
Supporting High-level Abstractions through XML
Technology

Xiaogang Li Gagan Agrawal

Department of Computer and Information Sciences
Ohio State University, Columbus OH 43210�

xgli,agrawal � @cis.ohio-state.edu

Abstract. Development of applications that process large scientific datasets is of-
ten complicated by complex and specialized data storage formats. In this paper,
we describe the use of XML technologies for supporting high-level programming
methodologies for processing scientific datasets. We show how XML Schemas can
be used to give a high-level abstraction of a dataset to an application developer. A
corresponding low-level Schema describes the actual layout of data and is used by
the compiler for code generation. The compiler needs a systematic way for trans-
lating the high-level code to a low-level code. Then, it needs to transform the gen-
erated low-level code to achieve high locality and efficient execution. This paper
describes our approach to these two problems. By using Active Data Repository as
the underlying runtime system, we offer an XML based front-end for storing, re-
trieving, and processing flat-file based scientific datasets in a cluster environment.

1 Introduction
Processing and analyzing large volumes of data is playing an increasingly important role in many
domains of scientific research. Large datasets are being created by scientific simulations, or arise
from digitization of images and/or from data collected by sensors and other instruments. A variety
of analysis can be performed on such datasets to better understand scientific processes.

Development of applications that process large scientific datasets is often complicated by com-
plex and specialized data storage formats. When the datsets are disk-residents, understanding the
layout and maintaining high locality in accessing them is crucial for obtaining a reasonable perfor-
mance. While the traditional relational database technology supports high-level abstractions and
standard interfaces, it is suitable more for storing and retrieving datasets, and not for complex
analyses on such datasets [12].

Recently, there has been a lot of interest in XML and other related technologies developed
by the W3C consortium [5]. XML is a flexible exchange format that can represent many classes
of data, including structured documents, heterogeneous and semi-structured records, data from
scientific experiments and simulations, and digitized images. One of the key features of XML
is XML Schemas, which serve as a standard basis for describing the contents and structure of a
dataset.

In this paper, we describe the use of XML technologies for supporting high-level programming
methodologies for processing scientific datasets. We particularly show how XML Schemas can be
used to give a high-level abstraction of a dataset to the application developers, who can use such a
high-level Schema for developing the applications. A corresponding low-level Schema describes
the actual layout of data, but is hidden from the programmers. The compiler can use the source
code, the low-level Schema, and the mapping from the high-level Schema to the low-level Schema
for code generation.



Two key compiler techniques are required for supporting such an approach. First, we need a
systematic way to translate the high-level code to the low-level code. Second, we need to transform
the generated low-level code to achieve high locality and efficient execution. This paper describes
our approach to these two problems. Our techniques have been implemented in a compilation
system. By using Active Data Repository [6, 7] as the underlying runtime system, we offer an
XML based front-end for storing, retrieving, and processing flat-file based scientific datasets in a
cluster environment.

As part of our system, we use the XML query language XQuery [4] for writing queries us-
ing high-level abstractions. XQuery is derived from declarative, database, as well as functional
languages. Though XQuery significantly simplifies the specification of processing, compiling it
to achieve efficient execution involves a number of new challenges. Our recent related paper
has addressed two key issues, i.e, replacing recursive reductions by iterative constructs and type-
inferencing to translate from XQuery to an imperative language [11].

2 Background: XML, XML Schemas, and XQuery
This section gives background on XML, XML Schemas, and XQuery.

2.1 XML and XML Schemas

XML provided a simple and general facility which is useful for data interchange. Though the ini-
tial development of XML was mostly for representing structured and semi-structured data on the
web, XML is rapidly emerging as a general medium for exchanging information between orga-
nizations. For example, a hospital generating medical data may make it available to other health
organizations using XML format. Similarly, researchers generating large data-sets from scientific
simulations may make them available in XML format to other researchers needing them for further
experiments.

XML models data as a tree of elements. Arbitrary depth and width is allowed in such a tree,
which facilitates storage of deeply nested data structures, as well as large collections of records
or structures. Each element contains character data and can have attributes composed of name-
value pairs. An XML document represents elements, attributes, character data, and the relationship
between them by simply using angle brackets.

Note that XML does not specify the actual lay-out of large data on the disks. Rather, if a system
supports a certain data-set in an XML representation, it must allow any application expecting XML
data to properly access this data-set.

Applications that operate on XML data often need guarantees on the structure and content
of data. XML Schema proposals [2, 3] give facilities for describing the structure and constraining
the contents of XML documents. The example in Figure (a) shows an XML document containing
records of students. The XML Schema describing the XML document is shown in Figure (b). For
each student tuple in the XML file, it contains two string elements to specify the last and first
names, one date element to specify the date of birth, and one element of float type for the student’s
GPA.

2.2 XML Query Language: XQuery

As stated previously, XQuery is a language currently being developed by the World Wide Web
Consortium (W3C). It is designed to be a language in which queries are concise and easily under-
stood, and to be flexible enough to query a broad spectrum of information sources, including both
databases and documents.

XQuery is a functional language. The basic building block is an expression. Several types of
expressions are possible. The two types of expressions important for our discussion are:

– FLWR expressions, which support iteration and binding of variables to intermediate results.
FLWR stands for the keywords for, let, where, and return.



� student �
� firstname � Darin

�
/ firstname �� lastname � Sundstrom
� /lastname �

� DOB � 1974-01-06
�

/ DOB �� GPA � 3.73
�

/ GPA �
�

/ student �
...

(a) XML example

Schema Declaration�
xs:element name=”student” �
�

xs:complexType ��
xs:sequence ��

xs:element name=”lastname” type=”xs:string”/ �
�

xs:element name=”firstname” type=”xs:string”/ �
�

xs:element name=”DOB” type=”xs:date”/¿
�

xs:element name= ”GPA” type=”xs:float”/ ��
/xs:sequence �

�
/xs:complexType �

�
/xs:element �

(b) XML Schema

Fig. 1. XML and XML Schema

– Unordered expressions, which use the keyword unordered. The unordered expression takes
any sequence of items as its argument, and returns the same sequence of items in a nondeter-
ministic order.

We illustrate the XQuery language and the for, let, where, and return expressions by an ex-
ample, shown in Figure 2. In this example, two XML documents, depts.xml and emps.xml are
processed to create a new document, which lists all departments with ten or more employees, and
also lists the average salary of employees in each such department.

In XQuery, a for clause contains one or more variables, each with an associated expression.
The simplest form of for expression, such as the one used in the example here, contains only
one variable and an associated expression. The evaluation of the expression typically results in
a sequence. The for clause results in a loop being executed, in which the variable is bound to
each item from the resulting sequence in turn. In our example, the sequence of distinct department
numbers is created from the document depts.xml, and the loop iterates over each distinct department
number.

A let clause also contains one or more variables, each with an associated expression. However,
each variable is bound to the result of the associated expression, without iteration. In our example,
the let expression results in the variable $e being bound to the set or sequence of employees that
belong to the department $d. The subsequent operations on $e apply to such sequence. For example,
�������
	������� determines the length of this sequence.

A where clause serves as a filter for the tuples of variable bindings generated by the for and
let clauses. The expression is evaluated once for each of these tuples. If the resulting value is true,



for $d in document(”depts.xml”)//deptno
let $e := document(”emps.xml”)//emp[deptno = $d]

where count($e) ��� 10
return�

big-dept ��
$d,�

headcount �
�

count($e) � �
/headcount � ,�

avgsal �
�
avg($e/salary) � �

/avgsal �
��

/big-dept �

Fig. 2. An Example Illustrating XQuery’s FLWR Expressions

the tuple is retained, otherwise, it is discarded. A return clause is used to create an XML record
after processing one iteration of the for loop. The details of the syntax are not important for our
presentation.

To illustrate the use of unordered, a modification of the example in Figure 2 is presented in
Figure 3. By enclosing the for loop inside the unordered expression, we are not enforcing any order
on the execution of the iterations in the for loop, and in generation of the results. Without the use of
unordered, the departments need to be processed in the order in which they occur in the document
depts.xml. However, when unordered is used, the system is allowed to choose the order in which
they are processed, or even process the query in parallel.

unordered(
for $d in document(”depts.xml”)//deptno

let $e := document(”emps.xml”)//emp[deptno = $d]
where count($e) ��� 10

return
�

big-dept ��
$d,�

headcount �
�

count($e) � �
/headcount � ,

�
avgsal �

�
avg($e/salary) � �

/avgsal �
��
/big-dept �

)

Fig. 3. An Example Using XQuery’s Unordered Expression

3 High-level and Low-level Schemas and XQuery Representation
This section focuses on the interface for the system. We use two motivating examples, satellite data
processing [7] and the multi-grid virtual microscope [1], for describing the notion of high-level and
low-level schemas and XQuery representation of the processing.



3.1 Satellite Data Processing

�
xs:element name=”pixel” maxOccurs=”unbounded” �
�

xs:complexType ��
xs:sequence �
�

xs:element name=”x” type=”xs:integer”/ �
�

xs:element name=”y” type=”xs:integer”/ ��
xs:element name=”date” type=”xs:date”/ ��
xs:element name=”band0” type=”xs:short”/ �

�
xs:element name=”band1” type=”xs:short”/ �

...�
/xs:sequence �

�
/xs:complexType ��

/xs:element �

Fig. 4. High-Level XML Schema for Satellite

The first application we focus on involves processing the data collected from satellites and
creating composite images. A satellite orbiting the Earth collects data as a sequence of blocks. The
satellite contains sensors for five different bands. The measurements produced by the satellite are
short values (16 bits) for each band.

The XML Schema shown in Figure 4 provides a high-level abstraction of the satellite data.
The pixels captured by the satellite can be viewed as a sparse three dimensional array, where time,
latitude, and longitude are the three dimensions. Pixels for several, but not all, time values are
available for any given latitude and longitude. Each pixel has 5 short integers to specify the sensor
data. Also, latitude, longitude, and time is stored within each pixel. With this high-level XML
Schema, a programmer can easily define computations processing the satellite data using XQuery.

The typical computation on this satellite data is as follows. A portion of Earth is specified
through latitudes and longitudes of end points. A time range (typically 10 days to one year) is
also specified. For any point on the Earth within the specified area, all available pixels within that
time period are scanned and an application dependent output value is computed. To produce such a
value, the application will perform computation on the input bands to produce one output value for
each input value, and then the multiple output values for the same point on the planet are combined
by a reduction operation. For instance, the Normalized Difference Vegetation Index (NDVI) is
computed based on bands one and two, and correlates to the “greenness” of the position at the
surface of the Earth. Combining multiple ndvi values consists of execution a max operation over
all of them, or finding the “greenest” value for that particular position.

XQuery specification of such processing is shown in Figure 5. The code iterates over the two-
dimensional space for which the output is desired. Since the order in which the points are processed
is not important, we use the directive unordered. Within an iteration of the nested for loop, the let
statement is used to create a sequence of all pixels that correspond to the those spatial coordinates.
The desired result involves finding the pixel with the best NDVI value. In XQuery, such reduction
can only be computed recursively.

3.2 Multi-Grid Virtual Microscope

The Virtual Microscope [8] is an application to support the need to interactively view and process
digitized data arising from tissue specimens. The raw data for such a system is captured by digitally



unordered(
for $i in ($minx to $maxx)

for $j in ($miny to $maxy)
let $p := document(”satellite.xml”)/data/pixel

where(( $p/x = $i) and ($p/x = $j ))
return

�
pixel ��

latitute �
�
$i � �

/latitute ��
longtitute �

�
$j � �

/longtitute �
�

summary �
�
accumulate($p) � �

/summary ��
/pixel �

)

define function accumulate ($p)
as double�

let $inp := item-at($p,1 )
let $NVDI := ( ($inp/band1 - $inp/band0) div

($inp/band1 + $inp/band0)+1) * 512
return

if( empty($p) )
then 0
else

�
max($NVDI, accumulate(subsequence($p,2))) �

�

Fig. 5. Satellite Data Processing Expressed in XQuery

scanning collections of full microscope slides at high power. In a typical dataset available when a
virtual microscope is used in a distributed setting, the same portion of a slide may be available at
different resolution levels, but the entire slide is not available at all resolution levels.

A particular user is interested in viewing a rectangular section of the image at a specified reso-
lution level. In computing each component of this rectangular section (output), it is first examined
if that portion is already available at the specified resolution. If it is not available, then we next ex-
amine if it is available at a higher resolution (i.e., at a smaller granularity). If so, the output portion
is computed by averaging the pixels of the image at the next higher level of granularity. If it is only
available at a lower resolution, then the pixels from the lower resolution image are used to create
the output.

The digitized microscope slides can also be viewed as a three dimensional dataset. Each pixel
has x and y coordinates and the resolution is the third dimension. The high-level XML Schema of
virtual microscope is shown in Figure 6. For each pixel in a slide, three short integers are used to
represent the RGB colors.

XQuery code for performing the computations is shown in Figure 7. We assume that the user
is only interested in viewing the image at the highest possible resolution level, which means that
averaging is never done to produce the output image. The structure of this code is quite similar
to our previous example. Inside an unordered for loop, we use the let statement to compute a
sequence, and then apply a recursive reduction.



�
xs:element name=”pixel” maxOccurs=”unbounded” �
�

xs:complexType ��
xs:sequence �
�

xs:element name=”x” type=”xs:integer”/ ��
xs:element name=”y” type=”xs:integer”/ �

�
xs:element name=”scale” type=”xs:short”/ �

�
xs:element name=”color1” type=”xs:short”/ ��
xs:element name=”color2” type=”xs:short”/ ��
xs:element name=”color2” type=”xs:short”/ �

�
/xs:sequence ��

/xs:complexType ��
/xs:element �

Fig. 6. High-Level XML Schema for Virtual Microscope

3.3 Low Level XML Schema and XQuery

The above XQuery codes for multi-grid virtual microscope and satellite data processing specify a
query on a high-level abstraction of the actual datasets, which eases the development of applica-
tions. However, storing XML data in such a high-level format will result in unnecessary disk space
usage as well as large overheads on query processing. For example, storing x and y coordinates
for each pixel in a regular digitized slide of virtual microscope is not necessary, since these values
can be easily computed from the meta-data and the offset of a pixel.

In our system, XML files are mapped to flat files by a special mapping service. Pixels in each
flat file are later partitioned and organized into chunks by data distribution and indexing services. A
low-level XML Schema file is provided to the compiler after partitioning of the datasets to specify
the actual data layout. Here, the pixels are divided into chunks. Each chunk is associated with a
bounding box for all pixels it contains, which is specified by a lower bound and a higher bound.
Within a chunk, the values of pixels are stored consecutively, with each pixel occupying three bytes
for RGB colors.

For each application whose XML data is transformed into ADR dataset by data distribution
and indexing services, we provide several library functions written in XQuery to perform data
retrieval. These library functions have a common name, getData, but the function parameters are
different. Each getData function implements a unique selection operation based on its parameters.
The getData functions are similar to physical operators of a SQL query engine. A physical operator
of SQL engine takes as input one or more data streams and produces an output data stream. In our
case, the default input data stream of a getData function is the entire dataset, while the output data
stream is result of filtering the input stream by parameters of the getData function. For example,
the getData function shown in Figure 8 (a) returns pixels whose x and y coordinates are equal
to those specified by the parameters. The detailed implementation is based on the meta-data of the
dataset, which is specified by the low-level XML Schemas. The getData function in Figure 8 (b)
requires only one parameter, which retrieves pixels with specified x coordinate. For space reason,
the detailed implementation of only one getData function is shown here.

The XQuery code for virtual microscope that calls a getData function is shown in Figure 9.
This query code is called low-level XQuery and is typically generated automatically by our com-
piler. The XQuery codes described in the above section operate on high-level data abstractions and
are called high-level XQuery. The recursive functions used in both the low-level and high-level
XQuery are the same.



unordered(
for $i in ($x1 to $x2)

for $j in ($y1 to $y2)
let $p := document(”vmscope.xml”)data/pixel[(x=$i)

and (y = $j) and (scale
�

$z1) and (scale � $z2) ]
return

�
pixel ��

latitute �
�
$i � �

/latitute ��
longtitute �

�
$j � �

/longtitute �
�

summary �
�

accumulate($p) � �
/summary ��

/pixel �
)

define function accumulate (element pixel $p )
as element�

if (empty($p) )
then $null
else

let $max:= accumulate(subsequence($p,2) )
let $q:= item-at($p,1)
return

if ($q/scale
�

$max/scale) or ($max = $null)
then $max
else $q

�

Fig. 7. Multigrid Virtual Microscope Using XQuery

The low-level XML Schemas and getData functions are expected to be invisible to the pro-
grammer writing the processing code. The goal is to provide a simplified view of the dataset to the
application programmers, thereby easing the development of correct data processing applications.
The compiler translating XQuery codes obviously has the access to the source code of the get-
Data functions, which enables it to generate efficient code. However, an experienced programmer
can still have access to getData functions and low-level Schemas. They can modify the low-level
XQuery generated by the compiler, or even write their own version of getData functions and low-
level XQuery codes. This is the major reason why our compiler provides an intermediate low-level
query format, instead of generating the final executable code directly from high-level codes.

4 Compiler Analysis
In this section, we describe the various analysis, transformations, and code generation issues that
are handled by our compiler.

4.1 Overview of the Compilation Problem

Because the high-level codes shown in Figures 5 and 7 do not reflect any information of how the
actual layout of data, the first task for our compiler is to generate corresponding low-level XQuery
codes.

After such high-level to low-level query transformation, we can generate correct codes. How-
ever, there are still optimization issues that need to be considered. Consider the low-level XQuery



define function getData( $x, $y )
return element�

...
�

(a)

define function getData( $x )
return element�

...
�

(b)

define function getData( $x, $y, $z )
return element�

...
�

(c)

Fig. 8. getData functions for Multigrid Virtual Microscope

code for virtual microscope shown in Figures 9. Suppose, we translate this code to an imperative
language like C/C++, ignoring the unordered directive, and preserving the order of the computa-
tion otherwise. It is easy to see that the resulting code will be very inefficient, particularly when
the datasets are large. This is primarily because of two reasons. First, each execution of the let
expression will involve a complete scan over the dataset, since we need to find all data-elements
that will belong to the sequence. Second, if this sequence involves � elements, then computing the
result will require ����� recursive function calls, which again is very expensive.

We can significantly simplify the computation if we recognize that the computation in the
recursive loop is a reduction operation involving associative and commutative operators only. This
means that instead of creating a sequence and then applying the recursive function on it, we can
initialize the output, process each element independently, and update the output using the identified
associative and commutative operators. A direct benefit of it is that we can replace recursion by
iteration, which reduces the overhead of function calls. However, a more significant advantage is
that the iterations of the resulting loop can be executed in any order. Since such a loop is inside an
unordered nested for loop, powerful restructuring transformations can be applied. Particularly, the
code resulting after applying data-centric transformation [9, 10] will only require a single pass on
the entire dataset.

Thus, the three key compiler analysis and transformation tasks are: 1) transforming high-level
XQuery codes to efficient low-level query codes, 2) recognizing that the recursive function involves
a reduction computation with associative and commutative operations, and transforming such a
recursive function into a foreach loop, i.e., a loop whose iterations can be executed in any order,
and 3) restructuring the nested unordered loops to require only a single pass on the dataset.



unordered(
for $i in ($x1 to $x2)

for $j in ($y1 to $y2)
let $p := getData ( $i, $j )

where (scale
�

$z1) and (scale
�

$z2 ) ]
return

�
pixel ��

latitute �
�
$i � �

/latitute ��
longtitute �

�
$j � �

/longtitute �
�

summary �
�

accumulate($p) � �
/summary ��

/pixel �
)

Fig. 9. Multigrid Virtual Microscope Using Low Level XQuery

An algorithm for the second task listed above was presented in our recent publication [11].
Therefore, we will only briefly review this issue, and focus on the first and the third tasks in the
rest of this section.

4.2 High Level XQuery Transformation

High-level XQuery provides an easy way to specify operations on high-level abstractions of dataset.
If the low-level details of the dataset is hidden from a programmer, a correct application can be de-
veloped with ease. However, the performance of the code written in this fashion is likely to be poor,
since a programmer has no idea how the data is stored and indexed.

To address this issue, our compiler needs to translate a program expressed in the high-level
XQuery to low-level XQuery. As described earlier, a low-level XQuery program operates on the
descriptions of the dataset specified by the low-level XML Schemas. Although the recursive func-
tions defined in both high-level and low-level XQuery are almost the same, the low-level XQuery
calls one or more getData functions defined externally. getData functions specify how to retrieve
data streams according to meta-data of the dataset. A major task for the compiler is to choose a
suitable getData function to rewrite the high-level query.

The challenges for this transformation are compatibility and performance of the resulting code.
This requires the compiler to determine: 1) which of the getData functions can be correctly inte-
grated, i.e., if a getData function is compatible or not, and 2) which of the compatible functions
can achieve the best performance.

We will use virtual microscope as an example to further describe the problem. As shown in
Figure 7, in each iteration, the high-level XQuery code retrieves a desired set of elements from
the dataset first, then, a recursive function is applied on this data stream to perform the reduction
operation. There are three getData functions provided, each will retrieve an output data stream
from the entire dataset. The issue is if and how the output stream from a getData functions can be
used to construct the same data stream as used in the high-level query.

For a given getData function � with actual arguments ���������	��
�
�
������� , we define the output
stream of � � ������������
�
�
 �� � to be

� � � � ��� � ��
�
�
������ �
�



Similarly, for a given query Q with loop indices � � ��� � ��
�
�
������ , we define the data stream that
is processed in a given iteration to be

� � � �������	��
�
�
������ ��

Let the set of all possible iterations of Q be ��� . We say that a getData function � is compatible
with the query

�
if there exists an affine function � �
	 � � 	 � ��
�
�
�� 	 � � , such that

� � �������	��
�
�
���� �� ��� ��� � �������	��
�
�
�����

such that

� � � � ��� � ��
�
�
������ � � � � � ��� � ��
�
�
����  �

and
� � � �������	��
�
�
�� �� �

�
� � � � �������	��
�
�
���� � ��

If a getData function � is compatible with
�

, it means that in any iteration of the query, we
can call this getData function to retrieve a data stream from the dataset. Since this data stream is a
superset of the desired data stream, we can perform another selection on it to get the correct data
stream. Here, the second selection can be easily performed in memory and without referring to the
low-level disk layout of the dataset. For the three functions shown in Figure 8, it is easy to see that
the first two functions are compatible. Their selection criteria is either less or equally restrictive to
what is used in the high-level query.

Because of the similarities between physical operators of SQL engine and our getData func-
tions, the technique we proposed for translation from high-level XQuery to low-level XQuery is
based on relational algebra. Relational algebra is an unambiguous notation for expressing queries
and manipulating relations and is widely used in the database community for query optimization.

We use the following three step approach. First, we compute the relational algebra of the high-
level XQuery and getData functions. A typical high-level XQuery program retrieves desired tuples
from an XML file and performs computations on these tuples. We focus on the data retrieval part.
The relational algebras of XQuery and the getData functions are shown in Figure 10 (a). Here, we
use ��������� to represent selection from the entire dataset E by applying restriction f.

In the second step, we formalize these relational algebras into an equivalent canonical form
that is easier to compare and evaluate. The canonical form we choose is similar to the disjunctive
normal form (DNF), where the relations are expressed as unions of one or more intersections.
Figure 10 (b) shows the equivalent canonical forms transformed. The actual canonical forms are
internally represented by trees in our compiler.

In the third step, we compare the canonical forms of the high-level query and getData func-
tions. For a given getData function, if its canonical form is an isomorphic subtree of the canonical
form of the query, we can say that the getData function is compatible with the original query.
This is because when replacing part of the relational algebra of the high-level query with a get-
Data function, the query semantics are maintained. From Figure 10 (b) it is easy to see that the
first two getData functions are compatible. � � 	���� 	��
�� ��� �	 � �� � is not compatible, because the its
selection restriction on �� is �� ��!�#" , while the restriction of the query on �� is

�
and � .

The next task is to choose the getData function which will result in the best performance. The
algorithm we currently use is quite simple. Because applying restrictions early in a selection can
reduce the number of tuples to be scanned in the next operation, a compatible getData function
with the most parameters is preferred here. Formally, we select the function whose relational al-
gebra in the canonical form is the largest isomorphic subtree. As shown in Figure 10 (c), the final
function we choose is � � 	���� 	$�
�� ��� �	 � . The resulting relational algebra for low-level XQuery is
shown in Figure 10, part (c). Here, the pixels are retrieved by calling � � 	���� 	��
�� ��� �	 � and then
performing another selection on the output stream by applying the restriction on % �&�#" � .



� � ���  �� ����	 � : � �����
	����!�����	 ��� ��������������������� ������������� �"!&� �
� � � � � 	���� 	��
�� � � � : � �����
	�� �
� � � � � 	���� 	��
�� ��� �	 � � : ��������	 ���!�����	�� �
� � � � � 	���� 	��
�� ��� �	 � �� � � : � �����
	����!�����	 ��� �����������#��	�� �

(a) Relational algebras for high-level query and getData function
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Fig. 10. Relational Algebra Based Approach for High-level to Low-level Transformation

4.3 Reduction Analysis and Transformation

Now, we have a low-level XQuery code, either generated by our compiler or specified directly
by an experienced programmer. Our next task is analyzing the reduction operation defined in low-
level query. The goals of this analysis is to generate efficient code that will execute on disk-resident
datasets and on parallel machines.

The reductions on tuples that satisfy user-defined conditions are specified through recursive
functions. Our analysis requires the recursive function to be linear recursive, so that it can be trans-
formed it into an iterative version. Our algorithm examines the syntax tree of a recursive function
to extract desired nodes. These nodes represent associative and commutative operations. The de-
tails of the algorithm are described in a related paper [11]. After extracting the reduction operation,
the recursive function can be transformed into a foreach loop. An example of this is shown in Fig-
ure 11. This foreach loop can be executed in parallel by initializing the output element on each
processor. The reduction operation extracted by our algorithm can then be used for combining the
values of output created on each processor.

4.4 Data Centric Transformation

Replacing the recursive computation by a foreach loop is only an enabling transformation for our
next step. The key transformation that provides a significant difference in the performance is the
data-centric transformation, which is described in this section.

In Figure 11, we show the outline of the virtual microscope code after replacing recursion by
iteration. Within the nested for loops, the let statement and the recursive function are replaced by



unordered(
for $i in ($x1 to $x2)

for $j in ($y1 to $y2)
foreach element $e in getData($i, $j )

if (( $e/scale
�

$z1 ) and ($e/scale � $z2 ))
Insert $e to the sequence $p

Initialize the output
foreach element $e in $p

Apply the reduction function and update output
return output

)

Fig. 11. Recursion Transformations for Virtual Microscope

two foreach loops. The first of these loops iterates over all elements in the document and creates a
sequence. The second foreach loop performs the reduction by iterating over this sequence.

The code, as shown here, is very inefficient because of the need for iterating over the entire
dataset a large number of times. If the dataset is disk-resident, it can mean extremely high overhead
because of the disk latencies. Even if the dataset is memory resident, this code will have poor
locality, and therefore, poor performance.

Since the input dataset is never modified, it is clearly possible to execute such code to require
only a single pass over the dataset. However, the challenge is to perform such transformation auto-
matically. We apply the data-centric transformation that has previously been used for optimizing
locality in scientific codes [9, 10]. The overall idea here to iterate over the available data elements,
and then find and execute the iterations of the nested loop in which they are executed. As part of
our compiler, we apply this transformation to the intermediate code we obtain after removing re-
cursion. The results of performing data-centric transformation on the virtual microscope are shown
in Figures 12. This code requires only one scan of the entire dataset.

for $i in ($x1 to $x2)
for $j in ($y1 to $y2)

Initialize output[i,j]
foreach element $e in //data/chunks/vmpixal

if (//data/scale
�

$z1)
and (//data/scale � $z2)
$i =//data/chunks/low/x +( offset div ( 512...))
$j =//data/chunks/low/y + (offset % (512...))
if ($i

�
$x1) and ($i � $x2) and

($j
�

$y1) and ($j � $y2)
Apply the reduction function and update output[i,j]

Fig. 12. Data-Centric Transformations on Virtual Microscope Code
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Fig. 13. Parallel Performance of satel-
lite
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Fig. 14. Parallel Performance for mg-
vscope

This section reports experimental data from our current compilation system. We used the two
real applications, satellite and mg-vscope, discussed earlier in this paper. The cluster we
used had 700 MHz Pentium machines connected through Myrinet LANai 7.0. We ran our experi-
ments on 1, 2, 4, 8 nodes of the cluster.

The goal of our experiments was to demonstrate that even with high-level abstractions and
a high-level language like XQuery, our compiler is able to generate reasonably efficient code.
The compiler generated codes for our two applications were compared against versions whose
performance was reported in earlier work [9]. These versions were generated by a compiler starting
from a data parallel dialect of Java, and were further manually optimized. For our discussion, the
versions generated by our current compiler are referred to as comp and the baseline version is
referred to as manual.

For the mg-vscope application, the dataset we used contains an image of ��� ���������	��� ����
�

pixels collected at 5 different magnification levels, which corresponds to 3.3 GB of data. The query
we used involves processes a region of � 
 ��
�
�
�� � 
 �
�
�
 pixels, which corresponds to reading 627
MB and generating an output of 400 MB. The entire dataset for the satellite application
contains data for the entire earth at a resolution of ��� � ������� of a degree in latitude and longitude,
over a period of time that covers nearly ��� ��
�
�
 time steps. The size of the dataset is 2.7 GB. The
query we used traverses a region of ��� ��
�
�
�� � 
 ��
�
�
�� � 
 ��
�
�
 which involves reading 446 MB
to generate an output of 50 MB.

The results from satellite are presented in Figure 13. The results from mg-vscope are
presented in Figure 14. For both the applications and on 1, 2, 4, and 8 nodes, the comp versions are
slower. However, the difference in performance is only between 5% and 8% for satellite and
between 18% and 22% for mg-vscope. The speedups on 8 nodes is around 6 for both versions
of satellite and around 4 for both versions of mg-vscope. The reason for limited speedups
is the high communication volume.

To understand the differences in performance, we carefully compared the comp and manual
versions. Our analysis shows that a number of additional simple optimizations can be implemented
in the compiler to bridge the performance difference. These optimizations are, function inlining,
loop invariant code motion, and elimination of unnecessary copying of buffers.



6 Conclusions
In this paper, we have described a system that offers an XML based front-end for storing, retrieving,
and processing flat-file based scientific datasets. With the use of aggressive compiler transforma-
tions, we support high-level abstractions for a dataset, and hide the complexities of the low-level
layout from the application developers. Processing on datasets can be expressed using XQuery, the
recently developed XML Query language. Our preliminary experimental results from two applica-
tions have shown that despite using high-level abstractions and a high-level language like XQuery,
the compiler can generate efficient code.
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