
Index-Association Based Dependence Analysis

and Its Application in Automatic Parallelization

Yonghong Song Xiangyun Kong

Sun Microsystems, Inc.
{yonghong.song,xiangyun.kong}@sun.com

Abstract. In this paper, we present a technique to perform dependence
analysis on more complex array subscripts than the linear form of the
enclosing loop indices. For such complex array subscripts, we decouple
the original iteration space and the dependence test iteration space and
link them through index-association functions. Dependence analysis is
performed in the dependence test iteration space to determine whether
the dependence exists in the original iteration space. The dependence dis-
tance in the original iteration space is determined by the distance in the
dependence test iteration space and the property of index-association
functions. For certain non-linear expressions, we show how to equiva-
lently transform them to a set of linear expressions. The latter can be
used in traditional dependence analysis techniques targeting subscripts
which are linear forms of enclosing loop indices. We also show how our
advanced dependence analysis technique can help parallelize some oth-
erwise hard-to-parallelize loops.

1 Introduction

Multiprocessor and multi-core microprocessor machines demand good automatic
parallelization to utilize precious machine resources. Accurate dependence anal-
ysis is the essential for effective automatic parallelization.

Traditional dependence analysis only considers array subscripts which are
linear functions of the enclosing loop indices [6, 8, 13]. Various techniques, from
a simple one like the GCD test to a complex one like the Fourier-Motzkin test,
are applied to determine whether two array references could access the same
memory location. For more complex subscripts, these techniques often consider
them too complex and will give up with the assumption that a dependence exists.
Figure 1(a) shows a simple example, where these traditional techniques are not
able to parallelize it because they make the worst assumption. (In this paper,
the program is written in Fortran format.)

This paper tries to conquer this conservativity. We apply a decoupled ap-
proach where a new dependence test iteration space is constructed for depen-
dence test purpose. The original iteration space is linked to the dependence
test iteration space by the mapping through index-association functions. We call
our approach index-association based dependence analysis. Dependence analysis



DO I = L, U
J = MOD(I + C1, C2) + C3

A(J) = . . . (no references to A) . . .
END DO

IF (C2 ≥ (U − L + 1)) THEN

! The following loop is DOALL
DO I = L, U

J = MOD(I + C1, C2) + C3

A(J) = . . . (no references to A) . . .
END DO

ELSE

! The following loop is not DOALL
DO I = L, U

J = MOD(I + C1, C2) + C3

A(J) = . . . (no references to A) . . .
END DO

END IF

(a) (b)

Fig. 1. Example 1

is performed under the dependence test iteration space. Whether the depen-
dence exists in the original iteration space is determined by whether the depen-
dence exists in the dependence test iteration space. If the dependence exists,
the dependence distance in the original iteration space is determined by the de-
pendence distance in the dependence test iteration space and the property of
index-association functions.

We also present a general approach to equivalently transform a non-linear
expression, involving plus, minus, multiplication and division, to a set of lin-
ear expressions. The latter can be used in dependence testing with traditional
techniques.

When performing traditional dependence analysis and analyzing the index-
association functions, our dependence analysis framework is also able to generate
certain conditions under which cross-iteration dependence does not exist in the
original iteration space. Such a condition can often be used as a run-time test for
parallelization vs. serialization of the target loop. With the combination of index-
association based dependence analysis and such two-version code parallelization,
the code in Figure 1(a) can be parallelized as the code in Figure 1(b).

We have implemented the index-association based dependence analysis in
our production compiler. Before this implementation, our compiler already im-
plemented several dependence tests targeting subscripts which are linear func-
tions of enclosing loop indices, which already enables us to parallelize a lot of
loops. With this new implementation, our compiler is able to parallelize some
loops which otherwise are not able to be parallelized without it. We select two
well-known benchmarks from SPEC CPU2000 suite. With our technique, several
important loops inside these two benchmarks can be parallelized successfully.

In the rest of the paper, we describe the previous work in Section 2. We
present a program model in Section 3. We then describe our index-association
based dependence analysis in Section 4. We present how to transform a non-linear
expression to a set of linear expressions in Section 5. We show how our advanced
dependence analysis helps automatic parallelization in Section 6. We present
experimental results in Section 7. Finally, a conclusion is drawn in Section 8.



DO I1 = L1, U1, S1

DO I2 = L2, U2, S2

. . .
DO In = Ln, Un, Sn

J1 = f1(I1, ..., In)
J2 = f2(I1, ..., In)
. . .
Jm = fm(I1, ..., In)
using linear form of (J1, . . . , Jm) in array subscripts

END DO

. . .
END DO

END DO

Fig. 2. Program Model

2 Previous Work

Dependence analysis has been studied extensively. Maydan et al. use a series of
special case dependence tests with the hope that they can catch the majority of
cases in practice [6]. They use an expensive integer programming method as the
backup in case all these special tests fail to determine whether the dependence
exists or not. Goff et al. present a practical dependence testing by classifying
subscripts into different categories, where different dependence tests are used in
different categories [3]. Pugh presents an integer programming method for exact
dependence analysis with the worst exponential complexity in terms of loop levels
and the number of array dimensions [8]. Feautrier analyzes dependences using
parametric integer programming [2]. His technique takes statement context into
consideration so that the dependence test result is more accurate. All the above
techniques focus on array subscripts which are linear functions of enclosing loop
indices.

Dependence analysis with array subscripts which are not linear functions of
enclosing loop indices has also been studied. Blume and Eigenmann propose
range test, where the range of symbolic expressions is evaluated against the loop
index value [1]. The loop can be parallelized if the range of elements accessed
in one iteration does not overlap with the range of the other elements in other
iterations. Haghighat and Polychronopoulos handle non-linear subscripts by us-
ing their mathematical properties [4]. They use symbolic analysis and constraint
propagation to help achieve a mathematically easy-to-compare form for the sub-
scripts. Hoeflinger and Paek present an access region dependence test [5]. They
perform array region analysis and determine dependence based on whether array
regions overlap with each other or not. All these works are complementary to
our work and can be used in our work as our dependence test iteration space
can be extended to include more complex subscripts.

3 Program Model

Figure 2 illustrates our program model. Our target loop nest is an n-level perfect
nest where n ≥ 1. The loop lower bound Lk(1 ≤ k ≤ n) and loop upper bound



Uk are linear functions of the enclosing loop indices Ip(1 ≤ p ≤ k − 1). The loop
steps Sk(1 ≤ k ≤ n) are loop nest invariants.

In the beginning of the innermost loop body, we have m(m ≥ 1) functions
which maps a set of values (I1, . . . , In) to a new set of values (J1, . . . , Jm). In
the rest of loop body, linear combinations of (J1, . . . , Jm) are used in array
subscripts.

We call the iteration space defined by all possible values of (I1, . . . , In) as the
original iteration space. We call the iteration space defined by all possible values
of (J1, . . . , Jm) as the dependence test iteration space. We call such a mapping
from the original iteration space to the dependence test iteration space as index

association and functions fk(1 ≤ k ≤ m) as index-association function.

In modern compilers, symbolic analysis is often applied before data depen-
dence analysis to compute fk. Traditional dependence analysis techniques are
able to handle index-association functions fk that are linear functions. For such
cases, the function can be forward substituted into the subscript (to replace
Jk(k = 1, . . . ,m)) and traditional techniques apply. However, if any fk is a non-
linear function (e.g., the tiny example in Figure 1), traditional techniques often
consider the subscript too complex and assume the worst dependence conser-
vatively. In the next section, we present details of our index-association based
dependence analysis, which tries to conquer such conservativity.

4 Dependence Analysis with Index Association

The index-association based dependence analysis can be partitioned into three
steps. First, the dependence test iteration space is constructed. Second, depen-
dence analysis is conducted in the dependence test iteration space. Finally, the
dependence relation in the original iteration space is determined by the result
in the dependence test iteration space and the property of index-association
functions. We elaborate the details below.

4.1 Constructing Dependence Test Iteration Space

The original iteration space can be viewed as a n-dimensional space. For di-
mension k(1 ≤ k ≤ n), we have a constrain (Lk, Uk, Sk), where Lk is the lower
bound, Uk is the upper bound and Sk is the step value.

To construct the dependence test iteration space, the compiler needs to ana-
lyze the index-association functions. Currently, our compiler requires the index-
association function fk have the following two properties:

– Each index function fk only takes one original loop index variable as the
argument (Note that different fk can take the same loop index variable as
the argument.) For example, our compiler can handle the index-association
functions like J1 = DIV (I1, 2), while it is not able to handle J1 = DIV (I1 +
I2, 2), where both I1 and I2 are outer loop index variables.



Table 1. Iteration space mapping

operator expression iteration space
plus f(I) + c (l + c, u + c, s)

minus f(I) − c (l − c, u − c, s)
mult cf(I) (cl, cu, cs)

division f(I)/c (l/c, u/c, (bs/cc, ds/ce))
modulo MOD(f(I), c) (MOD(l, c), MOD(u, c), (s, others ))

It is possible to relax such a requirement for index-association functions,
in order to cover more cases. For certain cases, we can transform the index-
association function to make it conform to the requirement. For example, for
the function fk(I1, I2) = DIV(I1, 2)+2∗I2, we can have fk1(I1) = DIV(I1, 2),
fk2(I2) = 2 ∗ I2 and fk(I1, I2) = fk1(I1) + fk2(I2). If we propagate fk(I1, I2)
into the subscripts, index-association functions fk1 and fk2 will satisfy the
requirement. For more general cases, however, it is much more difficult to
compute the dependence test iteration space. We leave such extension for
our future work.

– The operators in fk must be plus, minus, multiplication, division or modulo.
The fk can be composed using the permitted operators recursively. For ex-
ample, our compiler is able to handle J1 = DIV(2I1 + 3, 4) where I1 is an
outer loop index.

Given the original iteration space, our compiler tries to construct the corre-
sponding dependence test iteration space for Jk = fk(Ip)(1 ≤ k ≤ m, 1 ≤ p ≤ n)
with a form (lk, uk, sk), where lk is the lower bound, uk is the upper bound and
sk is the step. Supposing the loop Ip has a lower bound Lp and an upper bound
Up, we have lk = fk(Lp) and uk = fk(Up). The step sk represents the difference
between two Jk values mapped from two adjacent Ip values. Note that sk could
be a sequence of values, including 0.

Suppose that in Figure 2 there exists a dependence from iteration (i11,
i21, . . . , in1) to iteration (i12, i22, . . . , in2). We say the corresponding dependence
distance is (i12 − i11, i22 − i21, . . . , in2 − in1) in the original iteration space. Sup-
pose that (j11, j21, . . . , jm1) are the corresponding J values for (i11, i21, . . . , in1),
and (j12, j22, . . . , jm2) for (i12, i22, . . . , in2). The dependence distance in the de-
pendence test iteration space is (j12 − j11, j22 − j21, . . . , jn2 − jn1).

Table 1 illustrates our basic iteration space mapping from original iteration
space to dependence test iteration space, assuming the iteration space for f(I)
is (l, u, s). For division, two different steps may result. For modulo, because of
the wrap-around nature of the function, some negative steps may appear which
are represented by others in the table. The dependence test iteration space is
computed by recursively computing the iteration space for sub-expressions of
fk(Ip)(1 ≤ p ≤ n), starting with Ip and ending with fk(Ip).

Here, we want to specially mention the following two scenarios:

– Because it may potentially generate many negative step values for a modulo

operator, a condition is often generated considering the relation between
u − l + 1 and c (in Table 1), in order to limit the number of negative steps.



DO I = 1, N
J = DIV(I, 2)
A(J) = 5 ∗ J

END DO

DO I = 1, N, 2
J = DIV(I, 2)
A(J) = A(J + 2)

END DO

DO I = 1, N, 2
J = DIV(I, 2)
A(J) = A(J + 1 + N/2)

END DO

(a) (b) (c)

Fig. 3. Example 2

– It is possible to have different Jk associated with the same Ip such as Jk1
=

fk1
(Ip) and Jk2

= fk2
(Ip). The coupling relation of Jk1

and Jk2
will be lost

in the dependence test iteration space, which will cause difficulties when the
dependence distance in the dependence test iteration space is mapped back
to the original iteration space. For such cases, if functions fk1

and fk2
are

both linear forms, we will perform forward substitution for these functions
and have a single Jk = Ip as the index-association function. Otherwise, we
can still perform dependence analysis in the dependence test iteration space.
However, we are not able to compute the dependence distance in the original
iteration space precisely.

Figure 3 shows three examples. For Figure 3(a), the original iteration space
is (1, N, 1). The dependence test iteration space is (0, N/2, s), where the step s
is variant with a value of 0 or 1. For Figures 3(b) and (c), the original iteration
space is (1, N, 2). The dependence test iteration space is (0, N/2, 1).

4.2 Dependence Analysis in The Dependence Test Iteration Space

After the dependence test iteration space is constructed, dependence analysis
can be done in the dependence test iteration space, where traditional techniques,
which target the linear form of the enclosing loop indices, are applied.

However, note that the dependence test iteration space could have multiple
step values in certain dimension. For such cases, traditional techniques have to
assume a step value which is greatest common divisor of all possible non-zero
step values. If the step value could be 0, we also assume a step value of 0 during
dependence analysis. With such assumptions, we may get conservative results.
In Section 5, we describe a technique which can potentially give us better results
for such cases.

Given a pair of references, there are three possible results from the depen-
dence test in the dependence test iteration space.

– If there exists no dependence in the dependence test iteration space, then
there will be no dependence in the original iteration space.

– If there exists a dependence with a distance d in the dependence test iteration
space, then we compute the dependence distance in the original space based
on d and the property of index-association functions. This will be further
explored in the next subsection.

– If there exists a dependence with an unknown distance in the dependence
test iteration space, we simply regard that there exists an unknown distance
dependence in the original iteration space.



Table 2. Dependence distance mapping

operator org expr org dist new expr new dist
plus f(I) + c d f(I) d

minus f(I) − c d f(I) d
mult cf(I) d f(I) d/c if MOD(d, c) = 0, no dependence otherwise

division f(I)/c d f(I) (dc − c + 1, . . . , dc + c − 1)
modulo MOD(f(I), c) d f(I) d

In Figure 3(a), because the step can have a value of 0, the dependence dis-
tance from A(J) to itself could be 0 in the dependence test iteration space. In
Figures 3(b) and (c), however, there exists no dependence from A(J) to itself in
the dependence test iteration space. In Figure 3(b), there exists a dependence
from A(J +2) to A(J) with distance 2 in the dependence test iteration space. In
Figure 3(c), because the dependence test iteration space for J is (0, N/2, 1), we
can easily get that there exist no dependence between A(J) and A(J +1+N/2)
in the dependence test iteration space.

4.3 Computing Dependence Distance in Original Iteration Space

Given a dependence distance in the dependence test iteration space, we need to
analyze the property of index-association functions in order to get the proper
dependence distance in the original iteration space. Table 2 illustrates how we
compute the dependence distance in the original iteration space based on index-
association functions, where “org expr” and “org dist” represents the original
expression and its associated distance, and “new expr” and “new dist” represents
the sub-expression in the original expression and its associated distance. The
dependence distance in the original iteration space is computed by recursively
computing the distance for the sub-expression of Jk = fk(Ip)(1 ≤ k ≤ m, 1 ≤
p ≤ n), starting with fk(Ip) and ending with Ip.

In Table 2, we want to particularly mention the dependence distance cal-
culation of f(I) for multiplication and division. Let us assume that iterations
i1 and i2 have a dependence. For multiplication, we have cf(i1) − cf(i2) =
c(f(i1) − f(i2)) = d. We can derive f(i1) − f(i2) = d/c if MOD(d, c) = 0. Oth-
erwise, there will be no dependence between f(i1) and f(i2). For division, we
have f(i1)/c− f(i2)/c = d. We want to find the range of f(i1)− f(i2). Through
mathematical manipulation, we can find dc − c + 1 ≤ f(i1) − f(i2) ≤ dc + c − 1
for general cases, as illustrated in Table 2. For certain cases, however, we can
get more precise result. For example, if MOD(f(i), c) is always equal to 0, the
distance for f(I) would be solely (f(i1) − f(i2))/c.

In Figure 3(a), there exists a dependence from A(J) to itself with a distance
0 in the dependence test iteration space. Because of index-association function
DIV(I, 2), it is easy to see that the corresponding distance in the original itera-
tion space is 0 or 1. (The −1 is an illegal distance and is ignored.)

In Figure 3(b), there exists a dependence from A(J + 2) to A(J) with a
distance 2 in the dependence test iteration space. Because of index-association



Input: A perfect loop nest conforming to Figure 2.
Output: Dependence relations between references inside the loop nest.
Procedure:

Analyze fk(k = 1, . . . , m) and try to construct the dependence test iteration space.
if (the dependence test iteration space cannot be constructed successfully) then

Assuming a worst-case dependence test iteration space.
end if

for (each pair of references r1 and r2)
if (there exists no dependence in the dependence test iteration space) then

There exists no dependence in the original space.
else if (the dependence distance is d in the dependence test iteration space) then

Compute the distance in the original space based on d and fk.
else

There exists dependence in the original space with unknown distance.
end if

end for

End procedure

Fig. 4. Top algorithm for index-association based dependence analysis

DO I = 1, 100, 3
J = 5 ∗ I/4
A(J + 9) = A(J) + 1

END DO

Fig. 5. Example 3

function DIV(I, 2), the corresponding distance in the original iteration space
would be 3 or 4 or 5.

4.4 Overall Structure

Figure 4 shows our overall algorithm for index-association based dependence
analysis. The first step of our index-association based dependence analysis is
to construct the dependence test iteration space. If the dependence test space
cannot be constructed due to complex index-association functions, we have to
assume a worst-case dependence test iteration space, i.e., for each Jk with itera-
tion space (lk, uk, sk), we have lk = −∞, uk = +∞ and sk could be any integer
value.

As stated previously, if there exists multiple steps for certain dimension in the
dependence test iteration space, dependence analysis must assume a conservative
step, often the greater common divisor of all possible steps, in order to compute
correct dependence relation. The resultant dependence relation, however, might
be conservative. For example, for the loop in Figure 5, the steps for J values
can be either 3 or 4. So our index-association based approach has to take the
conservative step of 1 in the dependence test iteration space. This will assume
array references A(J + 9) and A(J) have cross-iteration dependences. Hence,
the original loop I cannot be parallelized. In the next section, we present a
technique to handle certain index-association functions with division, which can
be equivalently transformed to a set of linear expressions. The latter can be
used to compute the dependence relation, including dependence distances, more
precisely than with traditional techniques.



5 Accurate Dependence Analysis with Division

The basic idea here is to replace the non-linear expression with a set of linear
expressions and then use these linear expressions during dependence testing with
traditional techniques. Specifically, we want to find a set of linear expressions
which are equivalent to J = f(I), where the index I has the iteration space
(L,U, S) and the function f contains operations such as plus, minus, multiplica-

tion and division.

Without losing generality, we assume U ≥ L and S > 0. Let t be the loop trip
count for loop I, and we have t = bU−L+S

S c. Let i1, i2, . . ., it represent the t loop
index I values, from the smallest one to the largest one. Let jp = f(ip), 1 ≤ p ≤ t,
be the corresponding J index values.

First, let us take the loop in Figure 5 as an example. We want to ex-
press J = 5 ∗ I/4 as a set of linear expressions. For the I value sequence
(1, 4, 7, 10, 13, 16, 19, 22, . . . , 97, 100), the corresponding J value sequence is
(1, 5, 8, 12, 16, 20, 23, 27, . . . , 121, 125). Clearly, the J value sequence is not a lin-
ear sequence because the difference between adjacent values vary. However, note
that the difference between every pth and (p + 4)th J values (1 ≤ p ≤ t − 4)
is a constant of 15. Therefore, the original J value sequence can be represented
as 4 linear sequences, each with a step of 15 and initial value, 1, 5, 8 and 12
respectively.

To generalize the above observation, for a sequence of J values jp(1 ≤ p ≤ t),
we want to find τ , the number of linear expressions needed to represent jp, and
σ, the step value for each individual linear expression.

The difference between the J values in the J value sequence can be expressed
as

js1 = j2 − j1 = f(i2) − f(i1),
js2 = j3 − j2 = f(i3) − f(i2),

. . .
jst−1 = jt − jt−1 = f(it) − f(it−1).

With the semantics of τ , we have jsp = jsp+τ ,∀1 ≤ p, p + τ,≤ t − 1, holds.
This is equivalent to

f(ip+1) − f(ip) = f(ip+τ+1) − f(ip+τ ),∀1 ≤ p, p + τ ≤ t − 1. (1)

Different index-association functions f may require different complexities to
compute τ . Conservative methods can also be applied if the compiler is not able
to do sophisticated analysis and manipulation. The compiler has to make the
worst assumption if it can not find a compiler-time known constant τ , e.g., using
the dependence analysis technique in Section 4.

Now suppose τ is available, for each linear expression, we can easily compute
the corresponding step as

σ = f(ip+τ ) − f(ip), 1 ≤ p, p + τ ≤ t − 1. (2)



In this paper, we do not try to construct the trip count for different linear ex-
pressions and rather conservatively assume a trip count which equals to that for
the linear expression with the initial value of f(L), which also has the maximum
trip count over all τ linear expressions.

With τ and σ available, the J = f(I) can be expressed as

J = τ ∗ I ′ + r′ (3)

where I ′ is an integer variable and its iteration space is (0, d f(it)−f(i1)
σ e, 1), and

r′ is a set of τ discrete numbers {f(ip)|1 ≤ p ≤ τ}.
Since the set of linear expressions is equivalent to the original non-linear

expression, whether a dependence exists with the original non-linear expression
can be determined by whether a dependence exists with the transformed set of
linear expressions. For any dependence distance value d (regarding loop index
I ′) computed with transformed linear expressions, the dependence distance in
the original I iteration space can be computed based on d and the difference
between corresponding r′. For example, suppose that we have a dependence
between j1 = f(i1) = τ ∗ i′1 + r′1 and j2 = f(i2) = τ ∗ i′2 + r′2, with a dependence
distance i′2 − i′1 = d. We have f(i2)− f(i1) = τ ∗ d + r′2 − r′1, from which we can
further estimate i2 − i1, maybe conservatively.

As an example, we now show how we compute the τ and σ for the expression
J = f(I) = C ∗ I/D.

If C∗τ∗S is divisible by D, the equation f(ip+1)−f(ip) = f(ip+τ+1)−f(ip+τ )
will hold. To make C ∗ τ ∗S is divisible by D, we can let τ = D

GCD(C∗S,D)
where

GCD(C ∗ S,D) represents the greatest common divisor of C ∗ S and D.
Now, we show how our technique can determine whether a dependence exists

between A(J + 9) and A(J) in Example 3 (Figure 5), i.e., whether there exist
any instances of J , say j1 and j2, and

j1 + 9 = j2 (4)

has a solution.
With our technique, the non-linear expression J = 5 ∗ I/4, where loop I’s

iteration space is (1, 100, 3), can be represented equivalently by

J = 15 ∗ I ′ + r′, r′ = (1, 5, 8, 12), I ′ has iteration space (0, 8, 1) (5)

With the linear expression (5), equation (4) is equivalent to

15 ∗ i1 + r1 + 9 = 15 ∗ i2 + r2, (6)

where i1 and r1 are used for j1, and i2 and r2 for j2.
To consider whether equation (6) has a solution or not, we have

15 ∗ (i1 − i2) = (r2 − r1) − 9
= {1, 5, 8, 12} − {1, 5, 8, 12} − 9
= {−11,−7,−4, 0, 4, 7, 11} − 9
= {−20,−16,−13,−9,−5,−2, 2}



All possible values on the right-hand side are not divisible by 15, so there ex-
ists no solution for (4) and no dependence between A(J+9) and A(J). Therefore,
the loop I in Figure 5 can be parallelized successfully.

Our index-association based dependence distance can help both general loop
transformations and automatic parallelization because it tries to provide a more
accurate dependence test result. In the next section, we particularly illustrate
how our technique helps automatic parallelization, i.e., whether a certain level
of loop is a DOALL loop or not, and under what condition it is a DOALL loop.
We do not explore how our technique helps general loop transformations in this
paper.

6 Automatic Parallelization with Index Association

For automatic parallelization, our index-association based dependence analysis
can help determine whether a loop, which conforms to our program model in
Figure 2 with some non-linear index-association functions fk, is a DOALL loop
or not. For those non-DOALL loops, previous work like [7] generate run-time
conditionals under which the loop will be a DOALL loop, to guard the paral-
lelized codes. Our compiler also has the ability to generate proper conditions
under which a certain loop Ik is a DOALL loop, such as the example in Fig-
ure 1. From Table 1, if the index-association function contains operators division

and modulo, multiple step values may be generated in the dependence test iter-
ation space, which makes dependence analysis conservative. To get more precise
dependence analysis results, conditionals are often generated so that we can
have fewer step values, often just one, in the dependence test iteration space
for one index-assocation function. By combining index-association based depen-
dence analysis and such two-version code parallelization, our compiler is able to
parallelize some otherwise hard-to-parallelize loops. For example, our compiler
is able to determine that the loops in Figures 3(a) and (b) are not DOALL loops
and that the loop in Figure 3(c) is a DOALL loop, based on the dependence anal-
ysis in Section 4. We will now work through a more complex example to show
how we combine index-association based dependence analysis and two-version
code parallelization to successfully parallelize one outer loop.

Figure 6(a) shows the original code where C2, C3 and S2 are all compile-
time known constants and C1 is a loop nest invariant. We also suppose that all
right-hand sides of assignments A(J + k) = . . . (0 ≤ k ≤ C3) do not contain
references to array A. The original iteration space for loop I2 is (I1C1, (I1 +
1)C1, S2). With the property of index-association function DIV, we can derive
the dependence test iteration space for J (corresponding to the original loop I2)

as (b I1C1

C2

c, b (I1+1)C1

C2

c, (b S2

C2

c, d S2

C2

e)), where the step is variant with either b S2

C2

c

or d S2

C2

e. Therefore, if the condition C3 < b S2

C2

c holds, the loop I2 is parallelizable.
Parallelizing the outer loop I1 needs more analysis. Here, by analyzing the

loop bounds and steps, our compiler is able to determine that if the condition
MOD(C1, S2) = 0 holds, i.e., C1 is divisible by S2, the loops I1 and I2 actually
can be collapsed into one loop. Figure 6(b) shows the code after loop collapsing.



DO I1 = L1, U1

DO I2 = I1C1,
(I1 + 1)C1 − 1, S2

J = DIV(I2, C2)
A(J) = . . .
A(J + 1) = . . .
. . .
A(J + C3) = . . .

END DO

END DO

IF (MOD(C1, S2) = 0) THEN

DO I3 = L1C1, (U1+1)C1−1, S2

J = DIV(I3, C2)
A(J) = . . .
A(J + 1) = . . .
. . .
A(J + C3) = . . .

END DO

ELSE

DO I1 = L1, U1

DO I2 = I1C1, (I1+1)C1−1, S2

J = DIV(I2, C2)
A(J) = . . .
A(J + 1) = . . .
. . .
A(J + C3) = . . .

END DO

END DO

END IF

IF ((MOD(C1, S2) = 0).AND.

(C3 < b
S2

C2
c)) THEN

! The following loop is DOALL
DO I3 = L1C1, (U1 + 1)C1 − 1, S2

J = DIV(I3, C2)
A(J) = . . .
A(J + 1) = . . .
. . .
A(J + C3) = . . .

END DO

ELSE

DO I1 = L1, U1

DO I2 = I1C1, (I1 + 1)C1 − 1, S2

J = DIV(I2, C2)
A(J) = . . .
A(J + 1) = . . .
. . .
A(J + C3) = . . .

END DO

END DO

END IF

(a) (b) (c)

Fig. 6. Example 4

The new loop I3 in Figure 6(b) can be further parallelized if the condition
C3 < b S2

C2

c holds, as analyzed in the previous paragraph. Figure 6(c) shows
the final code where the collapsed loop I3 is parallelized under the condition
MOD(C1, S2) = 0 and C3 < b S2

C2

c. Our compiler is able to successfully parallelize
the outer loop I1 in Figure 6(a).

7 Experimental Results

We have implemented our index-association based dependence analysis tech-
nique in the Sun ONE Studio [tm] 8 compiler collection [11], which will also be
used in our experiments. (We have not implemented the technique presented in
Section 5 yet. We plan to evaluate and experiment with it in future releases.)
Our compiler has already implemented several dependence analysis techniques
for subscripts which are linear forms of enclosing loop indices, such as GCD
test, separability test, Banerjee test, etc. Our compiler also implements some so-
phisticated techniques for array/scalar privatization analysis, symbolic analysis,
parallelization-oriented loop transformations including loop distribution/fusion,
loop interchange, wavefront transformation [12], etc. Therefore, our compiler
can already parallelize a lot of loops in practice. With our new index-association
based dependence analysis, we extend our compiler’s ability to parallelize more
loop nests which otherwise cannot be parallelized.

We choose two programs from the well-known SPEC CPU2000 suite [10],
swim and lucas, which benefit from the technique developed in this paper. In
the second quarter of 2003, we submitted automatic parallelization results for
SPEC CPU2000 on a Sun Blade [tm] 2000 workstation with 2 1200MHZ Ultra-
SPARC III Cu [tm] processors to SPEC [10], which is the first such submission



Speedup for swim automatic parallelization

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

1 2 4 8 16 20 23

Number of processors

S
p

ee
d

u
p

With IA-DEP
Without IA-DEP

Speedup for lucas automatic parallelization

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 2 4 8 16 20 23

Number of processors

S
p

ee
d

u
p

With IA-DEP
Without IA-DEP

(a) swim (b) lucas

Fig. 7. Speedup on different number of processors for swim and lucas

for SPEC CPU2000 on automatic parallelization. Compared to the results on
Sun Blade [tm] 2000 with just 1 1200MHZ UltraSPARC III Cu [tm] proces-
sor [10], we achieve a speedup of 1.60 for swim and a speedup of 1.14 for lucas.
To evaluate the effectiveness of our technique on more than two processors, we
further experimented on a Sun Fire [tm] 6800 server with 24 1200MHZ Ultra-
SPARC III Cu [tm] processors and Solaris [tm] 9 operating system. For each
program, we measure the best serial performance as well as the parallel perfor-
mance with various number of processors up to 23 processors. We did not report
the result for 24 processors as in general, due to system activity, it may not bring
any speedup over the result for 23 processors.

7.1 swim

The benchmark swim is a weather prediction program written in Fortran. It is
a memory bandwidth limited program and the tiling technique in [9], which has
been implemented in our compiler, can improve data temporal cache locality,
thus alleviating the bandwidth problem. For example, in one processor of our
target machine, the code without tiling runs in 305 seconds and in 134 seconds
with tiling. Tiling improves the performance for a single-processor run with a
speedup of 2.28 because of the substantially improved cache locality. After tiling,
however, some IF statements and MOD operators are introduced into the loop
body because of aggressive loop fusion and circular loop skewing [9], which makes
it impossible to reuse the same dependence information derived before tiling. To
parallelize such loop nests, our dependence analysis phase correctly analyzes the
effect of IF statements and MOD operators, and generates proper conditions to
parallelize all four most important loops.

Figure 7(a) shows the speedup for swim with different number of proces-
sors with and without our index-association based dependence analysis, repre-
sented by “With IA-DEP” and “Without IA-DEP” respectively. Without index-
association based dependence analysis, the tiled code is not able to be paral-
lelized by our compiler. However, our compiler is still able to parallelize all four



important loop nests if tiling is not applied. We regard the result for such paral-
lelization as “Without IA-DEP” parallelization. For processor number equal to
2, the actual “Without IA-DEP” parallelization performance is worse than the
performance of the tiled code on one processor, so we use the result for the tiled
code on one processor for “Without IA-DEP” result for two-processor result.
From Figure 7(a), it is clear that our index-association based dependence can
greatly improve parallel performance for swim.

Figure 7(a) also shows that parallelization with IA-DEP scales better than
without IA-DEP. This is because swim is a memory bandwidth limited bench-
mark and tiling enables better scaling with most data accessed in L2 cache, which
is local to each processor, instead of in main memory. This is true also with large
data sizes in OpenMP version of swim. In March 2003, Sun submitted the perfor-
mance results for 8/16/24 threads for SPEC OMPM2001 on Sun File [tm] 6800
server [10]. The results show that without tiling, using OpenMP parallelization
directives, the speedup from 8 threads to 16 threads is 1.33. With tiling, turning
off OpenMP directive parallelization, however, the speedup is 1.44. The perfor-
mance of with tiling is also significantly better than without tiling, e.g., SPEC
scores 14199 vs. 8351 for 16 threads.

7.2 lucas

The benchmark lucas tests primality of Mersenne numbers. There are mainly
two classes of loop nests in the program. One class is similar to our example 4 in
Figure 6, and the other contains indexed array references, i.e., array references
appear in the subscripts. Currently, our compiler is not able to parallelize loops
in the second class. However, with index-association based dependence analysis,
it is able to parallelize all important loops in the first class. Figure 7(b) shows
the speedup for lucas on different number of processors. Note that no speedup is
achieved for multiple processor runs without index-association based dependence
analysis since all important loops are not parallelized.

8 Conclusion

In this paper, we have presented a new dependence analysis technique called
index-association based dependence analysis. Our technique targets a special
class of loop nests and uses a decoupled approach for dependence analysis of
complex array subscripts. We also present a technique to transform a non-linear
expression to a set of linear expressions and the latter can be used in dependence
test with traditional techniques. Experiments show that our technique is able to
help parallelize some otherwise hard-to-parallelize loop nests.

Acknowledgements

The authors want to thank the entire compiler optimizer group for their efforts
to build and continuously improve the SUN’s compilers, on which our work has



relied. The authors also want to thank Partha Tirumalai for his helpful comments
which greatly improved this paper.

References

1. William Blume and Rudolf Eigenmann. Non-linear and symbolic data dependence
testing. IEEE Transactions of Parallel and Distributed Systems, 9(12):1180–1194,
December 1998.

2. Paul Feautrier. Dataflow analysis of array and scalar references. International
Journal of Parallel Programming, 20(1):23–53, January 1991.

3. Gina Goff, Ken Kennedy, and Chau-Wen Tseng. Practical dependence testing.
In Proceedings of the ACM SIGPLAN’91 Conference on Programming Language
Design and Implementation, pages 15–29, Toronto, Ontario, Canada, June 1991.

4. Mohammad Haghighat and Constantine Polychronopoulos. Symbolic analysis for
parallelizing compilers. ACM Transactions on Programming Languages and Sys-
tems, 18(4):477–518, July 1996.

5. Jay Hoeflinger and Yunheung Paek. The access region test. In Proceedings of the
Workshop on LCPC 1999, also in Lecture Notes in Computer Science, vol. 1863,
by Springer, La Jolla, California, August 1999.

6. Dror Maydan, John Hennessy, and Monica Lam. Efficient and exact data depen-
dence analysis. In Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 1–14, Toronto, Ontario, Canada, June
1991.

7. Sungdo Moon and Mary Hall. Evaluation of predicated array data-flow analysis
for automatic parallelization. In Proceedings of ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 84–95, Atlanta, GA, May
1999.

8. William Pugh. A practical algorithm for exact array dependence analysis. Com-
munications of the ACM, 35(8):102–114, August 1992.

9. Yonghong Song and Zhiyuan Li. New tiling techniques to improve cache temporal
locality. In Proceedings of ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 215–228, Atlanta, GA, May 1999.

10. Standard Performance Evaluation Corporation, The SPEC CPU2000 benchmark
suite. http://www.specbench.org.

11. Sun Microsystems, Inc., Sun ONE Studio 8 Compiler Collection.
http://docs.sun.com.

12. Michael Wolf. Improving Locality and Parallelism in Nested Loops. PhD thesis,
Department of Computer Science, Stanford University, August 1992.

13. Michael Wolfe. High Performance Compilers for Parallel Computing. Addison-
Wesley Publishing Company, 1995.


