
Semantic-Driven Parallelization of Loops

Operating on User-Defined Containers

Dan Quinlan, Markus Schordan, Qing Yi, and Bronis R. de Supinski

Lawrence Livermore National Laboratory, USA
{dquinlan, schordan1, yi4, bronis}@llnl.gov

Abstract. We describe ROSE, a C++ infrastructure for source-to-source
translation, that provides an interface for programmers to easily write
their own translators for optimizing user-defined high-level abstractions.
Utilizing the semantics of these high-level abstractions, we demonstrate
the automatic parallelization of loops that iterate over user-defined con-
tainers that have interfaces similar to the lists, vectors and sets in the
Standard Template Library (STL). The parallelization is realized in two
phases. First, we insert OpenMP directives into a serial program, driven
by the recognition of the high-level abstractions, containers, that are
thread-safe. Then, we translate the OpenMP directives into library rou-
tines that explicitly create and manage parallelism. By providing an in-
terface for the programmer to classify the semantics of their abstractions,
we are able to automatically parallelize operations on containers, such as
linked-lists, without resorting to complex loop dependence analysis tech-
niques. Our approach is consistent with general goals within telescoping
languages.

1 Introduction

In object-oriented languages such as C++, abstractions are a key aspect of
library design, sharing aspects of language design, which aims to provide the
application developer with an efficient and convenient interface. For example,
the C++ Standard Template Library (STL), parts of which are standardized
within the C++ standard libraries, includes a collection of template classes that
can be used as containers for user-defined constructs. Some STL containers,
such as vectors, provide random access to their elements using an integer index,
while other containers such as lists and sets provide other means to access their
elements. Nevertheless, all STL containers provide sequential element accesses
and thus all of them can be used in the code fragment in Figure 1. This design
strategy permits all containers to be used interchangeably in algorithms that
process a sequence of elements.
At this level, library design greatly resembles language design, but without

increasing the complexity of the compiler. The term telescoping languages was
coined by Kennedy [?] in 2000. Within telescoping languages, a base language
is chosen and domain-specific types are constructed entirely within the base
language with no language extension. The iterative progression of a library to a

2

higher-level language comes only with compile-time support for its user-defined
types. The telescoping aspect relates to the optional use of the compile-time
optimizations, because the abstractions are defined fundamentally as a library
completely within the base language. The idea of higher-level languages driving
the generation of lower-level C++ code was originally discussed by Stroustrup
in 1994 [1] (page 204). The techniques presented in this paper are a special case
of compiler support for high-level abstractions such as those defined in the STL.
Specifically in this paper we utilize the semantics of the high-level abstractions
and generate low-level C++ code.

MyContainer myContainer;
MyContainer::iterator p;
for (p = myContainer.begin(); p != myContainer.end(); ++p) {

foo(*p);
}

Fig. 1. Example: a code fragment processing a user-defined container

Due to the increasing popularity of the STL library, more and more libraries
provide containers that conform to the STL interface. Since the library devel-
oper knows the semantics of the library’s containers and of each element in the
containers, he can write a source-to-source translator that optimizes the perfor-
mance of every program that uses his library. For example, in Figure 1, if the
library writer knows that none of the elements in MyContainer can be aliased
and that the function foo is side-effect free (i.e., it does not modify any global
variables), he can safely parallelize the surrounding loop and thus achieve better
performance for the user’s application. Due to the undecidability of precise alias
and control-flow analysis, it could be impossible for a compiler to automatically
figure out this semantic information. Thus, our approach can better optimize
any application code that uses the library since we allow the library developer
to communicate this semantic information to the source-to-source translator.
The application developer sees only an automated process.

We present ROSE, a C++ source-to-source infrastructure especially for this
purpose [2, 3]. In addition to being a general source-to-source compiler infrastruc-
ture, ROSE provides several mechanisms, including a very high level Abstract
Syntax Tree (AST) that maintains the original structure of the user program,
traversal facilities for modifying the AST, and a string interface for inserting
new C++ code fragments (which are represented as strings) into the AST di-
rectly. Since we have not only the syntax of the original program but also its
full type resolution within the ROSE AST, we can use specific user-defined type
information as a basis for optimizing an application. Thus, the compiler has
fundamentally more information, enabling greater levels of optimization. In the
case of parallelizing user-defined containers, for example, we can automate the
introduction of OpenMP directives into otherwise serial code because the library
writer guarantees the required semantics. Based on the additional semantics of

3

user-defined abstractions, this approach permits parallel execution of appropri-
ate fundamentally serial code. Section 2 presents the ROSE infrastructure in
more detail.
Using the ROSE approach for processing user-defined abstractions, we present

a source-to-source translator that automatically introduces OpenMP directives
in loop computations on STL-like container classes such as the one in Figure 1.
The only additional information that needs to be provided by the library pro-
grammer is the set of container classes that disallow aliased elements and the
side-effects of library functions. We then invoke another translator within ROSE
to recognize specific OpenMP pragma directives and to translate these direc-
tives (along with their associated code fragments). The final result is a parallel
program that explicitly creates and manages parallelism.

2 Infrastructure

The ROSE infrastructure offers several components to the library writer to build
a source-to-source translator. The translator is then used to read in the sequential
user code, parallelize it, and generate code with OpenMP directives explicitly
expressing parallelism.
A complete C++ front-end is available that generates an object-oriented an-

notated abstract syntax tree (AST) as an intermediate representation. Several
different components can be used to build the mid-end of a translator that op-
erates on the AST to implement transformations: a predefined traversal mecha-
nism; a restructuring mechanism; and an attribute evaluation mechanism. Other
features include parsing of OpenMP directives and integrating these directives
into the AST. A C++ back-end can be used to unparse the AST and generate
C++ code (see Figure 2).

frontend midend backend

unparsed AST fragment

ASTC++ source AST C++ source

attribute evaluation

restructure operators

AST

AST(completed) source fragment

Fig. 2. ROSE Source-To-Source infrastructure with front-end/back-end reinvocation

2.1 Front-End

We use the Edison Design Group C++ front-end (EDG) [4] to parse C++ pro-
grams. The EDG front-end performs a full type evaluation of the C++ program

4

and then generates an AST, which is represented as a C data structure. We
translate this data structure into an object-oriented abstract syntax tree (AST)
which is used by the mid-end as an intermediate representation. We use Sage III
as an intermediate representation, which we have developed as a revision of the
Sage II [5] AST restructuring tool.

2.2 Mid-End

The mid-end supports restructuring of the AST. The programmer can add code
to the AST by specifying a source string using C++ syntax, or by constructing
subtrees node by node. A program transformation consists of a series of AST
restructuring operations, each of which specifies a location in the AST where a
code fragment (specified as a C++ source string or as an AST subtree). should
be inserted, deleted, or replaced.
The order of the restructuring operations is based on a pre-defined traversal.

A transformation traverses the AST and invokes multiple restructuring oper-
ations on the AST. To address the problem of restructuring the AST while
traversing it, we make restructuring operations side-effect free functions that de-
fine a mapping from one subtree of the AST to another subtree. The new subtree
is not inserted until after the complete traversal of the original subtree. We pro-
vide interfaces for invoking restructuring operations that buffer these operations
to ensure that no subtrees are replaced while they are being traversed.
The mid-end also provides an attribute evaluation mechanism that allows

the computation of arbitrary attribute values for AST nodes. During traver-
sal, context information can be passed down the AST as inherited attributes,
and results of transforming a subtree can be passed up the tree as synthesized
attributes. Examples for inherited and synthesized attributes include the type
information of objects, the sizes of arrays, the nesting levels of loops and the
scopes of associated pragma statements. These attributes can then be used to
compute constraints on transformations — for example, to decide whether to
apply a restructuring operation on a particular AST node.
Our infrastructure supports the use of C++ source strings to define code

fragments. Any source string that represents a valid declaration, statement list,
or expression can specify a code pattern to be inserted into the AST. The transla-
tion of a source code string, s, into an AST fragment, is performed by reinvoking
the front-end. Our system extends s to form a complete program, which it then
parses into an AST by reinvoking the front-end. From this AST, it finally ex-
tracts the AST fragment that corresponds to s. This AST fragment is inserted
into the AST of the original program.
Further, we provide an abstract C++ grammar which covers all of C++ and

defines the set of all abstract syntax trees. The grammar has 165 production
rules. It is abstract with respect to the concrete C++ grammar and does not
contain any C++ syntax. We have integrated the attribute grammar tool Coco
[6], ported to C++ by Frankie Arzu. This allows the use of the abstract C++
grammar. In the semantic actions source-strings and restructure operators can
be used to specify the source code transformation. In section 3.4 we show how a

5

transformation can be specified using the abstract grammar, source-strings, and
AST restructure operations.

2.3 Back-End

The back-end unparses the AST and generates C++ source code. It can either
unparse all included (header) files or the source file(s) specified on the command
line only. This feature is important when transforming user-defined data types,
for example, when adding compiler-generated methods. Using this feature pre-
serves all C preprocessor (cpp) control structures (including comments). Output
code from the back-end appears nearly indistinguishable from input code, except
for transformations, to simplify acceptance by users.
The back-end can also be invoked during a transformation, to obtain the

source code string that corresponds to a subtree of the AST. Such a string can
be combined with new code (also represented as a source string) and inserted
into the AST.
Both phases, the introduction of OpenMP directives and the translation of

OpenMP directives, can be automated using the above mechanisms, as described
in the following sections.

3 Parallelizing User-Defined Containers Using OpenMP

The OpenMP standard provides a convenient mechanism for achieving high per-
formance on modern parallel machine architectures. By extending traditional
languages such as Fortran, C and C++, OpenMP allows developing parallel ap-
plications without the explicit management of threads or communications. Intro-
ducing OpenMP directives into a sequential program thus requires substantially
less work than using distributed memory programming models like MPI.
In addition, current use of distributed memory programming models only ex-

tends to a subset of the processors available on IBM machines at LLNL. Specif-
ically, the limit on the number of MPI tasks requires a hybrid programming
model that combines message passing and shared memory programming in or-
der to use all of the machine’s processors. These hybrid programming models
significantly increase the complexity of the already difficult task of developing
scientific applications. Thus, our approach is particularly useful in extending ex-
isting distributed memory applications to use these modern computer architec-
tures effectively. By automating (or simplifying) the introduction of parallelism
to leverage the shared memory nodes and, thus, a larger part of these machines,
we can significantly improve programmer productivity. The use of dual shared
memory and distributed memory programming models is a more general issue
within cluster computing (using a connected set of shared memory nodes).
Current compiler technology [7–11] can efficiently automate the introduction

of OpenMP directives to regular loops that iterate over random-access arrays
as defined by Fortran or C. However, because most C++ programs, including
many scientific applications, use higher-level abstractions for which semantics

6

are unknown to the compiler, these abstractions are left unoptimized by most
parallelizing compilers. By providing mechanisms to optimize object-oriented
library abstractions, we thus allow the efficient tailoring of the programming
environment as essentially a programming language that is more domain-specific
than a general purpose language could allow, thereby allowing the improvement
of programmer productivity without degrading application performance.

The ROSE infrastructure provides support for generating source-to-source
translators that essentially act as compilers for these domain-specific languages.
The designer of the high-level abstractions captures the semantics of those ab-
stractions so that the source-to-source translators can generate high performance
code for the user of the domain-specific language. Generally, the designer of the
abstractions will be a library writer, although nothing prevents the end user
from designing clean interfaces and capturing the semantics for his specific ab-
stractions.

In this section, we present a mechanism to automatically introduce OpenMP
directives for user-defined STL-like containers, which is one of the most com-
monly used abstractions in object-oriented programming.

3.1 User-Defined Containers

Scientific applications are increasingly using STL, but at present with no path
available toward automated shared memory parallelization of sequential STL
usages in application programs. Clearly our goal in addressing the parallelization
of user-defined container classes includes eventually processing STL containers.
Such work would have broad impact on how STL could be used within scientific
programming.

At present, the ROSE infrastructure does not handle templates sufficiently
well to address STL optimization directly. Figure 3 presents a compromise, an
example container class that is similar to the STL list class. It has an identi-
cal iterator interface, but does not use templates. The example list class accu-
rately reproduces the same iterator interface as is used in STL and more general
user-defined containers. The exact details of the iterator interface are not par-
ticularly important; our approach could be used to parallelize alternative meth-
ods of traversing the elements of containers. Further, the easy construction of
compile-time transformations with ROSE could use even more precise semantics
of domain-specific containers if necessary.

Figure 4 defines a class to support the automated transformation of iter-
ation on user-defined containers. The automated transformation process in-
troduces new code that uses this supporting class into the application. The
SupportingOmpContainer list class builds an array of fixed size, internally,
containing pointers to the container’s elements. Using this array the class pro-
vides indexed access for the OpenMP parallel for loop.

7

class list {
public:

typedef int elementType;
class iterator

{
friend class list;
protected:

link_type node;
iterator(link_type x);

public:
iterator();
bool operator==(const iterator& x) const;
bool operator!=(const iterator& x) const;
reference operator*() const;
iterator& operator++();
iterator operator++(int);

};
list();
iterator begin();
iterator end();
unsigned int size();
void push_back(const reference x);

protected:
struct list_node {

list_node* next; list_node* prev;
elementType data;

};
typedef elementType* pointer;
typedef elementType& reference;
typedef list_node* link_type;
typedef size_t size_type;
link_type first,last;
size_type length;

};

Fig. 3. Example: Code fragment showing list class using iterators.

3.2 Collecting Domain-Specific Information

Our goal is to parallelize loops that iterate over user-defined containers. Given a
candidate loop, we must ensure that it is safe to parallelize, that is, dependences
cannot exist between different iterations of the loop body [12]. In determining
this constraint, our algorithm is different from traditional compiler approaches
in that we ask the library developer to supply the following domain-specific
information to drive the analysis.

– known containers A set of user-defined containers for which the library
writer guarantees element uniqueness, i.e., the instances of the container
class includes no aliased or overlapping elements. All of these containers must
have a forward iterator interface as shown in Figure 1. Since the elements
cannot be aliased to each other, our analysis can safely conclude that it is
safe to parallelize a loop that uses the iterator interface of the container, as
long as the loop body does not carry cross-iteration dependences.

– known functionsA set of user-defined functions whose side effects are known
to the library writer. These functions can include both global functions and
the member functions of user-defined abstractions.

8

class SupportingOmpContainer_list {
// This class is used to support the transformation of iterations over STL
// containers to a form with which we can use OpenMP to parallelize the execution.

public:
typedef list::elementType elementType;
list::elementType** dataPointer;
unsigned int length;

public:
SupportingOmpContainer_list(list & l) {

length = l.size();
dataPointer = new list::elementType* [length];
assert (dataPointer != NULL);

list::iterator p;
int i = 0;
for (p = l.begin(); p != l.end(); p++) {

dataPointer[i++] = &(*p);
}

}

unsigned int size() { return length; }
elementType& operator[](int i) {

return *dataPointer[i];
}

};

Fig. 4. Example: Code fragment showing the implementation of supporting abstraction
for OpenMP translation.

– side effects(f) ∀f ∈ known functions The side effects of each func-
tion f known by the library writer. Specifically, for each function f ∈

known functions, which parameters and global variables can be modified
by f . This information allows us to compute the set of variables modified
by an arbitrary statement without resorting to inter-procedural side effect
analysis.

To collect the above information, we ask the library writer to supply two files:
one contains a list of known containers, each container specified by a string rep-
resenting its class name; the other file contains a list of known functions, each
function specified by a string representing its name (for class member functions,
the class name is counted as part of the function name), a list of strings rep-
resenting the names of global variables modified by the function, and a list of
integers representing the indices of the function paramenters being modified. Our
compiler reads in these two files into a user-specification class object (variable
libSpec in Figure 5), which then uses the information to answer queries from the
parallelization analysis algorithm shown in Figure 5.

Note that by using type names to recognize the parallelizable containers
and iterators, we are able to collect sufficient information without going into
details of describing specific properties, such as the specific interface required
from the container and iteration classes. Similarly, by describing the side effects
of functions using function and variable names, library writers do not need to

9

change their code. This is especially useful if the programmer does not have the
source code of the functions for annotations.

3.3 Safety of Parallelization

Figure 5 presents our algorithm for the safety analysis of parallelizing user-
defined containers, where TestParallelLoop is the top-level function, and func-
tion get modified vars is invoked to compute the set of variables modified by
a list of arbitrary statements. The domain-specific information described in sec-
tion 3.2 is represented as the libSpec input parameter,

TestParallelLoop(l, libSpec)
l: loop to be parallelized;
libSpec: info. from programmer
return: whether loop l can be parallelized

header = get loop header(l)
body = get loop body(l)
if (header iterates over a container c and

c ∈ libSpec.known containers())
cur elem = get current element(c)
local vars = get local declared vars(body)
mod = get modified vars(body, libSpec)
if (mod ==UNKNOWN) return false;
for (each variable var ∈ mod)
if (var 6∈ local vars and var 6= cur elem)

return false;
return true;

return false;

get modified vars(body, libSpec)
body: statements to be examined;
libSpec: info. from programmer
return: variables modified by body

F = get function calls(body);
modV ars = ∅;
for (each function call f ∈ F)
if (f ∈ libSpec.known functions())

modV ars = modV ars∪
libSpec.side effect(f);

else return UNKNOWN
modV ars = modV ars∪

get local mod vars(body);
return modV ars

Fig. 5. Algorithm for safety analysis of parallelization

In Figure 5, the function get modified vars uses the semantic information
in libSpec to help determine the side effects at each iteration of the loop body:
for each statement within the loop body and for each function invocation f

within the statement, if the function does not belong to the known functions
in libSpec, we assume that the function could induce unknown side effects and
thus conservatively disallow the loop parallelization. In addition, the variables
locally modified by each statement is also returned as part of the complete side
effect of the loop body.
The function TestParallelLoop uses both the known containers and known

functions from libSpec to identify opportunities of loop parallelization. First, we
examine the candidate loop to see if it iterates over a container that is known to
be safe to be parallelized. We then invoke get modified vars to summarize the
complete side effect of the loop body. To determine the dependence pattern of
the loop body, for every variable var modified by the loop body, if var is exactly
the element of the container being accessed by the current iteration, or if var is a

10

local variable declared within the loop body, we know that the variable is private
to the current iteration and thus cannot introduce cross-iteration dependences;
otherwise, we assume that the variable could be aliased to a global variable and
disallow the parallelization.
Note that the algorithm in Figure 5 is more conservative than traditional

dependence-based approaches in several ways. For example, we perform no stan-
dard privatizable array analysis, aliasing analysis, interprocedural analysis or
traditional array dependence analysis [12]. Instead, we utilize the C++ variable
declaration syntax (a variable is privatizable only if it is localy declared) and
domain-specific semantic information from library writers to drive the analysis.
However, by configuring our system with library specific type information, we are
able to optimize user-defined objects more effectively than traditional compiler
techniques in many cases.

3.4 OpenMP Transformation

OpenMP transformations are specified as source-to-source translations. The in-
put program is a sequential C++ program in which we introduce OpenMP
pragmas and transform parts of the program into a canonical OpenMP form
if necessary.
A transformation is specified as semantic actions of the abstract C++ gram-

mar. In the following example we show how the attribute grammar in combina-
tion with the use of source-strings and AST replacement operations, allows to
specify the introduction of OpenMP pragmas and the transformation of for-loops
to conform to the required canonical form of an omp parallel for.

Before transformation

Foo f; list l;
...
for (list::iterator i = l.begin(); i != l.end(); i++) {

f.foo(*i);
}

After transformation

Foo f; list l;
...

// Build the supporting container
SupportingOmpContainer_list l2 (l);

#pragma omp parallel for
for (int i = 0; i < l2.size(); i++) {

f.foobar(l2[i]);
}

Fig. 6. An iteration on a user-defined container l that provides an iterator interface.
The object f is an instance of the user-defined class Foo. Object l is of type list. In
the optimization the iterator is replaced by code conforming to the required canonical
form of an OpenMP parallel for.

11

In the example source in fig. 6 we show an iteration on a user-defined con-
tainer with an iterator. This pattern is frequently used in applications using
C++98 standard container classes. The object f is an instance of the user-defined
class Foo. The transformation we present takes into account the semantics of the
type Foo and the semantics of class list. The transformation is therefore specific
to these classes and its semantics.

For the type list we know that the type iterator defined in the class follows
the iterator pattern as used in the STL. For the type Foo we know that the
method f is thread safe. We show the core of a transformation to transform the
code into the canonical form of a for-loop as required by the OpenMP standard.
We also introduce the OpenMP pragma directive. Note that the variable i in
the transformed code is implicitly private according to the OpenMP standard
2.0.

In the example in fig. 7 the grammar rule of SgScopeStatement is shown. The
terminal SgForStatement in the example corresponds to the class SgForStatement.
The semantic actions associated with this rule are executed whenever a node of
type SgForStatement is parsed. The variable astNode is a pointer to the respec-
tive AST node of the terminal and assigned by our supporting system when the
scanner accesses the token stream. Note that every terminal in the grammar
corresponds to a node in the AST, except the parentheses.

Methods of the object subst allow to insert new source code and delete sub-
trees in the AST. The substitution object subst buffers pairs of target location
and string. The substitution is not performed before the semantic actions of
all subtrees of the target location node have been performed. This mechanism
allows to check whether substitutions would operate on overlapping subtrees of
the AST (in the same attribute evaluation). In case of overlapping subtrees an
error is reported.

The object query is of type AstQuery and provides frequently used methods
for obtaining information stored in annotations of the AST. These methods are
also implemented as attribute evaluations.

The inherited attribute forNestingLevel is used to handle the nesting of
for-loops. It depends on how an OpenMP compiler supports nested parallelism
whether we want to parallelize inner for statements or only the outer for state-
ment. In the example isUserDefIteratorForStatement is a boolean function
which determines whether a for-loop should be parallelized or not. It uses the
algorithm TestParallelLoop, see Fig. 5 and additional information which can be
provided by using attributes. In the example we only use the nesting level of
for-loops as additional information.

The object query of type AstQuery offers methods to provide information
on subtrees that have been proven to be useful in different transformations. In
the example we use it to obtain variable names and type names. The example
shows how we can decompose different aspects of a transformation into separate
attribute evaluations. The methods of the query object are implemented by using
the attribute evaluation.

12

SgScopeStatement<unsigned int forNestingLevel>
= SgForStatement

(.
bool isOmpForQualified
= ompTransUtil.isUserDefIteratorForStatement(astNode,forNestingLevel);

.)
"(" SgForInitStatementNT<forNestingLevel> SgExpressionRootNT

SgExpressionRootNT SgBasicBlockNT<forNestingLevel+1>
")"

(.
if(isOmpForQualified) {

string iVarName = query.iteratorVariableName(astNode);
string iContName = query.iteratorContainerName(astNode);
string iContType = query.iteratorContainerType(astNode);
string parTypeName = ompTransUtil.supportingParType(astNode,iContType);
string parContName = ompTransUtil.uniqueVarName(astNode,iContName);
string modifiedBodyString

= ompTransUtil.derefToIndexBody(astNode,iVarName,iContName);
string support = parTypeName+" "+parContName+"("+iContName+");\n";
string beforeForStmt

= "#pragma omp parallel for\n";
string newForStmt = "for(int "+iVarName+"=0;"

+ iVarName+"<"+parContName+".size();"
+ iVarName+"++) "+modifiedBodyString;

subst.replace(astNode,support + beforeForStmt + newForStmt);
}

.)
| ...

Fig. 7. A part of the SgScopeStatement rule of the abstract C++ grammar with the
semantic action specifying the transformation of a SgForStatement.

In fig. 6 the generated code is shown. The access uses the notation for random
access iterators. The SupportingOmpContainer list class is used to generate
an array of pointers to all elements of the list to achieve a complexity of O(1)
for the element access. The list of pointers is generated when the supporting
container l2 is created. When the generated code is compiled with an OpenMP
compiler the body is executed in parallel.
Note that the generated source code can have a slightly different format-

ting because the format of the source code is a beautified version of the source
corresponding to the transformed AST.

4 Related Work

The research community has developed many automatic parallelizing compil-
ers. Examples of these research compilers include the DSystem [7], the Fx com-
piler [8], the Vienna Fortran Compiler [9], the Paradigm compiler [10], the Polaris
compiler [11], and the SUIF compiler [13]. However, except for SUIF, which has
front-ends for Fortran, C, and C++; the others listed above optimize only For-
tran applications. By providing a C++ front-end for automatic parallelization,
we complement previous research in providing support for higher-level object-
oriented languages. In addition, we extend previous techniques by utilizing the
semantic information of user-defined containers and thus allowing user-defined
abstractions to be treated as part of a domain-specific language.

13

As more and more programmers are using OpenMP to express parallelism,
many OpenMP supporting compilers were developed, including both research
projects [14–17] and commercial compilers [18–21]. In addition to OpenMP-
directive translation, many research compiler infrastructures also investigate
techniques to automatically generate OpenMP directives and to optimize the
parallel execution of OpenMP applications. However, these research compilers
only support applications written in C or FORTRAN, while existing commercial
C++ compilers target only specific machine architectures and do not provide an
open source-to-source transformation interface to the outside world. By provid-
ing a flexible source-to-source translator, we complement previous research by
presenting an open research infrastructure for optimizing C++ constructs and
OpenMP directives.

A relatively large body of work uses parallel libraries or language extensions,
or both, to allow the user to parallelize the code. The Parallel Standard Library
[22] uses parallel iterators as a parallel equivalent to STL iterators and provides
some parallel algorithms and containers. NESL [23], CILK [24], and SPLIT-C
[25] are extended programming languages with NESL providing a library of algo-
rithms. STAPL [26] borrows from the STL philosophy, i.e., containers, iterators,
and algorithms. The user must use pContainers, pRange (similar to iterators),
and pAlgorithms to express parallelism. STAPL is further distinguished in that
it emphasizes both automatic support and user-specified policies for scheduling,
data composition, and data dependence enforcement.

In contrast, with our approach the application developer does not need to
learn language extensions nor does he need to use a parallel library. It is the
library writer who needs to provide additional information, such as side effects,
aliasing, etc., about the abstractions used in the library. He then builds a trans-
lator using the infrastructure presented in section 2. This translator is used by
the application developer to automatically parallelize the sequential user code.

The Broadway Compiler system [27] is in some aspects similar to our ap-
proach. It uses an annotation language and a compiler that together can cus-
tomize a library implementation for specific application needs. The annotation
language used in the Broadway Compiler is more sophisticated. However, it
addresses optimizations of C programs only which does not allow as great a
flexibility in the expression of high-level abstractions as C++.

5 Conclusions and Future Work

This paper presents a C++ infrastructure for semantic-driven parallelization of
computations that operate on user-defined containers that have an access inter-
face similar to that provided by the Standard Template Library in C++. First,
we provide an interface for library developers to inform our compiler about the
semantics of their containers and the side-effects of their library functions. Then,
we use this information to parallelize loops that iterate over these containers au-
tomatically when it is safe to do so.

14

Our analysis algorithm conservatively disallows the parallelization of loops
that modify non-local memory locations, that is, memory locations that are not
elements of the user-defined container and are defined outside of the loop. In
the future, we will extend our algorithm to be more precise by incorporating
global alias analysis and array dependence analysis techniques [12]. This more
sophisticated algorithm will be as precise as those used by other automatic par-
allelizing compilers [7–11, 13], while still being more aggressive for user-defined
abstractions by optimizing them as part of a domain-specific language.

References

1. Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1994.
2. Daniel Quinlan, Brian Miller, Bobby Philip, and Markus Schordan. Treating a

user-defined parallel library as a domain-specific language. In 16th International
Parallel and Distributed Processing Symposium (IPDPS, IPPS, SPDP), pages 105–
114. IEEE, April 2002.

3. Daniel Quinlan, Markus Schordan, Brian Miller, and Markus Kowarschik. Parallel
object-oriented framework optimization. Special Issue of Concurrency: Practice
and Experience, 2003, to appear.

4. Edison Design Group. http://www.edg.com.
5. Francois Bodin, Peter Beckman, Dennis Gannon, Jacob Gotwals, Srinivas

Narayana, Suresh Srinivas, and Beata Winnicka. Sage++: An object-oriented
toolkit and class library for building fortran and C++ restructuring tools. In
Proceedings. OONSKI ’94, Oregon, 1994.

6. Hanspeter Moessenboeck. Coco/R - A generator for fast compiler front-ends.
techreport, ETH Zurich, February 1990.

7. V. Adve, G. Jin, J. Mellor-Crummey, and Q. Yi. High performance fortran com-
pilation techniques for parallelizing scientific codes. In Proceedings of SC98: High
Performance Computing and Networking, Nov 1998.

8. J. Subhlok, J. Stichnoth, D. O’Hallaron, and T. Gross. Exploiting task and data
parallelism on a multicomputer. In Proc. of the Sixth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), San Diego, May
1993.

9. S. Benkner. Vfc: The vienna fortran compiler. Scientific Programming, 7(1):67–81,
1999.

10. P. Banerjee, J. A. Chandy, M. Gupta, J. G. Holm, A. Lain, D. J. Palermo, S. Ra-
maswamy, and E. Su. The paradigm compiler for distributed-memory message
passing multicomputers. In in Proceedings of the First International Workshop on
Parallel Processing, Bangalore,India, Dec 1994.

11. D. Padua, R. Eigenmann, J. Hoeflinger, P. Petersen, P. Tu, S. Weatherford, and
K. Faigin”. Polaris: A new-generation parallelizing compiler for mpp’s. Technical
Report 1306, Univ. of Illinois at Urbana-Champaign, Center for Supercomputing
Res. and Dev., june 1993.

12. R. Allen and Ken Kennedy. Optimizing Compilers for Modern Architectures. Mor-
gan Kaufmann, San Francisco, October 2001.

13. M. S. Lam S. P. Amarasinghe, J. M. Anderson and C. W. Tseng. The suif compiler
for scalable parallel machines. In in Proceedings of the Seventh SIAM Conference
on Parallel Processing for Scientific Computing, Feb 1995.

15

14. Christian Brunschen and Mats Brorsson. OdinMP/CCp - a portable implementa-
tion of openMP for c. In European Workshop on OpenMP, September 1999.

15. Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, and Yoshio Tanaka. Design
of openMP compiler for an SMP cluster. In European Workshop on OpenMP,
September 1999.

16. Eduard Ayguade, Marc Gonzalez, and Jesus Labarta. Nanoscompiler: A research
platform for openMP extensions. In European Workshop on OpenMP, September
1999.

17. Seung Jai Min, Seon Wook Kim, Michael Voss, Sang Ik Lee, and Rudolf Eighmann.
Portable compilers for openMP. In Workshop on OpenMP Applications and Tools,
July 2001.

18. Silican Graphics Inc. Optimizing Compilers for High-Performance Computing.
www.sgi.com/developers/devtools/languages/mipspro.html.

19. IBM. VisualAge C++ Professional for AIX V6.0. www-
1.ibm.com/servers/eserver/ecatalog/us/software/6146.html.

20. Xinmin Tian, Aart Bik, Milind Girkar, Paul Grey, Hideki Saito, and Ernesto Su.
Intel openMP C++/Fortran compiler for hyper-threading technology: Implemen-
tation and performance. Intel Technology Journal, 6(1):36–46, 2002.

21. Fujitsu. Fortran & C Packages for SPARC Solaris.
www.fr.fse.fujitsu.com/devuk/solaris.shtml.

22. E. Johnson, D. Gannon, and P. Beckman. HPC++: Experiments with the parallel
standard template library. In Proceedings of the 11th International Conference on
Supercomputing (ICS-97), pages 124–131, New York, July 7–11 1997. ACM Press.

23. Guy E. Blelloch. NESL: A nested data-parallel language. Technical Report CMU-
CS-93-129, Carnegie Mellon University, April 1993.

24. Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation
of the Cilk-5 multithreaded language. In Proceedings of the ACM SIGPLAN ’98
Conference on Programming Language Design and Implementation, pages 212–223,
1998.

25. David E. Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishnamurthy,
Steven Lumetta, Thorsten von Eiken, and Katherine Yelick. Parallel programming
in split-C. International Conference on Supercomputing, November 1993.

26. L. Rauchwerger, F. Arzu, and K. Ouchi. Standard templates adaptive parallel
library (STAPL). Lecture Notes in Computer Science, 1511:402–412, 1998.

27. Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing software
libraries. ACM SIGPLAN Notices, 35(1):39–52, January 2000.

