
To Inline or Not to Inline?

Enhanced Inlining Decisions

Peng Zhao and José Nelson Amaral

Department of Computing Science University of Alberta, Edmonton, Canada
{pengzhao, amaral}@cs.ualberta.ca

Abstract. The decision to inline a procedure in the Open Research
Compiler (ORC) was based on a temperature heuristics that takes into
consideration the time spent in a procedure and the size of the proce-
dure. In this paper we describe the trade-off that has to be worked out to
make the correct inlining decisions. We introduce two new heuristics to
enhance the ORC inlining heuristics: adaptation and cycle density. With
adaptation we are allowed to vary the temperature threshold and prevent
penalizing small benchmarks. With cycle density we prevent the inlining
of procedures that have a high temperature in spite of being called infre-
quently. Experiments show that while adaptation improves the speedup
obtained with inlining across the SPEC2000 suite, cycle density reduces
significantly both the code growth and compilation time increase caused
by inlining. We then characterize the SPEC INT2000 benchmarks ac-
cording to the inlining potential of their function calls. Our enhancement
is released in the ORC 2.0.

1 Introduction

Function inlining is a very important optimization technique that replaces a
function call with the body of the function [2, 5–8, 10, 13, 19, 14]. One advan-
tage of inlining is that it eliminates the overhead resulting from function calls.
The savings are especially pronounced for applications where only a few call
sites are responsible for the bulk of the function invocations because inlining
those call sites significantly reduces the function invocation overhead. Inlining
also expands the context of static analysis. This wider scoped analysis creates
opportunities for other optimizations.

However, inlining has negative effects. One problem with inlining is the
growth of the code, also known as code bloat. With the growth of functions
because of inlining, the compilation time and the memory space consumption
may become intolerable because some of the algorithms used for static analysis
have super-linear complexity. Besides the time and memory resource cost, in-
lining might also have the adverse effect of increasing the execution time of the
application. After inlining the register pressure may become a limitation because
the caller now contains more code, more variables, and more intermediate values.
This additional storage requirement may not fit in the register set available in

the machine. Thus, inlining may increase the number of register spills resulting
in a larger number of load and store instructions executed at runtime.

The above discussion of the benefits and drawbacks of inlining leads to an
intuitive criteria to decide which call sites are good candidates for profitable
inlining. The benefits of inlining (elimination of function call overhead and en-
abling of more optimization opportunities) depend on the execution frequency
of the call site. The more frequently a call site is invoked, the more promising
the inlining of the site is. On the other hand, the negative effects of inlining
relate to the size of the caller and the size of the callee. Inlining large callees
results in more serious code bloat, and, probably, performance degradation due
to additional memory spills or conflict cache misses.

Thus, we have two basic guidelines for inlining. First, the call site must be
very frequent, and, second, neither the callee nor the caller should be too large.
Most of the papers that address inlining take these two factors in consideration
in their inlining analysis.

In this paper we describe our experience in tunning the inlining heuristics
for the Open Research Compiler (ORC). The main contributions of this paper
are:

– We propose adaptive inlining to enable aggressive inlining for small bench-
marks. Usually, small benchmarks are amenable to aggressive inlining as
shown in section 4. Adaptive inlining becomes conservative for large bench-
marks such as GCC because the negative effects of aggressive inlining are
often more pronounced in such benchmarks.

– We introduce the concept of cycle density to control the code bloat and
compilation time increase.

– Our detailed experimental results show the potential of inlining. We inves-
tigate the impediments to beneficial inlining and reveal further research op-
portunities.

The rest of the paper is organized as follows: Section 2 describes the ex-
istent inlining analysis in ORC. Section 3 describes our enhancements of the
inlining analysis (adaptive inlining and cycle density heuristics) and Section 4
is the performance study. Section 5 reviews related work. Section 6 quantifies
impediments to inlining and discusses our ongoing research.

2 Overview of ORC Inlining

In order to control the negative effects of inlining, we should inline selectively.
The problem of selecting the most beneficial call sites while satisfying the code
bloat constraints can be mapped to the knapsack problem, which has been shown
to be NP-complete [11, 17]. Thus, we need heuristics to estimate the gains and
the costs of each potential inlining. ORC used profiling information to calculate
the temperature of a call site to approximate the potential benefit of inlining

an edge Ei(p, q) (i.e. a call site in function p which calls function q in the call
graph).1

temperatureEi(p,q) =
cycle ratioEi(p,q)

size ratioq

(1)

where:

cycle ratioEi(p,q) =
freqEi(p,q)

freqq

×

cycle countq

Total cycle count
(2)

freqEi(p,q) is the frequency of the edge Ei(p, q) and freqq is the overall execu-
tion frequency of function q in the training execution.

Total cycle count is the estimated total execution time of the application:

Total cycle count =
∑

k ∈ PUset

cycle countk (3)

PUset is the set of all program units (i.e. functions) in the program, cycle countq

is the estimated number of cycles spent on function q.

cycle countq =
∑

i ∈ stmtsq

freqi (4)

where stmtsq is the set of all statements of function q, freqi is the frequency
of execution of statement i in the training run.

Furthermore, the overall frequency of execution of the callee q is computed
by:

freqq =
∑

k ∈ callersq

freqEi(k,q) (5)

where callersq is the set of all functions that contain a call to q.
Essentially, cycle ratio is the contribution of a call graph edge to the ex-

ecution time of the whole application. A function’s cycle count is the exe-

cution time spent in that function, including all its invocations. (
freqEi(p,q)

freqq
∗

cycle countq) is the number of cycles contributed by the callee q invoked by the
edge Ei(p, q). Thus, cycle ratioEi(p,q) is the contribution of the cycles resulting
from the call site Ei(p, q) to the application’s total cycle count. The larger the
cycle ratioEi(p,q) is, the more important the call graph edge.

size ratioq =
sizeq

Tatal application size
(6)

Total application size is the estimated size of the application. It is the sum
of the estimated sizes of all the functions in the application. sizeq, the estimated
size of the function q, is computed by:

1 Because function p may call q at different call sites, the pair (p, q) does not define
an unique call site. Thus, we add the subscript i to uniquely identify the ith call site
from p to q.

sizeq = 5 ∗ BB countq + STMT countq + CALL countq (7)

where BB countq is the number of basic blocks in function q and reflects
the complexity of the control flow in the PU, STMT countq is the number of
statements in q, excluding non-executable statements such as labels, parameters,
pragmas, and so on, and CALL countq is the number of call sites in q.

The size ratioq is the callee q ’s contribution to the whole application’s size.
And the Total application size is given by:

Total application size =
∑

k ∈ PUset

sizek (8)

With careful selection of a threshold, ORC can use temperature to find cycle-
heavy calling edges whose callee is small compared to the whole application.

0.1

1

10

100

1000

10000

0.11101001000100001000001e+06

T
em

pe
ra

tu
re

Frequency of call sites

Temperature distribution of bzip2

Fig. 1. Temperature Distribution of BZIP2

For instance, Figure 1 shows the distribution of the temperature for the
BZIP2 benchmark.2 The horizontal axis shows the calling frequency and the
vertical axis the temperature. Each dot in the graph represents an edge in the
call graph. The temperature varies in a wide range: from 0 to 3000. The calling
frequency is shown in reverse order, the most frequently called edges appear to
the left of the graph and the least frequently called are toward the right. From left
to right, the temperature usually decreases as the frequency of the call sites also
decreases. It is reasonable that the temperature doesn’t go straight down because
besides the call site frequency, the temperature heuristics also takes the callee’s
size into consideration. Procedure size negatively influences the temperature.
Thus, frequently invoked call sites might be “cold” simply because they are too
large.

2 To make it easy to read, the two axes of the graphs are drawn in log scale, thus some
call sites whose frequencies or temperatures are 0 are not shown in the graph. The
same situation exists in Figure 3.

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500

Fr
eq

ue
nc

y
ac

cu
m

ul
at

io
n

Call sites ordered by frequency from high to low

gcc frequency accumulation

Fig. 2. Frequency accumulation of GCC (Only the top 2750 of all the 19,000 call sites
are plotted.)

In the original ORC inlining heuristic, an edge (call site) is rejected for in-
lining if its temperature is less than a specified threshold. The intuition for this
heuristic is that edges with high temperature are call-sites that are invoked fre-
quently and whose callee is small compared to the entire application.

3 Inlining Tuning

We improve the inlining heuristics of ORC in two ways. First, adaptive inlin-
ing is employed to make the inlining heuristics more flexible. Second, a new
cycle density heuristics is introduced to restrict the inlining of “hot” but infre-
quent procedures.

3.1 Adaptive Inlining

The original inlining heuristic in ORC used a fixed temperature threshold (120)
for inlining decisions. This threshold was chosen as a trade-off among compilation
time, executable sizes and performance results of different benchmarks. However,
a fixed threshold turns out to be very inflexible for applications with very dif-
ferent characteristics. For example, a high threshold (e.g. 120) is reasonable for
large benchmarks because they are more vulnerable to the negative effects of
code explosion resulting from inlining. However, the same threshold might not
be good for small applications such as MCF, BZIP2, GZIP etc . We will use
GCC, which is a typical large application, and BZIP2, which is a representative
small application, to illustrate this problem.

Figure 2 shows the frequency accumulation for the GCC benchmark and
Figure 3 shows its temperature distribution. In Figure 2, the X-axis represents
the call sites sorted by invocation frequency from high to low. The ith point
numbered from left to right in the figure represents the accumulated percentage
of the i most frequent call sites.

GCC has a very complex function call hierarchy and the function invocations
are distributed amongst a large number of call sites: there are more than 19,000
call sites in GCC. In the standard SPEC2000 training execution, there are more
than 42,000,000 function invocations, and the most frequent call site is called no
more than 800,000 times. Figure 2 shows that the top 10% (about 2,000) most
frequently invoked call sites account for more than 95% of all the function calls.
Inlining these 2,000 call sites would result in substantial compilation cost and
code bloat.

In Figure 3, according to the frequency of execution, we should inline the
call sites on the left hand side of the graph and we should avoid inlining the call
sites on the right hand side. Notice that several call sites on the right hand side
are hot, and thus are inlined by the original heuristics of ORC.

For large applications, the improvement from inlining is usually very limited
(as we will see in the section 4). On one hand, it is impossible to eliminate
most of the function overheads without wholesale inlining. On the other hand, if
we use the same temperature threshold as for small benchmarks, we might end
up with the problem of over-inlining , i.e. too many procedures are inlined and
the negative effects of inlining are more pronounced than the positive ones. For
example, if the temperature threshold is set to 1, there will be more than 1,700
call sites inlined in GCC. Such aggressive inlining makes the compilation time
much longer without performance improvement as our experiments show.

0.1

1

10

100

1000

10000

100000

0.11101001000100001000001e+06

T
em

pe
ra

tu
re

Frequency of call sites

Temperature distribution of gcc

Fig. 3. Temperature Distribution of GCC

The high temperature threshold (120) in the original ORC was chosen to
avoid over-inlining in large applications. However, this conservative strategy im-
pedes aggressive inlining for small benchmarks where code bloat is not as promi-
nent. For instance, Figure 1 and Figure 4 show the temperature distribution and
frequency accumulation of the BZIP2 benchmark. There are only 239 call sites
and about 3,900 lines of C code in BZIP2. This implies that the program is quite
small (compared to more than 19,000 call sites and 190,000 lines of C code in

the GCC benchmark). Moreover, in BZIP2 the top ten most frequently invoked
call sites (about 4.2% of the total number of call sites) accounts for nearly 97%
of all the function calls (Figure 4).

As we will see in the section 4, aggressive inlining is good for small bench-
marks such as BZIP2: inlining the 10 most frequently invoked call sites in BZIP2
eliminates almost all the function calls.

However, the inflexible temperature threshold often prevents the inlining of
the most frequent call sites (the points in the shadowed area in Figure 1) because
their temperatures are lower than the fixed threshold (120). Thus, it is desirable
that the temperature threshold for small benchmarks be lowered because many
of the call sites that have performance potential do not reach the conservative
temperature threshold used to prevent code bloat in large applications.

The contradiction between the threshold distributions of large benchmarks
and small ones naturally motivates adaptive inlining: we use high temperature
threshold for large applications because they tend to have many ”hot” call sites;
and we enable more aggressive inlining for small applications by lowering the
temperature threshold for them.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

Fr
eq

ue
nc

y
ac

cu
m

ul
at

io
n

Call sites ordered by frequency from high to low

bzip2 frequency accumulation

Fig. 4. Frequency accumulation of BZIP2 (Only the top 38 of all the 239 call sites are
plotted.)

Adapting the inlining temperature threshold according to application size is
pretty simple in ORC. Because the estimated size of each procedure in ORC
is available in the Inter-Procedural Optimization (IPO) phase, their sum is the
estimated size of the application.3 We classify applications into three categories:
large applications, median applications and small applications. In the compila-
tion, we utilize proper temperature threshold according to the estimated appli-
cation size. If an application is a large application, its temperature threshold is
120. If it is a median application, its temperature threshold is 50. Otherwise, the

3 We ignore library functions and dynamic shared-objects because we cannot acquire
this information at compilation time.

temperature threshold is lowered to 1. The threshold values were obtained by a
detailed empirical study of the SPEC2000 benchmarks.4 This division of appli-
cations into three categories produces better results than any single threshold
applied to all benchmarks.

// decide if a call site should be inlined (returning TRUE)

// or not (returning FALSE).

BOOL inlining_analysis(call_site)

{

// MEDIAN_THRESHOLD & LARGE_THRESHOLD are pre-selected thresholds

// to classify the application as large, small or median

if (estimated_size < MEDIAN_THRESHOLD)

temperature_threshold = 1;

else if (estimated_size < LARGE_THRESHOLD)

temperature_threshold = 50;

else

temperature_threshold = 120;

// temperature_analysis() computes the temperature of a call site

// and compares it with temperature_threshold. It returns TRUE if

// this call site is "hot" enough for inlining and FALSE otherwise.

if (temperature_analysis(temperature_threshold, call_site)) {

// if this is the only call to the callee in the entire

// application, ORC inlines it anyway

if (called_only_once(callee))

return TRUE;

// cycle_density_analysis() computes the cycle_density of the

// callee and compare it with the cycle_density threshold to

// decide whether the callee is ‘‘heavy’’ or not

if (cycle_density_analysis(call_site))

return TRUE;

else

return FALSE;

}else {

return FALSE; // do not inline this call site

}

}

Fig. 5. Adaptive inlining in ORC.

4 This approach is not unlike the application of machine learning to tune compilers
used in [18]. However in our case we chose the parameter through manual tuning.

3.2 Cycle density

The intuition behind the definition of temperature is that hot procedures should
be frequently invoked and not too large. However, as we have seen in Figure 3 and
Figure 1, some of the procedures with high temperature are not actually “hot”,
i.e. some infrequently invoked call sites also have high temperatures (those points
in the top-right part of the graphs). These call sites correspond to functions that
are not called frequently, but contain high-trip count loops that contribute to
their high cycle ratio, which result in a high temperature (see Equation 2). We
call the functions that are called infrequently but have high temperatures heavy

functions.

Inlining heavy functions results in little performance improvement. First,
very few runtime function calls are eliminated. Second, the path from the caller
to a heavy function is not a hot path at all, and thus will not benefit from post-
inlining optimization. Third, inlining heavy functions might prevent frequent
edges from being inlined if the code growth budget is spent. To handle this
problem, we introduce cycle density to filter out heavy functions.

cycle densityq =
cycle countq

frequencyq

(9)

where cycle countq is the number of cycles spent on procedure q and frequencyq

is the number of times that the procedure q is invoked.

When a call site fulfills the temperature threshold, the cycle density of the
callee is computed. If the callee has a large cycle count but small frequency, i.e.

its cycle density is high, it must contain loops with high trip count. These heavy
procedures are not inlined. cycle density has little impact on the performance
because it only filters out infrequent call sites. However, cycle density can sig-
nificantly reduce the compilation time and executable sizes, which is important
in some application contexts, such as embedded computing.

0.1

1

10

100

1000

10000

100000

1e+06

1e+07

0.11101001000100001000001e+06

H
ot

ne
ss

 a
nd

 f
re

q_
de

ns
ity

Frequency of call sites

hotness VS. freq_density

hotness
density

Fig. 6. Cycle Density VS. Temperature (BZIP2)

Figure 6 compares the temperature against the cycle density for each call
site in BZIP2. For call sites that are actually “hot”, the temperature is indeed
high while the cycle density is low (for BZIP2 they are always less than 0.5).
These call sites are the ones that will benefit from inlining.

Infrequently invoked call sites fall into two categories according to their tem-
peratures. Infrequently invoked call sites with low temperature are eliminated by
the temperature threshold. Infrequently invoked call sites with high temperature
always have very high cycle density. Thus we can prevent the inlining of these
sites by choosing a proper cycle density threshold. In our tuning, we use a fixed
cycle density threshold of 10 that works well for the SPEC2000 benchmarks as
we will see in the next section.

We implemented this enhanced inlining decision criteria and contributed it
to the ORC-2.0 release. Figure 5 shows the C-style pseudo code for the improved
inlining analysis in the ORC. Notice that a procedure that has a single call site in
the entire application will always be inlined. The reasoning is that the inlining of
that single call site will render the callee dead, and will allow the elimination of
the callee, therefore this inlining will save function invocations without causing
code growth.

4 Results

4.1 Experimental Environment

We investigate the effects of adaptive inlining and of the introduction of the
cycle density heuristic on performance, compilation time, and the final exe-
cutable size of SPEC INT2000 benchmarks. We use a cross-compilation method:
we run ORC on an IA32 machine (a SMP machine with 2 Pentium-III 600MHz
processors and 512MB memory) to generate an IA64 executable which is run
on an Itanium machine (733MHz Itanium-I processor, 1GB memory). Thus our
performance comparison is conducted on the IA64 systems and our compilation
time comparison is conducted on the IA32 system. All direct measurements are
the average result of three independent runs.

4.2 Performance Analysis

Figure 7 shows the performance improvement when different inlining strategies
are used. T120 represents a fixed temperature threshold of 120, T1, is a fixed
temperature threshold of 1, similarly for the other T labels. In adaptive the
temperature threshold varies according to the adaptation heuristic described
in Section 2. In the adaptive+density compiler, both the adaptation and the
cycle density heuristics are used.

Except for PERLBMK, in all benchmarks the adaptation heuristic results
in positive speedup for inlining.5 These results suggest that our adaptive tem-
perature threshold is properly selected. In some cases the difference between a

5 Inlining seems to always have a slight negative effect on the performance of
PERLBMK. We are currently investigating this benchmark in more detail.

−10

−5

0

5

10

15

mcf bzip2 gzip parser vpr crafty twolf vortex gap perlbmk gcc

sp
ee

du
p

Benchmarks

Inlining speedup (compared with no inlining)

T120
T100
T70

T50
T20
T10

T1
adaptive

adaptive+density

Fig. 7. Overall performance comparison

fixed threshold and the threshold chosen with adaptation is very significant (see
BZIP2 and TWOLF). Note also that the addition of cycle density to adaptation
does not produce much effect on performance. This result is explained by the
fact that cycle density only prevents heavy and infrequently invoked functions
from inlining.

We arranged the benchmarks in Figure 7 according to their sizes with the
smaller benchmarks on the left and the larger ones on the right. Comparatively,
in general, for small benchmarks inlining yields better speedups than for large
benchmarks. This observation can be made by examining the maximum perfor-
mance improvement from all the strategies. Excluding TWOLF and VORTEX,
the maximum performance improvement decreases from left to right (from small
benchmark to large benchmarks). This trend suggests a loose correlation be-
tween the application size and potential performance improvements that can be
obtained from inlining.

0

1

2

3

4

5

6

T120 T100 T70 T50 T20 T10 T1 adap adap+density

%
 im

pr
ov

em
en

t

Strategy

Final Performance Comparison

Fig. 8. Final Performance Comparison

Executable Size Compilation Time

Benchmarks no inline adaptive adap+density no inline adaptive adap+density
(Bytes) % inc calls % inc calls (Secs) % increase % increase

bzip2 116295 54.1 89 26.9 88 70.356 117.8 71.3

gcc 4397983 4.4 919 4.4 919 4194.54 6.0 4.0

crafty 635855 20.1 204 20.1 204 440.687 30.9 30.9

gap 1977644 9.7 345 7.3 343 1409.18 9.1 2.7

gzip 147417 67.6 62 28.0 54 109.457 93.8 41.2

mcf 48241 -0.5 19 -6.3 17 41.832 9.3 8.5

parser 340223 18.1 239 16.4 224 274.868 17.1 12.9

perlbmk 2163047 7.5 419 7.5 419 1518.37 10.6 8.9

twolf 823832 10.6 147 10.6 147 646.769 19.8 20.5

vortex 1170014 31.4 210 31.1 208 1162.27 33.0 36.5

vpr 532912 17.5 141 16.4 139 293.683 30.2 26.2

average 21.9 14.8 34.3 24.0
Table 1. cycle density’s impact on executable size and compilation time

Figure 8 compares the performance improvements of different strategies more
explicitly. Each bar represents the average performance speedup for the 11 bench-
marks studied. The base line is the average performance of the 11 benchmarks
compiled without inlining. And the two rightmost bars are for adaptive inlining
without and with cycle density heuristics. Adaptive inlining strategy speeds up
the benchmarks by 5.28%, while the best average performance gain of all other
strategies is 4.45% when the temperature threshold is 50. Notice also that the
performance influence of cycle density heuristics is negligible.

4.3 Compilation Time and Executable Size Analysis

In this section, we study the effect of the cycle density heuristics on the compi-
lation time and on the executable size. Because cycle density filters procedures
that have high temperatures but are infrequently invoked call sites, we expected
that its use should reduce both the compilation time and the final executable
size.

Table 1 shows the executable size, measured in bytes, and the compilation
time, measured in seconds, for all benchmarks when no inlining is performed.
Then for the compiler with adaptive inlining and the compiler with adaptive
inlining with cycle density, the table displays the percentage increase in the
executable size and on the compilation time. The table also show, under the
“calls” columns, the number of call sites that were inlined in each case.

The cycle density heuristic significantly reduces the code bloat and com-
pilation time problem. On average, adaptive inlining increases the code size
by 21.9% and the compilation time by 34.3%. When cycle density is used to
screen out heavy procedures, these numbers reduce to 14.8% and 24%, respec-
tively. It is also interesting to compare the actual number of inlined call sites:
the cycle density heuristic only eliminates a few call sites. Except for GZIP and

PARSER, cycle density prevents the inlining of no more than 2 call sites in each
benchmark. Table 1 also shows some curious results. Although cycle density

prevents the inlining of a single call site for BZIP2, the code growth reduces
from 54.1% to 26.9%. A close examination of BZIP2 reveals that the procedure
doReversibleTransformation calls sortIt infrequently (only 22 times in the
standard training run). However ORC performs a bottom-up inlining, in which
the edges in the bottom of the call graph are analyzed and inlined first. In the
BZIP2 case, sortIt absorbs many functions and becomes very large and heavy

before it is analyzed as the callee. When ORC analyzes the call sites that have
sortIt as the callee, the estimated cycle number spent in sortIt is huge, which
contributes to its high temperature. However, sortIt is called infrequently and
its inlining does not produce measurable performance benefits. cycle density

filters these heavy functions successfully.
Finally, cycle density only eliminates a few call sites because it is not applied

to callees that are only called at one call site in the entire application (see
Figure 5).

5 Related Work

Ayers et al. [2] and Chang et al. [5, 13] demonstrate impressive performance im-
provement by aggressive inlining and cloning. Their inlining facility is very much
like that in ORC: the inlining happens on high level intermediate representation;
they both use feedback information and apply cross-module analysis.

Without feedback information, Allen and Johnson perform inlining at source
level [1]. Besides reporting impressive speedup (12% in average), they also show
that inlining might exert negative impact on performance.

A series of special inlining approaches were developed to improve the per-
formance of applications that employ indirect function calls or virutal function
calls intensively [3, 4, 9, 10, 12].

6 Ongoing Work

Figure 9 shows how many dynamic function calls we can eliminate using our
adaptive inlining technique. We divided the function calls into five different cat-
egories:

Inlined Call sites that can be inlined with our adaptive inlining technique.
These call sites have high temperature and low cycle density.

NotHot Call sites that are not frequently invoked. It brings no benefit to inline
these call sites.

Recursive ORC does not inline call sites that are in a cycle in the call graph.
Large Call sites that have high temperature but cannot be inlined because ei-

ther the callee, the caller or their combination is too large. GCC, PERLBMK,
CRAFTY and GAP have some large call sites.

mcf bzip2 gzip parser vpr crafty twolf vortex gap perlbmk gcc
0

10

20

30

40

50

60

70

80

90

100

Benchmarks

ca
ll

si
te

s
br

ea
kd

ow
n

Call sites breakdown

Inlined
Recursive
Large
NotHot
Other

Fig. 9. Call Sites Breakdown

Other Call sites that cannot be inlined due to some other special reasons. For
example, the actual parameters to the call sites do not match the formal
parameters of the callee. As Figure 9 shows, these call sites are very rare.

With our enhanced inlining framework, we were able to eliminate most of the
dynamic function calls for small benchmarks such as MCF, BZIP2 and GZIP.
However we only eliminated about 30% dynamic function invocations for GCC
and 57% for PERLBMK. Examining the graph in Figure 9, to obtain further
benefits from inlining we need to address inlining in these large benchmarks. The
categories that are the most promising are the recursive function calls and call
sites with large callers or callees. This motivates us to investiage the potential
of partial inlining and recursive call inlining in the future.

7 Acknowledgements

We had a lot of help to perform this work. Most of the heuristics analysis and
performance tunning were done during Peng Zhao’s internship in the Intel China
Research Center (ICRC). We thank the ICRC and the ORC team in the Institute
of Computing Technology, Chinese Academy of Sciences for building the ORC
research infrastructure. Intel generously donated us the Itanium machine used
in the experiments. Sincere thanks to Sun C. Chan and Roy Ju for their help
and discussion on the ORC inlining tuning. This research is supported by the
Natural Science and Engineering Research Council of Canada (NSERC).

References

1. Randy Allen and Steve Johnson. Compiling C for vectorization, parallelization,
and inline expansion. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 241–249, 1988.

2. Andrew Ayers, Robert Gottlieb, and Richard Schooler. Aggressive inlining. In
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI), May 1997.

3. David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual func-
tion calls. In Object-Oriented Programming Systems, Languages and Applications
(OOPSLA), pages 324–341, 1996.

4. Brad Calder and Dirk Grunwald. Reducing indirect function call overhead in
C++ programs. In ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL), pages 397–408, Portland, Oregon, 1994.

5. Pohua P. Chang, Scott A. Mahlke, William Y. Chen, and Wen mei W. Hwu.
Profile-guided automatic inline expansion for c programs. Software - Practice and
Experience, 22(5):349–369, 1992.

6. J. W. Davidson and A. M. Holler. A model of subprogram inlining. Technical
report, Computer Science Technical Report TR-89-04, Department of Computer
Science, University of Virginia, July 1989.

7. Jack W. Davidson and Anne M. Holler. A study of a C function inliner. Software
- Practice and Experience (SPE), 18(8):775–790, 1989.

8. Jack W. Davidson and Anne M. Holler. Subprogram inlining: A study of its effects
on program execution time. IEEE Transactions on Software Engineering (TSE),
18(2):89–102, 1992.

9. Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In European Conference on Object-
Oriented Programming (ECOOP), pages 77–101, Arhus, Denmark, August 1995.

10. David Detlefs and Ole Agesen. Inlining of virtual methods. In 13th European
Conference on Object-Oriented Programming (ECOOP), June 1999.

11. M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

12. K. Hazelwood and D. Grove. Adaptive online context-sensitive inlining. In Inter-
netaional Symposium on Code Generation and Optimization, pages 253–264, San
Francisco, CA, March 2003.

13. W. W. Hwu and P. P. Chang. Inline function expansion for compiling realistic c
programs. In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 1989.

14. Rainer Leupers and Peter Marwedel. Function inlining under code size constraints
for embedded processors. In International Conference on Computer-Aided Design
(ICCAD), Nov 1999.

15. Robert Muth and Saumra Debray. Partial inlining. Technical report, Dept. of
Computer Science, Univ. of Arizona, U.S.A., 1997.

16. Karl Pettis and Robert C. Hansen. Profile guided code positioning. In ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI),
pages 16–27, 1990.

17. Robert W. Scheifler. An analysis of inline substitution for a structured program-
ming language. Communications of the ACM, 20(9):647–654, Jan 1977.

18. M. Stephenson, S. Amarasinghe, M. Martin, and U. O’Reilly. Meta-optimization:
Improving compiler heuristics with machine learning. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI), pages 77–90,
2003.

19. Toshio Suganuma, Toshiaki Yasue, and Toshio Nakatani. An empirical study of
method inlining for a Java just-in-time compiler. In 2nd Java Virtual Machine
Research and Technology Symposium (JVM ’02), Aug 2002.

