arbitrary C++ programs,
though Antlr has successfully been used to parse subsets of the language. We
selected Antlr for the C front end, because it generates Java code that easily

Driver
Analysis and
Parsers Transformation Passes
Utilities
High-Level Interface
Base IR Symbol Table

Fig. 1. Cetus components and interfaces: Components of Cetus only call methods of
the components beneath them. The driver interprets command-line arguments and
initiates the appropriate parser for the input language, which in turn uses the high-
level interface to build the IR. The driver then initiates analysis and transformation
passes. Utilities are provided to perform complex operations in order to keep the base
and interface as uncluttered as possible.

interfaces with Cetus’ Java code. Extending Cetus with front ends for other
languages is discussed in Section 3.4.

Instead of implementing our own preprocessor for the C language, we rely
on the GNU preprocessor, cpp. Preprocessing accessible through GCC with the
-E option may be necessary for programs that rely on certain GNU extensions.
The preprocessed files are given to the parser, which builds the IR.

For the design of the IR we chose an abstract representation, implemented in
the form of a class hierarchy and accessed through the class member functions.
The next section describes this architecture. We consider a strong separation
between the implementation and the interface to be very important. In this
way, a change to the implementation may be done while maintaining the API
for its users. It also permits passes to be written before the implementation is
ready. These concepts had already proved their value in the implementation of
the Polaris infrastructure — the Polaris base was rewritten three to four times
over its lifetime while keeping the interface, and hence all compilation passes,
nearly unmodified [7]. Cetus has a similar design, shown in Figure 1, where the
high-level interface insulates the pass writer from changes in the base.

3 Implementation

3.1 IR Class Hierarchy

Our design goal was a simple IR class hierarchy easily understood by users. It
should also be easy to maintain, while being rich enough to enable future ex-
tension without major modification. The basic building blocks of a program are

the translation wunits, which represent the content of a source file, and proce-
dures, which represent individual functions. Procedures include a list of simple
or compound statements, representing the program control flow in a hierarchical
way. That is, compound statements, such as IF-constructs and FOR-loops in-
clude inner (simple or compound) statements, representing then and else blocks
or loop bodies, respectively. Ezpressions represent the operations being done on
variables, including the assignments to variables.

Cetus’ IR contrasts with the Polaris Fortran translator’s IR in that it uses a
hierarchical statement structure. The Cetus IR directly reflects the block struc-
ture of a program. Polaris lists the statements of each procedure in a flat way,
with a reference to the outer statement being the only way for determining the
block structure. There are also important differences in the representation of ex-
pressions, which further reflects the differences between C and Fortran. The Po-
laris IR includes assignment statements, whereas Cetus represents assignments in
the form of expressions. This corresponds to the C language’s feature to include
assignment side effects in any expression.

The IR is structured such that the original source program can be repro-
duced, but this is where source-to-source translators face an intrinsic dilemma.
Keeping the IR and output similar to the input will make it easy for the user
to recognize the transformations applied by the compiler. On the other hand,
keeping the IR language independent leads to a simpler compiler architecture,
but may make it impossible to reproduce the original source code as output.
In Cetus, the concept of statements and expressions are closely related to the
syntax of the C language, facilitating easy source-to-source translation. The cor-
respondence between syntax and IR is shown in Figure 2. However, the drawback
is increased complexity for pass writers (since they must think in terms of C syn-
tax) and limited extensibility of Cetus to additional languages. That problem
is mitigated by the provision of several abstract classes, which represent generic
control constructs. Generic passes can then be written using the abstract inter-
face, while more language-specific passes can use the derived classes. We feel it is
important to work with multiple languages at an early stage, so that our result is
not simply a design that is extensible in theory but also in practice. Toward this
goal, we have begun adding a C++ front end and generalizing the IR so that we
can evaluate these design trade-offs. Preliminary work in this area is discussed
below in Section 3.4. Other potential front ends are Java and Fortran 90.

3.2 Navigating the IR

Traversing the IR is a fundamental operation that will be used by every compiler
pass. For a block-structured IR, one important question is whether to support
flat or deep traversal of the statement lists. In a flat traversal the compiler pass
steps through a list of statements at a specific block level, where each statement
is either simple or compound. Moving into inner or outer blocks must be done
by explicitly inspecting the type of a compound statement. By contrast, deep
traversal would visit each statement and expression in lexical order, regardless
of the block structure. Deep traversal is useful for tasks that need to inspect

ﬂ)id function() \
p

intb;

{ Translation Unit
const int *a;

if((b>0] X
printf("b is positive”); > Statement

>
>
N}
O e L e ey

Fig. 2. A program fragment and its IR in Cetus. IR relationships are similar to the
program structure and a symbol table is associated with each block scope.

A4

all expressions, independent of the statements they are in. An example is flow-
insensitive analysis of defined and used variables in a procedure. Flat traversal is
needed by all passes whose actions depend on the type of statements encountered.
Most passes belong to this latter category. Therefore, the Cetus base supports
flat traversal.

The IR-API is the interface presented by Cetus’ base. In general the Cetus
base is kept minimal and free of redundant functionality, so as to make it easy
to learn about its basic operation and easy to debug. Cetus also provides a
utility package, that will offer convenience to pass writers. The utility package
provides additional functions, where needed by more than a single compiler pass.
Obviously, this criterion will depend on the passes that will be written in the
future. Hence, the utilities will evolve, while we expect the base to remain stable.
The utility functions operate using only the IR-API. Deep traversal is an example
of a utility function.

3.3 Type System and Symbol Table

Modern programming languages provide rich type systems. In order to keep
the Cetus type system flexible, we divided the elements of a type into three
concepts: base types, extenders, and modifiers. A complete type is described
by a combination of these three elements. Base types include built-in primitive
types, which have a predefined meaning in programming languages, and user-
defined types. User-defined types are new types introduced into the program by
providing the layout of the structure and the semantics. These include typedef,
struct, union, and enum types in C. Base types are often combined with type
extenders. Examples of type extenders are arrays, pointers, and functions. The
last concept is modifiers which express an attribute of a type, such as const

and volatile in C. They can decorate any part of the type definition. Types
are understood by decoding the description one element at a time which is a
sequential job in nature. We use a list structure to hold type information so that
types could be easily understood by looking at the elements in the list one at a
time.

Another important concept is a symbol, which represents the declaration of a
variable in the program. Symbols are not part of the IR tree and reside in symbol
tables. Our concept of a symbol table is a repository of type information for a
variable which is declared in a certain scope. As a result, scope must always be
considered when dealing with symbols. In C, a block structure serves as a scope.
Therefore, structs in C are also scopes and their members are represented as lo-
cal symbols within that scope. Normally a compiler uses one large symbol table
with hashing to locate symbols [6], but since source transformations can move,
add, or remove scopes, we use distributed symbol tables where each scope has
a separate physical symbol table. The logical symbol table for a scope includes
its physical symbol table and the physical symbol tables of the enclosing scopes,
with inner declarations hiding outer declarations. There are certain drawbacks
to this approach, namely the need to search through the full hierarchy of symbol
tables to reach a global symbol [8], but we find it to be convenient. For example,
all the declarations in a scope can be manipulated as a group simply by manipu-
lating that scope’s symbol table. It is especially convenient in allowing Cetus to
support object-oriented languages, where classes and namespaces may introduce
numerous scopes whose relationships can be expressed through the symbol table
hierarchy. Another benefit is reducing symbol table contention during parallel
parsing, which we discuss in Section 5.1.

3.4 Extensions

Cetus is designed to handle additional languages. We have begun adding support
for C++ and plan to add support for Java. Cetus’ IR can represent expressions
and statements in these languages with the addition of new IR nodes to repre-
sent exceptions. The type system supports user-defined types that can include
both data and functions. Coupled with the distributed symbol table, Cetus can
represent classes and their inheritance relationships.

Additional analysis and transformation passes are written using the same IR-
API, so they can interoperate with existing passes. The standard IR-API makes
common operations among passes more obvious, and the most useful operations
can be moved into the utilities module. Future passes then become easier to
write because they can make use of the new utilities, and the cycle continues.

Parsing was intentionally separated from the IR-building methods in the
high-level interface so that other front ends could be added independently. Some
front ends may require more effort than others. For example, writing a parser
for C++ is a challenge because its grammar does not fit easily into any of the
grammar classes supported by standard generators. The GNU C++ compiler
was able to use an LALR(1) grammar, but it looks nothing like the ISO C++
grammar. If any rules must be rearranged to add actions in a particular location,

it must be done with extreme care to avoid breaking the grammar. Another
problem is C++ has much more complicated rules than C as far as determining
which symbols are identifiers versus type names, requiring substantial symbol
table maintenance while parsing [22].

We are extending Cetus for C++ by using a Generalized LR (GLR !) parser
generator [23]. Such parsers allow grammars that accept any language and defer
semantic analysis to a later pass. GLR support has recently been added to GNU
Bison [9] and provides a way to create a C++ parser that accepts the entire
language without using a symbol table [12]. An important benefit is the grammar
can be kept very close to the ISO grammar. We have developed a parser for the
complete C++ language plus some GCC extensions using Bison 2. We believe it
is due to the language’s complexity that there are fewer research papers dealing
with C++ than with other languages, despite C++’s wide use in industry. The
above reasons should allow Cetus to provide an easy-to-use C++ infrastructure,
making it a very important research tool.

4 Cetus Features

In this section we discuss a number of distinguishing features that may become
important for users of this new infrastructure. They deal with debugging support,
readability of the transformed source code, expression manipulation capabilities,
and the parallel execution of Cetus.

4.1 Debugging Aids

One important aspect that makes an infrastructure useful is providing a good
set of tools to help debug future compiler passes. Cetus provides basic debugging
support through the Java language, which contains exceptions and assertions as
built-in features. Cetus executes within a Java virtual machine, so a full stack
trace including source line numbers is available whenever an exception is caught
or the compiler terminates abnormally.

Furthermore, the IR-API is designed to prevent programmers from corrupt-
ing the program representation. For instance, the IR-API will throw an exception
if a compiler pass illegally uses the same nodes for representing two similar but
separate expressions. Internally, Cetus will detect a cycle in the IR, indicating
an illegal operation. Other errors may be detected through language-specific
semantic checks.

4.2 Readability of the Transformed Code

An important consideration is the presentation of header files in the output.
Internally, header files are expanded, resulting in a program that is much larger

1 Also called stack-forking or Tomita parsing.
2 The parser is not written in Java, so it must interface with Cetus by writing the
parse tree to a file.

10

than the original source. This form is more difficult to understand. By default,
Cetus detects code sections that were included from header files and replaces
them by the original #include directives. Similarly, undoing macro substitutions
would make the output code more readable. However, the IR cannot store macro
definitions and uses because it is constructed from preprocessed source code with
macros already expanded. Even if the information were available, nested macros
and macros that use unusual features, like token pasting, may make the inverse
operation impossible. Therefore, Cetus prints the expanded macros as part of
the output. Cetus also “pretty prints” the output with appropriate spacing and
indentation, potentially improving the structure of the original source program,
although comments are removed.

4.3 Expression Simplifier

The expression simplifier provides a very important service to pass writers. Our
experience with the class project showed that source-to-source transformations
implemented within GCC often resulted in large, unreadable expressions. GCC
does not provide a symbolic expression simplifier and the students determined
it would not be easy to add one given the problems we have mentioned with
GCC’s IR. The Cetus API, however, made it possible to add a powerful expres-
sion simplifier with a modest effort. While it is not as powerful as the simplifiers
provided by math packages, such as Maple, Matlab, or Mathematica, it does
reduce the expressions to a canonical form and has been able to eliminate the
redundancy in the expressions we have encountered in our experiments. Expres-
sion simplification enhances the readability of the compiler output and enables
other optimizations because it transforms the program into a canonical form. For
instance, idiom recognition and induction variable substitution benefited most
from the expression simplifier [19]. Recognition is easier because there are fewer
complicated expressions to analyze and all expressions have a consistent struc-
ture. Substitution can create very long expressions that make later passes less
effective unless it is immediately followed by simplification.

4.4 Parallel Parsing

Cetus is written in Java which is slower and requires more memory than C
or C++. These factors contributed to Cetus taking a noticeably longer time
to process its input than, for instance, the GCC compiler. The Antlr parser is
reentrant, so we use Java threads to parse and generate IR for several input files
at once. Some interesting observations about this approach appear next in the
evaluation section.

5 Evaluation

One aspect of evaluating a compiler infrastructure is its efficiency in terms of run
time and memory usage when dealing with realistic applications. Another aspect

11

Parsing + IR Construction Time Parallel Speedup(176.gcc)
450 3
400]
25
350
300 2
3 o
T 250 OSUN S
[=] =3
3 200 | mAMD g 15
wn o
150 o]
100
50 A 0.5
0 0

1 2 3 4

%

$ < K
ST
N % o
% K3 o Number of Threads

Fig. 3. Parse time and speedup of the compiler for some SPEC CPU2000 benchmarks.
SUN is a four-processor, 480MHz Sun Enterprise 450 running Solaris and AMD is a two
processor 1.533GHz AMD Athlon system running Linux. The JVM is version 1.4.1.01
from Sun Microsystems. Parse time for 176.gcc on Linux is not shown due to the gcc
“statement-expression” extension (which Cetus does not yet support) used in code for
that platform.

is looking at how practical it is to use for research projects. In this section, we
deal with efficiency issues and in Section 6 we explain Cetus’ role in research
projects.

5.1 Parsing and IR Construction Time

Cetus is able to parse all of the SPEC CPU2000 benchmarks that are written in
C. Parsing and IR construction time for some of them are shown in the left graph
of Figure 3. Parsing time is not a serious issue for modestly-sized programs, but
it can be a problem for large benchmarks like 176.gcc. On the SUN platform it
requires 410 seconds to parse and completely generate IR. In this case, parallel
parsing and IR generation is useful to reduce the time overhead. Cetus can parse
multiple files at a time using Java threads and Antlr’s reentrant parser. The right
graph in Figure 3 shows speedup for 176.gcc using up to 4 threads on our SUN
platform. Cetus does not show ideal speedup since symbol table accesses are
synchronized.

5.2 Memory Usage

Efficient memory usage is important to source-to-source compilers because the
entire program must be kept in memory for interprocedural analysis and trans-
formation, requiring large amounts of memory. Figure 4 shows memory usage of
Cetus.

The left graph shows the size of the Java heap after IR construction and the
right graph shows the ratio of the Java heap size to preprocessed input source
file size (without comments). All measurements were done on the SUN platform.

12

Heap Size Heap Size(Byte) to Source Size(Byte)
70 12
60 4 10 |
50 4 e |
40 4 o
[2a] = 6
= 30 &
20 4 4
10 | 29
o+ [] ‘ ‘ L1 ‘ 0 ‘
N & S S S N & & & S
4 /\";\ o & S > f\")'A ,\bg S &
INY 5 \3,%‘ oS5 Ny S 5 \3,% o

Fig. 4. Memory usage and efficiency of Cetus for some SPEC CPU2000 benchmarks.

Currently, Cetus requires around 10 times more memory compared to the input
source size.

In addition to optimizing the usage of Java collection classes, such as using
a smaller initial size for each collection to save memory, we applied the follow-
ing improvements in order to reduce Cetus’ working set. Taken together, these
modifications reduced the memory requirement of 176.gcc from 250MB to 64MB.

Merging Header Files The largest reduction in memory usage was achieved
by merging multiple uses of header files. Initially, if two different source files
included the same header file, Cetus’ IR would contain two copies of the symbol
information for the header file. Using a single copy saved a lot of memory. Parallel
parsing remains possible because Java hash tables are synchronized, so multiple
parser threads entering symbols into the same symbol table do not interfere with
each other. Only the first occurrence of a symbol is used.

Preventing Creation of Unnecessary Objects Another improvement was
the elimination of temporary objects. To this end we rewrote the Cetus code
so as to avoid the need for temporary data structures. This change reduced the
memory usage and also resulted in speed improvements, primarily due to the
reduced need for garbage collection.

Simplifying the IR Classes Some nodes in the IR were placeholders with no
additional information. They only served to preserve the structure of the tree.
Using the same object over again for each placeholder, we were able to reduce
memory usage. Common IR nodes such as identifiers and expressions are used
extensively so reducing the space needed to represent one of them has a large
impact on the overall memory usage. Certain data members of these nodes were
found to be unnecessary and were eliminated, or were able to be moved to nodes
that occurred less frequently.

13

Heap Size Heap Size(Byte) to Source Size(Byte)
60 600
50 500
40 400
(=}
g 30 g 300
20 200
10 100 [i]
0 0+
& & » & o & & » &
@ N S N R © O S R R
N ~? as o? 4 S ~° oS o7 e
~ X L) > & X X R s
S &
N N

Fig. 5. Memory usage and efficiency of Polaris for some SPEC CPU2000 benchmarks

/*
* Get name of private variables from priv_list
* add a new Symbol for each private variable and
* replace all references to older Symbol
* “stmt” is a CompoundStatement
*/
for (i =0; i < priv_list.size(); i++) {
name = (String) priv_list.get(i); // get the variable name
orig_var = stmt.get(name); /I get older(existing) Symbol
/l add a new Symbol for Private variable
priv_var = stmt.add(original_var.getTypeList(), name);
/I replace all reference to Symbol orig_var with reference to Symbol priv_var
stmt.replace(new IdExpression(orig_var),new IdExpression(priv_var));

Fig. 6. Code excerpt from an OpenMP to POSIX threads translator.

5.3 Comparing with Polaris

Figure 5 shows heap memory usage of Polaris after parsing and constructing
IR on our SUN platform. Directly comparing heap sizes of Cetus and Polaris
is difficult since they are written in different languages and work with differ-
ent languages. However, comparing Figure 4 and Figure 5 indicates Cetus uses
a reasonable amount of memory. It also seems likely that Cetus has a more
memory-efficient IR than Polaris since its ratio of IR size to program size is an
order of magnitude less.

Another interesting comparison is parsing speed. Cetus parses about 20K
characters per second while Polaris handles 10K characters per second on average
for the benchmarks in Figure 4 and Figure 5, running on the same system.

6 Using Cetus for Translation of OpenMP Applications

OpenMP is currently one of the most popular paradigms for programming shared
memory parallel applications. Unlike MPI, where programmers only insert li-

14

brary calls, OpenMP programmers also use directives. Compiler support is re-
quired to recognize these directives and implement the OpenMP specification.
In this section, we discuss a translator for OpenMP C applications implemented
using Cetus, which demonstrates the strength and completeness of Cetus.

Compiler functionality for supporting translation of OpenMP falls into two
broad categories. The first category deals with the translation of the OpenMP
work sharing constructs to the micro-tasking format. This entails the extraction
of the work sharing code to separate microtasking subroutines and insertion of
the corresponding function calls and synchronization. Cetus provides an API suf-
ficient for these transformations. The second category deals with the translation
of the data clauses, which requires support for accessing and modifying symbol
table entries. Cetus provides several ways in which the pass writer can access the
symbol table to add and delete symbols or change their scope. Figure 6 shows a
section of the code used to handle the private data clause in OpenMP.

There are currently two different OpenMP translators which have been imple-
mented using Cetus. Both of these use the same OpenMP front end. One trans-
lator generates code for shared-memory systems using the POSIX threads API.
The other translator targets software distributed shared memory systems and
was developed as part of a project to extend OpenMP to cluster systems [15]. Al-
though the entire OpenMP 2.0 specification is not supported yet, the translators
are powerful enough to handle benchmarks such as 330.art_m and 320.equake_m
from the SPEC OMPM2001 suite.

7 Conclusion

We have presented an extensible compiler infrastructure, named Cetus, that
has proved useful in dealing with C programs. In particular, Cetus has been
used for source transformations on the SPEC OMPM2001 benchmark suite. The
infrastructure’s design is such that adding support for other languages, analysis
passes, or transformations will not require a large effort. Preliminary work on
extending Cetus for C++4 was used as an example of how we have prepared
Cetus for future growth.

Future work involves finishing other front ends and providing more abstrac-
tions for pass writers. We consider the high-level interface and the utility func-
tions to be a kind of programming language for the pass writers. The motivation
behind expanding and generalizing that language is the need to bring the amount
of code written by a pass writer closer to the pseudocode they see in a textbook
or research paper. By providing more ways to abstract away the details of the
language and providing more high-level operations to the pass writers, large por-
tions of the passes should become reusable. Starting to add other languages early
in the development process is vital to proving this hypothesis.

References

1. Portland Group Homepage. hitp://nci.pgroup.com.

w

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

15

SUIF Homepage. http://suif.stanford.edu.

A. Appel, J. Davidson, and N. Ramsey. The Zephyr Compiler Infrastructure. 1998.
P. Banerjee, J. A. Chandy, M. Gupta, et al. The PARADIGM Compiler for
Distributed-Memory Multicomputers. IEEE Computer, 28(10):37-47, October
1995.

W. Blume, R. Eigenmann, et al. Restructuring Programs for High-Speed Comput-
ers with Polaris. In ICPP Workshop, pages 149-161, 1996.

R. P. Cook and T. J. LeBlanc. A Symbol Table Abstraction to Implement Lan-
guages with Explicit Scope Control. IEEE Transactions on Software Engineering,
9(1):8-12, January 1983.

K. A. Faigin, S. A. Weatherford, J. P. Hoeflinger, D. A. Padua, and P. M. Pe-
tersen. The Polaris Internal Representation. International Journal of Parallel
Programming, 22(5):553-586, 1994.

C. N. Fischer and R. J. LeBlanc Jr. Crafting a Compiler. Benjamin/Cummings,
1988.

Free Software Foundation. GNU Bison 1.875a Manual, January 2003.

Free Software Foundation. GNU Flex 2.5.31 Manual, March 2003.

D. L. Heine and M. S. Lam. A Practical Flow-Sensitive and Context-Sensitive C
and C++ Memory Leak Detector. PLDI, 2003.

W. Irwin and N. Churcher. A Generated Parser of C++. 2001.

S. C. Johnson. Yacc: Yet Another Compiler Compiler. In UNIX Programmer’s
Manual, volume 2, pages 353-387. Holt, Rinehart, and Winston, New York, NY,
USA, 1979.

M. Lesk and E. Schmidt. Lex-A Lexical Analyzer Generator. Technical report,
AT&T Bell Laboratories, 1975.

S.-J. Min, A. Basumallik, and R. Eigenmann. Supporting Realistic OpenMP Ap-
plications on a Commodity Cluster of Workstations. WOMPAT, 2003.

T. N. Nguyen, J. Gu, and Z. Li. An Interprocedural Parallelizing Compiler and
Its Support for Memory Hierarchy Research. In Proceedings of the International
Workshop on Languages and Compilers for Parallel Computing (LCPC), pages
96-110, 1995.

T. J. Parr and R. W. Quong. ANTLR: A Predicated-LL(k) Parser Generator.
Software - Practice and Ezxperience, 25(7):789-810, 1995.

C. Polychronopoulos, M. B. Girkar, et al. The Structure of Parafrase-2: An Ad-
vanced Parallelizing Compiler for C and Fortran. In Languages and Compilers for
Parallel Computing. MIT Press, 1990.

B. Pottenger and R. Eigenmann. Idiom Recognition in the Polaris Parallelizing
Compiler. International Conference on Supercomputing, 1995.

R. M. Stallman. GNU Compiler Collection Internals. Free Software Foundation,
December 2002.

R. M. Stallman. Using and Porting the GNU Compiler Collection. Free Software
Foundation, December 2002.

B. Stroustrup. The C++ Programming Language - 3rd Edition. Addison-Wesley,
1997.

M. Tomita. Efficient Parsing for Natural Language. Kluwer Academic Publishers,
1986.

R. P. Wilson, R. S. French, et al. SUIF: An Infrastructure for Research on Paral-
lelizing and Optimizing Compilers. SIGPLAN Notices, 29(12):31-37, 1994.

