
Compiler-Based Code Partitioning for Intelligent
Embedded Disk Processing

Guilin Chen1, Guangyu Chen1, M. Kandemir1, and A. Nadgir1

The Pennsylvania State University, University Park, PA 16802, USA
{guilchen,gchen,kandemir,nadgir }@cse.psu.edu

Abstract. Recent trends indicate that system intelligence is moving from main
computational units to peripherals. In particular, several studies show the feasi-
bility of building an intelligent disk architecture by executing some parts of the
application code on an embedded processor attached to the disk system. This pa-
per focuses on such an architecture and addresses the problem of what parts of
the application code should be executed on the embedded processor attached to
the disk system. Our focus is on image and video processing applications where
large data sets (mostly arrays) need to be processed. To decide the work division
between the disk system and the host system, we use an optimizing compiler to
identify computations that exhibit afiltering characteristic;i.e., their output data
sets are much smaller than their input data sets. By performing such computations
on the disk, we reduce the data volume that need to be communicated from the
disk to the host system substantially. Our experimental results show significant
improvements in execution cycles of six applications.

1 Introduction

Recent years have witnessed several efforts towards making the disk storage system
more intelligent by exploiting available computing power within the disk subsystem.
A common characteristic of these proposals (e.g., active disks [22, 1], intelligent disks
[11], smart disks [15]) is to use computing power at the disk (provided by an embedded
processor attached to the disk), to perform some filtering type of computations on the
storage device itself. For example, [18] demonstrates how several database operations
can be performed by the embedded processor attached to the storage device. A similar
project in IBM [9, 8] attempts to embed processing power near the data (e.g., on the
disk adapter) to handle general purpose processing offloaded from the host system.
Thus, an intelligent disk-based computation can significantly reduce the demand on the
communication bandwidth between the storage device and the rest of the system. Uysal
et al propose an active disk architecture by allowing more powerful on-disk processing
and large on-disk memory [22]. To address the software design and implementation
for active disks, Acharya et al describe a stream-based programming model, whereby
host-resident code interacts with disk-resident code using streams [1]. The active disk
concept proposed by Riedel et al [18] helps us investigate the behavior of scan-based
algorithms for databases, nearest neighbor search, frequent sets, and edge detection of
images on such architectures. The authors use these applications to show performance
improvements brought by active disks over conventional architectures. Sivathanu et al



[21] propose the concept of semantically-smart disk system, wherein the disk system
obtains from the file system information about its on-disk data structures and policies.
It then exploits this information by transparently improving performance.

Most of these prior studies focus on application programming model and operating
system (OS) support for intelligent disk architectures. While this support is critical for
the successful deployment of such architectures, for a large application, it would be
very difficult for an average programmer to decide what to execute on the embedded
processor on the disk and what to execute on the host system. In this paper, we ad-
dress this important problem and propose a compiler-based strategy that automatically
divides an application between the disk system (the embedded processor) and the host
system. Our focus is on image and video applications where large data sets (arrays)
need to be processed. To decide the work division between the disk system and the host
system, we identify computations that exhibit afiltering characteristic;i.e., their output
data sets are much smaller than their input data sets. By performing such computations
on the disk, we reduce the data volume that need to be communicated from the disk to
the host system significantly. In fact, our experiments with several applications reveal
communication volume reductions around 50%. Obviously, such a reduction in commu-
nication volume between the disk and the host system helps reduce power consumption
and enhances overall system performance.

It should be emphasized that such intelligent disk architectures are actually being
built by disk drive and chip manufacturers. For example, Infineon markets a chip called
TriCore that includes a 100 MHz micro-controller, up to 2MB of main memory, and
some custom logic that implements disk drive-specific functions [18]. Considering the
drops in costs of embedded processors and the growing demand for data-intensive com-
puting, we can expect that such architectures will be more prevalent in the future. It
should also be mentioned that while we present our approach that exploits filtering
characteristic of a computation to reduce communication demands in the context of a
disk-host pair, the compiler analysis presented here is general enough to be employed
in other circumstances where filtering data before communication is desirable (e.g., in
a sensor network based environment where sensors process the collected data before
passing it to a central base station).

2 Architecture and Programming Model

The architecture we focus on this study has two major components: host system and disk
system. The host system is the unit where computations are normally performed. The
disk system is the storage subsystem that consists of a disk (which might be a RAID)
and an embedded processor which can be used to perform some of the computation that
would normally be performed by the host system (i.e., a system without an embedded
processor on the disk would perform all computations in the host system). A sketch of
the architecture considered in this paper is given in Figure 1.

To make use of the embedded processor on the disk, we need instructions (or com-
piler directives) to map some application code portions to the disk system. In this
paper, we assume the existence of two compiler directives, calledbegin{map} and
end{map}, that enclose a code portion which will be executed on the disk system.



Note that, in a given application, these directives can be used a number of times. Also,
the code portions (fragments) that can be enclosed by these directives can be of differ-
ent granularities (e.g., a loop, a loop nest, or an entire procedure). However, since our
focus in this work is on array-intensive applications, we work on a loop nest granular-
ity. In other words, for each nest of a given application, our approach decides whether
to execute that nest on the host system or on the disk system. In this work, thebe-
gin{map} andend{map} directives are automatically inserted in the application code
by the compiler.

It should be noted that in this architecture a given data set can be in memory or in
the disk. We use the term disk-resident to indicate that the data set (array) in question
resides in the disk system. To enable efficient compiler analysis, we assume that the
disk-resident arrays are annotated using a special compiler directive. Note that the data
transfers between the disk-resident and memory-resident data sets are explicit. That is,
to copy a disk-resident data set (or a portion of it) to a memory-resident data set, one
needs to perform an explicit file operation. However, to make our presentation clear, in
the code fragments considered in this paper, we mix disk-resident and memory-resident
data set (array) accesses, assuming implicitly that each access to a disk-resident array
involves a file operation. Our approach can operate with cases where only some of the
arrays are disk-resident and also with cases where all of the arrays are disk-resident. It
should be mentioned that user-inserted compiler directives have been employed in the
past in the context of parallel programming to govern data distributions across memories
of multiple processors [13].

Fig. 1.The sketch of the architecture considered in this work.

3 Work Division

An important issue that need to be addressed for extracting the maximum benefit from
our storage architecture is to divide application execution between the host system and



the disk system. To accomplish computation partitioning between the disk system and
the host (also called work division), our compiler analyzes the entire application to
extract data access pattern. It then insertsbegin{map} and end{map} calls in the
code to perform work division. In our implementation, a code fragment is mapped on
to the disk system if it satisfies the following two criteria:

– It should perform input/output (I/O). While the embedded processor in our archi-
tecture can be exploited for performing non-I/O related functionalities as well, in
this study, we consider only I/O-intensive code fragments for potential candidates
to be executed in the disk system. Since we require disk-resident data sets to be
explicitly identified by the programmer, we can easily check whether a given com-
putation performs I/O or not (i.e., we just check whether it involves a disk-resident
data set).

– It should exhibit a filtering characteristic. A code fragment is said to exhibit a
filtering characteristic if the size of its input data sets (arrays) is much larger than
its output data sets (arrays). As an example, consider the following code fragment
that consists of two separate nests (written in a pseudo-language):

for I = 2..N-1
for J = 2..N-1

V[I][J] = 0.25 * (U[I][J-1] + U[I][J+1]
+ U[I-1][J] + U[I+1][J])

for I = 1..N
for J = 1..N

for K = 2..N-1
X[I][J] = 0.33 * (W[I][J][K-1] + W[I][J][K]

+ W[I][J][K+1])

Assuming that arraysU andWare disk-resident, the first nest above does not have
any filtering characteristic since it takes a two-dimensional array (U) and gener-
ates another two-dimensional array (V). In contrast, the second nest exhibits fil-
tering. This is because it takes a three-dimensional array (W) and generates a two-
dimensional array (X). Therefore, it is a better candidate to be executed on the disk
system. It should be noticed that, if we do not execute this second nest on the disk
system, it needs to be executed in the host system. But, in this case, to perform the
required computation, we need to transfer the entire data setWfrom the disk to the
host system, resulting in tremendous network traffic. This obviously will eat up lots
of execution cycles and waste the storage bandwidth (it also increases system-wide
energy consumption). This is exactly the overhead that we want to eliminate. In-
stead, if we can execute this nest on the disk system, we need to transfer only the
resulting data set (X) to the host system (so that it can be used by the rest of the
application). In this way, data is filtered in the disk system before it is shifted to the
host system, thereby leading to an improvement in overall performance. The only
drawback of performing the computation on the disk system (instead of the host) is
that it will take longer time as the embedded processor on the disk is typically less
powerful than the host processor.



3.1 Detecting the Filtering Characteristic

In this work, we experiment with two different strategies for detecting whether or not a
given computation exhibits a filtering characteristic. The first strategy (called Strategy
I) is easy to implement and (as will be shown later in the paper) generates very good
results in practice. It checks (for each array) the number of dimensions and their ex-
tents (i.e., dimension sizes). Let us consider the following loop nest and the assignment
statement shown.

for i1 = L1..U1
for i2 = L2..U2

...
for is = Ls..Us

U[f1][f2]...[fn] = ... V[g1][g2]...[gm] ...

Here, we assume thatf1 , f2 , ..., fn , g1 , g2 , ...,gm are the subscript expressions
(array index functions), and eachfi and gj is an affine function of loop indices
i1 , i2 , ..., is and loop-independent variables. Assuming further that arraysU (n-
dimensional) andV (m-dimensional) are declared astype U[N1][N2]...[Nn],
V[M1][M2]...[Mm] , wheretype be any (data) type such as integer or float, Strat-
egy I decides that the assignment statement in the loop shown above exhibits a filtering
characteristic if:

c x N1 x N2 x ... x Nn < M1 x M2 x ... x Mm.

In this last expression,c is a constant to make sure that the difference in the sizes of
input (right-hand-side) and output (left-hand-side) arrays is large enough so that shift-
ing the computation (the statement) to the disk system will be really beneficial (note
that if c=1, this corresponds to the informal description of the concept of “exhibit-
ing a filtering characteristic” that we have been using so far). In most of the cases (of
array-based applications) encountered in practice, it is possible to check the above con-
dition statically (at compile-time). In cases where this is not possible, we have at least
two choices. First, we can employ profile data (e.g., by instrumenting the code) to see
whether the condition holds for typical data sets. Second, we can insert a conditional
statement (if-statement) into the code that chooses between performing computation
on the host side and performing it on the disk side, depending on the outcome of the
condition. It is to be noted that selecting a suitablec value is critical. This is because
a smallc value can force aggressive computation mapping to the disk system. This in
turn can result in some unsuitable computation being mapped to the embedded proces-
sor, thereby reducing overall performance. On the other hand, a very largec value can
be overly conservative and can result in a code mapping that does not exercise the em-
bedded processor at all. Since the best value forc is both application and architecture
dependent, it is not possible to determine an optimal value statically (compile-time). As
a result, in this paper, we experimented with differentc values (instead of fixing it at a
specific value). If, in a given loop, there is at least one statement that exhibits filtering
characteristic, we mark the entire loop to be executed on the disk system (i.e., we as-
sume that the loop has filtering characteristic). Later in the paper, we demonstrate how



loop transformations can be used for improving the effectiveness of our optimization
strategy.

As an example, let us consider again the code example shown above in Section 3
(which consists of two separate nests). Assuming that all array dimensions are of the
same size (extent), using the approach summarized in the previous paragraph, one can
easily see that only the second nest is identified to be executed on the disk system
(assumingc = 1). While it might be possible to have more elaborate strategies for
identifying the loops that need to be mapped to the disks system, as the experimental
results (presented later) show, Strategy I performs well in practice.

Our second strategy (called Strategy II) is more sophisticated but can also be ex-
pected to generate better results than Strategy I. Considering the loop nest and the as-
signment statement shown above, this strategy decides that the assignment statement
exhibits a filtering characteristic if:

c x G{U[f1][f2]...[fn]} < G{V[g1][g2]...[gm]}

wherec is the same as described earlier andG{E} gives the number of distinct array
elements accessed by array referenceE. In other words, instead of just checking the
bounds of the arrays involved in the computation, Strategy II checks the actual number
of elements accessed. Consequently, in general, it can be more accurate than the first
strategy (since not all the loops access all the elements of the arrays they manipulate).
The drawback is that determining the exact number of elements accessed by an affine
expression is a costly operation [19, 6]. In this paper, we adopt the first strategy as our
default strategy; but, we also perform experiments with the second strategy to demon-
strate its potential in some applications. In implementing Strategy II, we represent the
set to be counted using the Presburger formulas and use the technique proposed in [17].

3.2 Reducing Communication Between the Host System and the Disk System

It should be clear that mapping large code fragments to the disk system is preferred
to mapping smaller ones as the former implies less communication between the host
code fragments and the fragments mapped to the disk system. To determine whether
two neighboring code fragments, sayFrag1 and Frag2 , should be mapped to the
disk system as a whole or not, we adopt the following strategy. Suppose thatFrag1
generates an output datasetX that will subsequently be used byFrag2 . If X is also
requested by the host code fragment (in addition toFrag2 ), then we need to transferX
to the host system. In this case,Frag1 andFrag2 are treated independently (i.e., they
are not combined). On the other hand, ifFrag2 is the only consumer ofX, then these
two fragments can be combined together (i.e., they can be mapped to the disk using the
samebegin{map}-end{map} construct; no communication is necessary when execu-
tion moves fromFrag1 to Frag2 , or vice versa), andX does not need to be transferred
to the host system at all (saving bandwidth as well as latency). Many array-based appli-
cations exhibit such producer-consumer relationships. In particular, in array-intensive
applications, given two nests, an optimizing compiler can, test whether they should be
mapped together or not.

Our current implementation uses data-flow analysis for this purpose. Data-flow
analysis is a program analysis technique that is mainly used to collect information about



how data flows through program statements/blocks [16]. In our context, we use data-
flow analysis to determine the the nests that will be mapped to the disk system together.
Our approach can be summarized as follows. First, using the strategy explained above
(Section 3.1), we determine the set of nests that should be mapped to the disk system.
This set represents the minimum set of nests to be mapped to the disk. After that, using
the strategy explained in the previous paragraph, we determine the additional nests to
be mapped to the disk. These are typically the nests that are the only customers for
the data generated by a nest from the set determined in the first step. After this pro-
cess, each loop nest in the application is assigned to be executed either on the disk or
on the host system, and the correspondingbegin{map} andend{map} directives are
inserted in the code. We omit the formal description of our data-flow algorithm due to
space concerns.

4 Parallel Processing on the Disk System

In our architecture considered so far, we have assumed only a single embedded pro-
cessor. However, in many array-intensive applications, the computations mapped to the
disk system has some degree of loop-level parallelism. That is, the loop iterations can
be executed in parallel. Therefore, it makes sense to consider the compiler support for a
more aggressive architecture that consists of multiple embedded processors on the disk
system. This would lead to the following additional constraint (in addition to the two
criteria described earlier in Section 3) to map a code fragment onto the disk system:

– The code fragment should take advantage of the parallel embedded pro-
cessors on the disk system. In other words, the code portions mapped to the
disk system should be parallelizable. This parallelization can be achieved in two
ways. First, for array-intensive applications (which is the focus of this work), the
compiler can analyze data dependences between the loop iterations [16] and can
detect whether the loop can be parallelized. Second, for other types of codes (e.g.,
those that make heavy use of pointer arithmetic), the user can annotate parallel code
fragments, and this can help our compiler in deciding which code portions must be
mapped to the disk system. As an example of the first type of scenario, the sec-
ond nest of the fragment shown in Section 3 exhibits loop level parallelism. More
specifically,I andJ loops can be parallelized across the embedded processors on
the disk. It should also be noted that sometimes it might be beneficial to relax our
requirements for mapping data on to the disk system, and still take advantage of
our storage architecture. For example, in some cases, the I/O portion of the appli-
cation code may not be parallelizable; but, mapping it to the disk system can lead
to large reductions in communication volume due to filtering type of computation
on disk-resident data. Similarly, in some cases, there may not be any data filtering
activity, but we may have large amount of I/O parallelism. Again, mapping this I/O
(and the associated computation) to the disk system can reduce I/O and execution
time.

In our current implementation, we can work with two different styles of parallelism.
First, we can allow the programmer to annotate the loops in the program to execute



Parameter Value

Host Processor
Functional Units 4 integer ALUs

1 integer multiplier/divider
4 FP ALUs

1 FP multiplier/divider
LSQ Size 8 Instructions
RUU Size 16 Instructions

Fetch Width 4 instructions/cycle
Decode Width 4 instructions/cycle
Issue Width 4 instructions/cycle

Commit Width 4 instructions/cycle
Fetch Queue Size 4 instructions

Clock 1 GHz
Embedded Processor

Functional Units 2 integer ALUs
1 integer multiplier/divider

2 FP ALU/multiplier/divider
Fetch/Decode/Issue/Commit 1 instruction/cycle

Clock 200 MHz
Cache and Memory Hierarchy

L1 Instruction Cache 16KB, 1-way, 32 byte blocks
1 cycle latency

L1 Data Cache 16KB, 4-way, 64 byte blocks
1 cycle latency

L2 (only Host) 256K unified, 4-way
64 byte blocks
6 cycle latency

Main Memory (Host) 128MB, 150 cycle latency
Main Memory (Embedded) 16MB, 75 cycle latency

Branch Logic (only Host)
Predictor combined, bimodal 2KB table

two-level 1KB table
8 bit history

BTB 512 entry, 4-way
Misprediction Penalty 45 cycles

Storage System and Interconnects
Stripe Size 16 KB
RAID Level 5

Individual Disk Capacity 33.6 GB
Disk Cache Size 4 MB

Disk Rotation Speed 10000 RPM
Disk-Arm Scheduling Elevator

Bus Type Ultra-3 SCSI
Embedded Processor Communication TB3 switches (50.9 MBps)

Host Processor Communication 155 MBps
Interconnection Network (between host & disk) 160 MB/sec

Table 1.Default simulation parameters used in our experiments.



parallel. Second, we have developed a strategy that parallelizes a sequential application
based on data reuse analysis. The approach used tries to put as much data reuse as
possible into innermost loop positions, hence leaves dependence-free outer loops to be
parallelized. The details of this approach is beyond the scope of this paper and can be
found elsewhere [10]. In the next section, we experimentally (quantitatively) evaluate
our approach to see whether it improves performance in practice.

5 Experiments

5.1 Simulation Environment

We designed and implemented a custom simulation environment to perform our exper-
iments. This environment can simulate systems with different number of host proces-
sors, disks, and embedded processors. Our simulator uses DiskSim [7] for simulating
the disk behavior. DiskSim is an accurate and highly-configurable disk system simula-
tor developed at the University of Michigan and enhanced at CMU to support research
into various aspects of storage subsystem architecture. It includes modules for most
secondary storage components of interest, including device drivers, buses, controllers,
adapters, and disk drives. The detailed disk module employed in DiskSim has been
carefully validated against ten different disk models from five different manufacturers.
The accuracy demonstrated exceeds that of any other publicly-available disk simulator
[7]. The simulation of the host processor(s) and embedded processor(s) have been per-
formed using Simplescalar [3] infrastructure. To simulate communication between pro-
cessors, we adopted a simple strategy based on the number of communication messages
and the available bandwidth. The default simulation parameters used in the experiments
for processors, disk and communication subsystems are listed in Table 1. Unless stated
otherwise, all experimental results to be presented have been obtained using the simu-
lation parameters in this table. It is to be noted that the parameters given in the cache
and memory hierarchy part are the same for both the host and embedded processors;
the cases where they differ are specified explicitly.

We conducted experiments with two configurations: one without the embedded pro-
cessor attached to the disk, and one with the embedded processor. The first configura-
tion is called thebase configurationand has a host processor of 1GHz with a 128MB
memory space. In the second configuration, the host processor speed is again 1GHz,
but we also have a 200MHz embedded processor with a 16MB memory space (Texas
Instruments’ C27x series, for example, has this memory capacity) attached to the disk
system. The I/O interconnect between the disk system and the host system is assumed
to be 160 MB/s (a reasonable value for a typical disk-based architecture). When we
have multiple host processors (or embedded processors), they communicate with each
other using respective communication networks.

Figure 2 illustrates how the simulations have been performed. First, the application
code is divided between the host system and the disk system (as discussed earlier in
detail). Then, the host program is simulated using the CPU simulator and the communi-
cation simulator. Similarly, the disk program (i.e., the code portion mapped to the disk
system) is simulated using the CPU simulator, the communication simulator, and the
disk simulator. The last phase collects the statistics and combines them.



Fig. 2. Simulation process.

Benchmark Brief Total Execution Cycles Filtering Statements
Description Dataset Size Cycles I/O Computation Communication Strategy I Strategy II

Feature Feature Extraction 11.72MB 1258221651741.4% 28.8% 29.8% 26.8% 26.8%
ImgComp Image Compression 8.21MB 976348817635.5% 24.1% 40.4% 41.3% 47.7%
Restore Image Restoration 35.40MB 4605570420139.1% 27.2% 33.7% 36.6% 36.6%
SMT Video Smoothing 17.06MB 1840784208848.2% 20.6% 31.2% 39.0% 39.0%
T-Image Crowd Management with Imaging 16.05MB 1634277709432.2% 26.6% 41.2% 44.3% 44.3%
Vehicle-V Vehicle Tracking and Classification 23.88MB 3419152933044.4% 18.9% 36.7% 21.5% 26.9%

Table 2.Benchmark codes used in the experiments.

5.2 Benchmarks and Code Versions

To evaluate the performance of our strategy, we conducted experiments with six array-
intensive benchmark programs.

– Feature: This is a speech processing program that implements perceptual linear
prediction (PLP). PLP is based on the short-term spectrum of speech. In contrast to
pure linear predictive analysis of speech, perceptual linear prediction (PLP) modi-
fies the short-term spectrum of the speech by several psychophysically based trans-
formations.

– ImgComp: This code implements a wavelet transform-based image coder for gray-
scale images. While the coder itself is not very sophisticated, each individual piece
of the transform coder has been chosen for high performance.

– Restore: This is a high order iterative method for image restoration. As compared
to pure iterative methods, it is much faster and converges after two dozens of itera-
tions.

– SMT: This code implements a video smoothing algorithm using temporal multi-
plexing. The algorithm smoothes out the rate variability of the data transmission
from a server to a client so that the network utilization can be improved.

– T-Image: This program controls outputs of several cameras connected to a single
display. It implements a simple automatic video image processing system which
outputs statistics such as detection of intrusion in forbidden areas and detection of
abnormal lack of movement or counterflow movements.



– Vehicle-V: This code implements an algorithm that employs a predictive Kalman
filter to track motion through occlusions (2D rigid motion). It also calculates the
gradient of the error to adjust estimation.

The number of C lines of the sources of these applications range from 465 to 3,128.
Their important characteristics are given in Table 2. The third column shows the total
size of the disk resident data manipulated by each application. The fourth column gives
the execution cycles for the original codes on our base configuration (i.e., without the
embedded processor on the disk system). The next three columns give the distribution
(breakdown) of execution cycles into three categories: the cycles spent in I/O; the cycles
spent in computation (on the host); and the cycles spent in communication between the
host system and the disk system. We see that a significant number of cycles spent in
communication, which means that minimizing communication volume can bring large
performance benefits in practice. The reason that we used these specific applications is
that they were available to us from University of Manchester, and that they represent a
good mix of real-life applications as far as the filtering capability and I/O parallelism is
concerned (that is, some of them do not have much filtering (I/O parallelism), whereas
the others have). This last point is indicated in the last two columns of Table 2, where
we give the percentage of statements with the filtering characteristic for the two strate-
gies (Strategy I and Strategy II) explained in Section 3.1. One can see from these last
two columns that our benchmarks include codes with low filtering opportunity (e.g.,
Vehicle-V) as well as codes with high filtering opportunity (e.g., T-Image). We also
see from these two columns that using Strategy I (which is based on array sizes) and
Strategy II (which is based on the number of distinct elements accessed) results in, re-
spectively, 34.9% and 36.8% of the statements being identified as exhibiting the filtering
characteristic. This shows that there exists scope to perform intelligent computation on
the disk system.

For each application, we used two different code versions. Thebase versionis the
one that runs on the architecture without embedded processor (i.e., the base configura-
tion), and theoptimized versionis the one that runs on the architecture with embedded
processor. To evaluate the impact of the number of processors, we also performed ex-
periments with different number of host and embedded processors. All the results pre-
sented in this section arenormalizedwith respect tothe base version with a single host
processor(i.e., the base configuration). Unless stated otherwise, no loop distribution is
applied in the optimized version, Strategy-I is used, and thec value (see Section 3) is
set to the largest dimension size of the largest array in the application. More specifically,
the defaultc values for Feature, ImgComp, Restore, SMT, T-Image, and Vehicle-V are
1000, 512, 712, 256, 256, and 512, respectively. All code modifications (when loop
distribution is employed) have been automated within the SUIF (Stanford University
Intermediate Format) infrastructure from the Stanford University [2].

5.3 Results

The graph given in Figure 3 shows the normalized overall execution cycles for both
original and optimized versions. All bars are normalized with respect to the first bar,
which gives, for each application, the distribution of execution cycles, and divided into



three parts: (i) the time spent in computation (on the host or on the disk system); (ii)
the time spent in communication (between the host and the disk); and (iii) the time
spent in I/O on the disk. The second bar gives the execution cycle breakdown for the
optimized version when a single embedded processor is used in the disk system. When
we compare these first two bars, we observe that our compiler-based approach reduces
the execution cycles spent in communication by 41.2% on the average. This results in a
10.1% reduction, on the average, on overall execution cycles.

The third bar for each application in Figure 3 gives the reduction in execution time
when the number of embedded processors is increased to 4 (each is 200MHz). One can
clearly see that this brings large reductions in the I/O time as well as the computation
time spent by the embedded processors. This is due to exploiting parallelism on the
disk system. As a result, we obtain a 49.1% execution cycle reduction on the average
across all six applications. What this means is that the code portions shifted to the disk
system take advantage of parallelism to a large extent. One might argue that increasing
the number of host processors could also bring comparable benefits. The fourth bar in
Figure 3 for each application gives the normalized execution cycles when the number
of host processors on the host system is increased to 4, while keeping the number of
embedded processors at 1. When we compare the third and the fourth bars, we see that
the (overall) execution time reductions brought by increasing the number of embedded
processors are, in general, higher than those obtained by increasing the number of host
processors. In other words, using three additional (cheap—200MHz) embedded proces-
sors on the disk is more beneficial than employing three additional (powerful—1GHz)
processors on the host. This is mainly because embedded processors can reduce I/O,
computation, and communication times, whereas the host processor can reduce only
I/O and computation times. Although the reductions in I/O/computation times due to
increased number of host processors are higher than those due to increased number of
embedded processors (as host processors are faster), this effect is overshadowed by the
decrease in communication cycles as a result of increased number of embedded proces-
sors.

It is also conceivable that in the future the embedded processors will become very
powerful, and it might be possible to put such powerful processors on the disk system.
To quantify the benefits that could come from such systems, the last bar for each appli-
cation in Figure 3 gives the normalized execution cycles, when 4 powerful (1GHz) em-
bedded processors are used on the disk system (with only one host processors). These
results clearly show that employing powerful processors on the disk system (rather than
on the host system) is much more beneficial, reducing the overall execution cycles by
59.8% on an average.

To study the scalability of parallel processing on the disk system, we also conducted
further experiments with different number of embedded processors (in conjunction with
a single host processor). The results normalized with respect to the original version
(with one host processor) are shown in Figure 4. We can clearly see that increasing the
number of embedded processors generates good scalability; that is, where available, we
are able to take advantage of the large number of embedded processors. For example,
when we have 16 embedded processors, the average reduction in overall execution cy-
cles is 67% across all benchmarks. It should also be observed that the additional benefits



Fig. 3.Normalized execution cycles for different versions.

Fig. 4. Normalized execution cycles with different number of embedded processors.

of our approach gets reduced as one increases the number of processors to large values
as a result of the contention on the disk system.

6 Concluding Remarks

Intelligent disk systems with large storage capacities and fast interconnects are ex-
pected to become prevalent in the next decade. This is due to the trends that try to
bring computation to where data resides (instead of more traditional approach where
the data is brought into where computation is normally executed). An important prob-
lem that needs to be addressed in such architectures is how to divide the computation
between the disk system (embedded processor) and the host system (processor). This
paper has proposed and evaluated a compiler-based work division (computation parti-
tioning) strategy for array-intensive applications. Our strategy is based on the idea that
the computations (loop nests) that filters their input data sets should be mapped on to



the disk system. The experimental results with six application codes have indicated that
the proposed approach is very successful in practice.

References

1. A. Acharya, M. Uysal and J. Saltz, ”Active Disks: Programming Model, Algorithms and
Evaluation”. In Proc. the 8th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, October 1998.

2. http://suif.stanford.edu/
3. D. C. Burger and T. M. Austin. ”The SimpleScalar Toolset”, Version 2.0, Technical Report

1342, Dept. of Computer Science, UW, June, 1997.
4. R. Chandra, D. Chen, R. Cox, D. Maydan, N. Nedeljkovic, and J. Anderson. ”Data Dis-

tribution Support on Distributed-Shared Memory Multiprocessors.” In Proc. Programming
Language Design and Implementation, Las Vegas, NV, 1997.

5. A. Chandrakasan, W. J. Bowhill, and F. Fox. ”Design of High-Performance Microprocessor
Circuits,” IEEE Press, 2001.

6. P. Clauss. ”Counting Solutions to Linear and Nonlinear Constraints through Ehrhart Poly-
nomials: Applications to Analyze and Transform Scientific Programs”. In Proc. the 10th
International Conference on Supercomputing, pp. 278–285, May 25–28, 1996, PA.

7. G. Ganger. ”System-Oriented Evaluation of I/O Subsystem Performance”, Technical Report
CMU-TR-243-95, University of Michigan, 1995.

8. W. Hsu, A. Smith, and H. Young, ”Projecting the Performance of Decision Support Work-
loads on Systems with Smart Storage (SmartSTOR)”. Report No. UCB/CSD–99–1057,
1999.

9. IBM Automatic Locality-Improving Storage (ALIS).
http://www.almaden.ibm.com/cs/storagesystems/alis/index.html.

10. M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. ”Improving Locality Using
Loop and Data Transformations in an Integrated Framework.” In Proc. International Sympo-
sium on Microarchitecture, Dallas, TX, December 1998.

11. K. Keeton, D. Patterson and J. Hellerstein, ”A Case for Intelligent Disks (IDISKs)”. In SIG-
MOD Record, 27(3), 1998.

12. I. Kodukula, N. Ahmed, and K. Pingali. ”Data-centric multi-level blocking.” In Proc. SIG-
PLAN Conf. Programming Language Design and Implementation, June 1997.

13. C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele, and M. E. Zosel. ”The High-
Performance Fortran Handbook”, MIT Press, Cambridge, MA, 1994.

14. K. McKinley, S. Carr, and C.W. Tseng. ”Improving Data Locality with Loop Transforma-
tions.” ACM Transactions on Programming Languages and Systems, 1996.

15. G. Memik, M. Kandemir and A. Choudhary, ”Design and Evaluation of Smart Disk Ar-
chitecture for DSS Commercial Workloads”. In Proc. International Conference on Parallel
Processing, September 2000.

16. S. S. Muchnick. ”Advanced Compiler Design Implementation.” Morgan Kaufmann Publish-
ers, San Francisco, California, 1997.

17. W. Pugh ”Counting Solutions to Presburger Formulas: How and Why”, In Proc. the ACM
Conference on Programming Language Design and Implementation 1994, Orlando, Florida.

18. E. Riedel, C. Faloutsos, G. Gibson and D. Nagle, ”Active Disks for Large-Scale Data Pro-
cessing”. IEEE Computer, June 2001, pp. 68–74.

19. A. Schrijver. ”Theory of Linear and Integer Programming”, John Wiley and Sons, Inc., New
York, NY, 1986.



20. S. Singhai and K. S. McKinley. ”A Parameterized Loop Fusion Algorithm for Improving
Parallelism and Cache Locality. The Computer Journal”, 40(6):340–355, 1999.

21. M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E. Denehy, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau, ”Semantically-Smart Disks Systems,” Technical Report 1445, Computer
Sciences Department, UW, Madison, 2002.

22. M. Uysal, A. Acharya and J. Saltz, ”Evaluation of Active Disks for Decision Support
Databases”. In Proc. International Conference on High Performance Computing Architec-
ture, January 2000.


