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Abstract. This work investigates the leverage that can be obtained
from compiler optimization techniques for efficient execution of multi-
query workloads in data analysis applications. Our approach is to ad-
dress multi-query optimization at the algorithmic level, by transforming
a declarative specification of scientific data analysis queries into a high-
level imperative program that can be made more efficient by applying
compiler optimization techniques. These techniques – including loop fu-
sion, common subexpression elimination and dead code elimination –
are employed to allow data and computation reuse across queries. We
describe a preliminary experimental analysis on a real remote sensing
application that analyzes very large quantities of satellite data. The re-
sults show our techniques achieve sizable reductions in the amount of
computation and I/O necessary for executing query batches and in av-
erage execution times for the individual queries in a given batch.

1 Introduction

Multi-query optimization has been investigated by several researchers, mostly in
the realm of relational databases [6, 8, 14, 18, 19, 21]. We have devised a database
architecture that allows efficiently handling multi-query workloads where user-
defined operations are also part of the query plan [2, 4]. The architecture builds
on a data and computation reuse model that can be employed to systemati-
cally expose reuse sites in the query plan when application-specific aggregation
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methods are employed. This model relies on an active semantic cache, in which
semantic information is attached to prior computed aggregates that are cached
by the system. This permits the query optimizer to retrieve the matching aggre-
gates based on the metadata description of a new query. The cache is active in
that it allows application-specific transformations to be performed on the cached
aggregates so that they can be reused to speed up the evaluation of the query
at hand. The reuse model and active semantic caching have been shown to ef-
fectively decrease the average turnaround time for a query, as well as to increase
the database system throughput [2–4]. Our earlier approach leverages data and
computation reuse for queries submitted to the system over an extended period
of time. For a batch of queries, on the other hand, a global query plan that ac-
commodates all the queries can be more profitable than scheduling queries based
on individual query plans, especially if information at the algorithmic level for
each of the query plans is exposed. A similar observation was the motivation for
a study done by Kang et al. [14] for relational operators.
The need to handle query batches arises in many situations. In a data server

concurrently accessed by many clients, there can be multiple queries awaiting
execution. A typical example is the daily execution of a set of queries for detect-
ing the probability of wildfire occurring in Southern California. In this context,
a system could issue multiple queries in batch mode to analyze the current (or
close to current) set of remotely sensed data at regular intervals and trigger a
response by a fire brigade. In such a scenario, a pre-optimized batch of queries
can result in better resource allocation and scheduling decisions by employing a
single comprehensive query plan.
Many projects have worked on database support for scientific datasets [9,

20]. Optimizing query processing for scientific applications using compiler opti-
mization techniques has attracted the attention of several researchers, including
those in our own group. Ferreira et. al. [10, 11] have done extensive studies on
using compiler and runtime analysis to speed up processing for scientific queries.
They have investigated compiler optimization issues related to single queries
with spatio-temporal predicates, which are similar to the ones we target [11].
In this work, we investigate the application of compiler optimization strate-

gies to execute a batch of queries for scientific data analysis applications as
opposed to a single query. Our approach is a multi-step process consisting of the
following tasks: 1) Converting a declarative data analysis query into an impera-
tive description; 2) Handing off the set of imperative descriptions for the queries
in the batch to the query planner; 3) Employing traditional compiler optimiza-
tion strategies in the planner, such as common subexpression elimination, dead
code elimination, and loop fusion, to generate a single, global, efficient query
plan.

2 Query Optimization Using Compiler Techniques

In this section, we describe the class of data analysis queries targeted in this
work, and present an overview of the optimization phases for a batch of queries.
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R← Select(I, O, Mi)
foreach(r ∈ R) {

O[SL(r)] = F(O[SL(r)], I1[SR1(r)], . . . , In[SRn(r)])
}

Fig. 1. General Data Reduction Loop.

2.1 Data Analysis Queries

Queries in many data analysis applications can be defined as range-aggregation
queries (RAGs) [7]. The datasets for range-aggregation queries can be classified
as input, output, or temporary. Input (I) datasets correspond to the data to
be processed. Output (O) datasets are the final results from applying one or
more operations to the input datasets. Temporary (T) datasets (temporaries)
are created during query processing to store intermediate results. A user-defined
data structure is usually employed to describe and store a temporary dataset.
Temporary and output datasets are tagged with the operations employed to
compute them and also with the query metadata information (i.e. the parameters
specified for the query). Temporaries are also referred to as aggregates, and we
use the two terms interchangeably.

A RAG query typically has both spatial and temporal predicates, namely a
multi-dimensional bounding box in the underlying multi-dimensional attribute
space of the dataset. Only data elements whose associated coordinates fall within
the multidimensional box must be retrieved and processed. The selected data
elements are mapped to the corresponding output dataset elements. The map-
ping operation is an application-specific function that often involves finding a
collection of data items using a specific spatial relationship (such as intersec-
tion), possibly after applying a geometric transformation. An input element can
map to multiple output elements. Similarly, multiple input elements can map
to the same output element. An application-specific aggregation operation (e.g.,
sum over selected elements) is applied to the input data elements that map to
the same output element.

Borrowing from a formalism proposed by Ferreira [10], a range-aggregation
query can be specified in the general loop format shown in Figure 1. A Select

function identifies the subdomain that intersects the query metadata Mi for a
query qi. The subdomain can be defined in the input attribute space or in the
output space. For the sake of discussion, we can view the input and output
datasets as being composed of collections of objects. An object can be a single
data element or a data chunk containing multiple data elements. The objects
whose elements are updated in the loop are referred to as left hand side, or lhs,
objects. The objects whose elements are only read in the loop are considered
right hand side, or rhs, objects.

During query processing, the subdomain denoted by R in the foreach loop
is traversed. Each point r in R and the corresponding subscript functions

SL(r),SR1(r), . . . ,SRn(r) are used to access the input and output data elements
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for the loop. In the figure, we assume that there are n rhs collections of objects,
denoted by I1, . . . , In, contributing the values of a lhs object. It is not required
that all n rhs collections be different, since different subscript functions can be
used to access the same collection.
In iteration r of the loop, the value of an output element O[SL(r)] is updated

using the application-specific function F . The function F uses one or more of
the values I1[SR1(r)], . . . , In[SRn(r)], and may also use other scalar values that
are inputs to the function, to compute an aggregate result value. The aggrega-
tion operations typically implement generalized reductions [12], which must be
commutative and associative operations.

2.2 Case Study Application – Kronos

Before we present our approach and system support for multi-query optimization
for query batches, we briefly describe the Kronos application used as a case study
in this paper.
Remote sensing has become a very powerful tool for geographical, meteo-

rological, and environmental studies [13]. Usually systems processing remotely
sensed data provide on-demand access to raw data and user-specified data prod-
uct generation. Kronos [13] is an example of such a class of applications. It
targets datasets composed of remotely sensed AVHRR GAC level 1B (Advanced
Very High Resolution Radiometer – Global Area Coverage) orbit data [16]. The
raw data is continuously collected by multiple satellites and the volume of data
for a single day is about 1 GB. The processing structure of Kronos can be di-
vided into several basic primitives that form a processing chain on the sensor
data. The primitives are: Retrieval, Atmospheric Correction, Composite
Generator, Subsampler, and Cartographic Projection. More details about
these primitives can be found in the technical report version of this paper [1].
All the primitives (with the exception of Retrieval) may employ different al-

gorithms (i.e., multiple atmospheric correction methods) that are specified as a
parameter to the actual primitive (e.g., Correction(T0,Rayleigh/Ozone), where
Rayleigh/Ozone is an existing algorithm and T0 is the aggregate used as input).
In fact, Kronos implements 3 algorithms for atmospheric correction, 3 differ-
ent composite generator algorithms, and more than 60 different cartographic
projections.

2.3 Solving the Multi-Query Optimization Problem

The objective of multi-query optimization is to take a batch of queries, ex-
pressed by a set of declarative query definitions (e.g., using the SQL extensions
of PostgreSQL [17]), and generate a set of optimized data parallel reduction
loops that represent the global query plan for the queries in the batch. Queries
in a declarative language express what the desired result of a query should be,
without proscribing exactly how the desired result is to be computed. Previous
researchers have already postulated and verified the strengths of using declara-
tive languages from the perspective of end-users, essentially because the process
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of accessing the data and generating the data product does not need to be spec-
ified. Optimization of declarative queries is then a multi-phase process, in the
which query definitions are first converted into imperative loops that conform to
the canonical data reduction loop of Figure 1, and then those loops are optimized
using various compiler techniques.

Consider Kronos queries as examples. For our study, queries are defined as
a 3-tuple: [ spatio-temporal bounding box and spatio-temporal resolution, cor-
rection method, compositing method ]. The spatio-temporal bounding box (in
the SQL WHERE clause) specifies the spatial and temporal coordinates for the
data of interest. The spatio-temporal resolution (or output discretization level)
describes the amount of data to be aggregated per output point (i.e., each out-
put pixel is composed from x input points, so that an output pixel corresponds
to an area of, for example, 8 Km2). The correction method (in the SQL FROM
clause) specifies the atmospheric correction algorithm to be applied to the raw
data to approximate the values for each input point to the ideal corrected val-
ues. Finally, the compositing method (also in the SQL FROM clause) defines
the aggregation level and function to be employed to coalesce multiple input grid
points into a single output grid point. Two sample Kronos queries specified in
PostgreSQL are illustrated in Figure 2. Query 1 selects the raw AVHRR data
from a data collection named AVHRR DC, for the spatio-temporal boundaries
stated in the WHERE clause (within the boundaries for latitude, longitude, and
day). The data is subsampled in such a way that each output pixel represents
4 KM2 of data (with the discretization levels defined by deltalat, deltalon and
deltaday). Pixels are also corrected for atmospheric distortions using the Wa-

terVapor method and composited to find the maximum value of the Normalized
Difference Vegetation Index (MaxNDVI).

Figure 2 presents an overview of the optimization process. The goal is to
detect commonalities between Query 1 and 2, in terms of the common spatio-
temporal domains and the primitives they require. In order to achieve this goal,
the first step in the optimization process is to parse and convert these queries into
imperative loops conforming with the loop in Figure 1. That loop presents the
high-level description of the same queries, with the spatio-temporal boundaries
translated into input data points (via index lookup operations). Therefore, loops
can iterate on points, blocks, or chunks depending on how the raw data is stored,
declustered, and indexed.

We should note that we have omitted the calls to the subscript mapping
functions in order to simplify the presentation. These functions enable both
finding an input data element in the input dataset and determining where it is
placed in the output dataset (or temporary dataset). In some cases, mapping
from an absolute set of multidimensional coordinates (given in the WHERE
clause of the query) into a relative set of coordinates (the locations of the data
elements) may take a considerable amount of time. Thus, minimizing the number
of calls to the mapping operations can also improve performance.

As seen in Figure 2, once the loops have been generated, the following steps
are carried out to transform them into a global query plan. First, the imperative
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QUERY1:
select *
from
Composite(Correction(Retrieval(AVHRR_DC), WaterVapor),MaxNDVI)
where
(lat>0 and lat<=20) and (lon>15.97 and lon<=65) and (day=1992/06) and
(deltalat=0.036 and deltalon=0.036 and deltaday=1);

QUERY2:
select *
from
Composite(Correction(Retrieval(AVHRR_DC), WaterVapor),MinCh1)
where
(lat>14.9 and lat<=20) and (lon>19.96 and lon<=55) and (day=1992/06) and
(deltalat=0.036 and deltalon=0.036 and deltaday=1);

for each point in bb: (14.964,19.964,199206) (20.000,55.000,199206) {
 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)
 T2 = copy.Retrieval(T0)
 T3 = copy.Correction(T1, WaterVapor)
 O2 = Composite(T3, MinCh1)

}
for each point in bb: (0.000,15.972,199206) (14.928,65.000,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,55.038,199206) (20.000,65.000,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,15.972,199206) (20.000,19.929,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}

for each point in bb: (14.964,19.964,199206) (20.000,55.000,199206) {
 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)
 T2 = Retrieval(I)
 T3 = Correction(T2, WaterVapor)
 O2 = Composite(T3, MinCh1)

}
for each point in bb: (0.000,15.972,199206) (14.928,65.000,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,55.038,199206) (20.000,65.000,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,15.972,199206) (20.000,19.929,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}
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for each point in bb: (14.964,19.964,199206) (20.000,55.000,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)
 O2 = Composite(T1, MinCh1)

}
for each point in bb: (0.000,15.972,199206) (14.928,65.000,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,55.038,199206) (20.000,65.000,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,15.972,199206) (20.000,19.929,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}
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for each point in bb: (0.000,15.972,199206) (20.000,65.000,199206) {
 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,19.964,199206) (20.000,55.000,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0,WaterVapor)
 O2 = Composite(T1, MinCh1)

}

Fig. 2. An overview of the entire optimization process for two queries. MaxNDVI and
MinCh1 are different compositing methods andWater Vapor designates an atmospheric
correction algorithm. All temporaries have local scope with respect to the loop. The
discretization values are not shown as part of the loop iteration domains for a more
clear presentation.

descriptions are concatenated into a single workload program. Second, the do-
mains for each of the foreach loops are inspected for multidimensional overlaps.
Loops with domains that overlap are fused by moving the individual loop bodies
into one or more combined loops. Loops corresponding to the non-overlapping
domain regions are also created. An intermediate program is generated with two
parts: combined loops for the overlapping areas and individual loops for the
non-overlapping areas. Third, for each combined loop, common subexpression
elimination and dead code elimination techniques are employed. That is, redun-
dant rhs function calls are eliminated, redundant subscript function calls are
deleted, and multiple retrievals of the same input data elements are eliminated.

3 System Support

In this section, we describe the runtime system that supports the multi-query
optimization phases presented in Section 2. The runtime system is built on a
database engine we have specifically developed for efficiently executing multi-
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query loads from scientific data analysis applications in parallel and distributed
environments [2, 3]. The compiler approach described in this work has been im-
plemented as a front-end to the Query Server component of the database engine.
The Query Server is responsible for receiving declarative queries from the

clients, generating an imperative query plan, and dispatching them for execution.
It invokes the Query Planner every time a new query is received for processing,
and continually computes the best query plan for the queries in the waiting
queue which essentially form a query batch.
Given the limitations of SQL-2, we have employed PostgreSQL [17] as the

declarative language of choice for our system. PostgreSQL has language con-
structs for creating new data types (CREATE TYPE) and new data process-
ing routines, called user-defined functions (CREATE FUNCTION). The only
relevant part of PostgreSQL to our system is its parser, since the other data
processing services all are handled within our existing database engine.

3.1 The Multi-Query Planner

The multi-query planner is the system module that receives an imperative query
description from the Query Server and iteratively generates an optimized query
plan for the queries received, until the system is ready to process the next query
batch. The loop body of a query may consist of multiple function primitives regis-
tered in the database catalog. In this work, a function primitive is an application-
specific, user-defined, minimal, and indivisible part of the data processing [4]. A
primitive consists of a function call that can take multiple parameters, with the
restriction that one of them is the input data to be processed and the return
value is the processed output value. An important assumption is that the func-
tion has no side effects. The function primitives in a query loop form a chain
of operations transforming the input data elements into the output data ele-
ments. A primitive at level l of a processing chain in the loop body has the dual
role of consuming the temporary dataset generated by the primitive immediately
before (at level l − 1) and generating the temporary dataset for the primitive
immediately after (at level l + 1).
Figure 2 shows two sample Kronos queries that contain multiple function

primitives. In the figure, the spatio-temporal bounding box is described by a pair
of 3-dimensional coordinates in the input dataset domain. Retrieval, Correction,
and Composite are the user-defined primitives. I designates the portion of the
input domain (i.e., the raw data) being processed in the current iteration of the
foreach loop and T0 and T1 designate the results of the computation performed
by the Retrieval and Correction primitive calls. O1 and O2 designate the output
for Query 1 and Query 2, respectively.
Optimization for a query in a query batch occurs in a two-phase process in

which the query is first integrated into the current plan, and then redundancies
are eliminated. The integration of a query into the current plan is a recursive
process, defined by the spatio-temporal boundaries of the query, which describe
the loop iteration domain. The details of this process are explained in the next
sections and in more detail in the technical report version of this paper [1].
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Loop Fusion The first stage of the optimization mainly employs the bounding
boxes for the new query, as well as the bounding boxes for the set of already
optimized loops in the query plan. The optimization essentially consists of loop
fusion operations – merging and fusing the bodies of loops representing queries
that iterate at least partially over the same domain R. The intuition behind this
optimization goes beyond the traditional reasons for performing loop fusion,
namely reducing the cost of the loops by combining overheads and exposing
more instructions for parallel execution. The main goal of this phase is to expose
opportunities for subsequent common subexpression elimination and dead code
elimination.

Two distinct tasks are performed when a new loop (newl) is integrated into
the current query batch plan. First, the query domain for the new loop is com-
pared against the iteration domains for all the loops already in the query plan.
The loop with the largest amount of multidimensional overlap is selected to in-
corporate the statements from the body of the new loop. The second task is to
modify the current plan appropriately, based on three possible scenarios: 1) The
new query represented by newl does not overlap with any of the existing loops,
so newl is added to the plan as is; 2) The iteration domain for the new loop
newl is exactly equal to that of a loop already in the query plan (loop bestl).
In this case, the body of bestl is merged with that of newl; 3) The iteration
domain for newl is either subsumed by that of bestl, or subsumes that of bestl,
or there is a partial overlap between the two iteration domains. This case re-
quires computing several new loops to replace the original bestl. The first new
loop iterates only on the common, overlapping domain of newl and bestl. The
body of newl is merged with that of bestl and the resulting loop is added to the
query plan (i.e., bestl is replaced by updatedl). Second, loops covering the rest
of the domain originally covered by bestl are added to the current plan. Finally,
the additional loops representing the rest of the domain for newl are computed,
and the new loops become candidates to be added to the updated query plan.
They are considered candidates because those loops may also overlap with other
loops already in the plan. Each of the new loops is recursively inserted into the
optimized plan using the same algorithm. This last step guarantees that there
will be no iteration space overlap across the loops in the final query batch plan.

Redundancy Elimination After the loops for all the queries in the batch are
added to the query plan, redundancies in the loop bodies can be removed, em-
ploying straightforward optimizations – common subexpression elimination and
dead code elimination. In our case, common subexpression elimination consists
of identifying computations and data retrieval operations that are performed
multiple times in the loop body, eliminating all but the first occurrence [15].

Each statement in a loop body creates a new available expression (i.e., repre-
sented by the right hand side of the assignment), which can be accessed through
a reference to the temporary aggregate on the left hand side of the assignment.
The common subexpression algorithm [1] performs detection of new available
expressions and substitutes a call to a primitive by a copy from the temporary
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aggregate containing the redundant expression. The equivalence of the results
generated by two statements is determined by inspecting the call site for the
primitive function invocations. Equivalence is determined by establishing that
in addition to using the same (or equivalent) input data, the parameters for the
primitives are also the same or equivalent. Because the primitive invocation is
replaced by a copy operation, primitive functions are required to not have any
side effects.
The removal of redundant expressions often causes the creation of useless

code – assignments that generate dead variables that are no longer needed to
compute the output results of a loop. We extend the definition of dead variable to
also accommodate situations in which a statement has the form Ti ← copy(Tj),
where Ti and Tj are both temporaries. In this case, all uses of Ti can be replaced
by Tj . We employ the standard dead code elimination algorithm, which requires
marking all instructions that compute essential values. Our algorithm computes
the def-use chain (connections between a definition of a variable and all its uses)
for all the temporaries in the loop body. The dead code elimination algorithm [1]
makes two passes over the statements that are part of a loop in the query plan.
The first pass detects the statements that define a temporary and the ones
that use it, A second pass over the statements looks for statements that define
a temporary value, checking for whether they are utilized, and removes the
unneeded statements.
Both the common subexpression elimination and the dead code elimination

algorithms must be invoked multiple times, until the query plan remains sta-
ble, meaning that all redundancies and unneeded statements are eliminated.
Although similar to standard compiler optimization algorithms, all of the algo-
rithms were implemented in the Query Planner to handle an intermediate code
representation we devised to represent the query plan. We emphasize that we
are not compiling C or C++ code, but rather the query plan representation.
Indeed, the runtime system implements a virtual machine that can take either
the unoptimized query plan or the final optimized plan and execute it, leveraging
any, possibly parallel, infrastructure available for that purpose.

4 Experimental Evaluation

The evaluation of the techniques presented in this paper was carried out on the
Kronos application (see Section 2.2). It was necessary to re-implement the Kro-
nos primitives to conform to the interfaces of our database system. However,
employing a real application ensures a more realistic scenario for obtaining ex-
perimental results. On the other hand, we had to employ synthetic workloads to
perform a parameter sweep of the optimization space. We utilized a statistical
workload model based on how real users interact with the Kronos system, which
we describe in Section 4.1.
We designed several experiments to illustrate the impact of the compiler op-

timizations on the overall batch processing performance, using AVHRR datasets
and a mix of synthetic workloads. All the experiments were run on a 24-processor
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SunFire 6800 machine with 24 GB of main memory running Solaris 2.8. We used
a single processor of this machine to execute queries, as our main goal in this
paper is to evaluate the impact of the various compiler optimization techniques
on the performance of query batches. Leverage from running in a multi-processor
environment will be investigated in future work, to obtain further decreases in
query batch execution time. A dataset containing one month (January 1992) of
AVHRR data was used, totaling about 30 GB.

4.1 A Query Workload Model

In order to create the queries that are part of a query batch, we employed a
variation of the Customer Behavior Model Graph (CBMG) technique. CBMG is
utilized, for example, by researchers analyzing performance aspects of e-business
applications and website capacity planning. A CBMG can be characterized by
a set of n states, a set of transitions between states, and by an n × n matrix,
P = [pi,j ], of transition probabilities between the n states.

In our model, the first query in a batch specifies a geographical region, a set
of temporal coordinates (a continuous period of days), a resolution level (both
vertical and horizontal), a correction algorithm (from 3 possibilities), and a com-
positing operator (also from 3 different algorithms). The subsequent queries in
the batch are generated based on the following operations: another new point of

interest, spatial movement, temporal movement, resolution increase or decrease,
applying a different correction algorithm, or applying a different compositing op-
erator. In our experiments, we used the probabilities shown in Table 1 to generate
multiple queries for a batch with different workload profiles. For each workload
profile, we created batches of 2, 4, 8, 16, 24, and 32 queries. A 2-query batch
requires processing around 50 MB of input data and a 32-query batch requires
around 800 MB, given that there is no redundancy in the queries forming the
batch and also that no optimization is performed. There are 16 available points
of interest; for example, Southern California, the Chesapeake Bay, the Amazon
Forest, etc. This way, depending on the workload profile, subsequent queries
after the first one in the batch may either remain around that point (moving
around its neighborhood and generating new data products with other types of
atmospheric correction and compositing algorithms) or move on to a different
point. These transitions are controlled according to the transition probabilities
in Table 1. More details about the workload model can be found in [4].

For the results shown in this paper each query returns a data product for a
256×256 pixel window. We have also produced results for larger queries – 512×
512 data products. The results from those queries are consistent with the ones
we show here. In fact, in absolute terms the performance improvements are even
larger. However, for the larger data products we had to restrict the experiments
to smaller batches of up to 16 queries, because the memory footprint exceeded
2 GB (the amount of addressable memory using 32-bit addresses available when
utilizing gcc 2.95.3 in Solaris).
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Transition Workload 1 Workload 2 Workload 3 Workload 4

New Point-of-Interest 5% 5% 65% 65%

Spatial Movement 10% 50% 5% 35%

New Resolution 15% 15% 5% 0%

Temporal Movement 5% 5% 5% 0%

New Correction 25% 5% 5% 0%

New Compositing 25% 5% 5% 0%

New Compositing Level 15% 15% 10% 0%

Table 1. Transition probabilities.

4.2 Experimental Study

We studied the impact of the proposed optimizations varying the following quan-
tities: 1) The number of queries in a batch (from a 2-query batch up to a 32-query
batch). 2) The optimizations that are turned on (none, only common subexpres-
sion elimination and loop fusion – cse-lf; or common subexpression elimination,
dead code elimination, and loop fusion – cse-dce-lf). 3) The workload profile
for a batch. Workload 1 represents a profile with high probability of reuse across
the queries. In this workload profile, there is high overlap in regions of interest
across queries. This is achieved by a low probability for the New Point-of-Interest
and Movement values, as seen in the table. Moreover, the probabilities of choos-
ing new correction, compositing, and resolution values are low. Workload 4, on
the other hand, describes a profile with the lowest probability of data and com-
putation reuse. The other profiles – 2 and 3 – are in between the two extremes
in terms of the likelihood of data and computation reuse.

Our study collected five different performance metrics: batch execution time,
number of statements executed (loop body statements), average query turnaround
time3, average query response time4, and plan generation time (i.e., the amount
of time from when the parser calls the query planner until the time the plan is
fully computed).

Batch Execution Time The amount of time required for processing a batch
of queries is the most important metric, since that is the main goal of the op-
timizations we employ. Figure 3 (a) shows the reduction in execution time for
different batches and workload profiles, comparing against executing the batch
without any optimizations. The results show that reductions in the range of 20%
to 70% in execution time are achieved. Greater reductions are observed for larger
batches using workload profile 1, which shows high locality of interest. In this

3 Query turnaround time is the time from when a query is submitted until when it is
completed.

4 Query response time is the time between when a query is submitted and the time
the first results are returned.
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Relative Batch Execution Time Improvements

Workload Profile # / # of queries in the batch
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Workload Profile # / # of queries in the batch

Workload Profile 1 Workload Profile 2 Workload Profile 3 Workload Profile 4

Ti
m

e 
(s

)

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300

2 2 2 24 4 4 48 8 8 816 16 16 1624 24 24 2432 32 32 32

off
cse−lf
cse−dce−lf

(a) (b)

Fig. 3. (a) The reduction in batch execution time. (b) Average query turnaround time.

profile, there is a very low chance of selecting a new point of interest or per-
forming spatial movement (which implies high spatial and temporal locality as
seen in Table 1). Therefore, once some data is retrieved and computed over,
most queries will reuse at least the input data, even if they require different
atmospheric correction and compositing algorithms. Additionally, there are only
16 points of interest as we previously stated, which means that across the 32
queries at least some of the queries will be near the same point of interest, which
again implies high locality. On the other hand, when a batch has only 2 queries,
the chance of having spatio-temporal locality is small, so the optimizations have
little effect. The 2-query batches for workload profiles 1 and 3 show this behavior
(note that the y-axis in the chart starts at -10% improvement). In some exper-
iments we observe that the percent reduction in execution time decreases when
the number of queries in a batch is increased (e.g., going from a 4-query batch
to an 8-query batch for Workload 3). We attribute this to the fact that queries
in different batches are generated randomly and independently. Hence, although
a workload is designed to have a certain level of locality, it is possible that dif-
ferent batches in the same workload may have different amounts of locality, due
to the distribution of queries. The important observation is that the proposed
approach takes advantage of locality when it is present.

Query Turnaround Time A query batch may be formed while the system
is busy processing other queries, and interactive clients continue to send new
queries that are stored in a waiting queue. In this scenario, it is also important
for a database system to decrease the average execution time per query so that
interactive clients experience less delay between submitting a query and seeing
its results. Although the optimizations are targeted at improving batch execution
time, Figure 3 (b) shows that they also improve average query turnaround time.
In these experiments, queries are added to the batch as long as the system is
busy. The query batch is executed as soon as the system becomes available
for processing it. As seen from the figure, for the workload profiles with higher
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Plan Generation Time

Workload Profile # / # of queries in the batch
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Fig. 4. Time to generate a batch execution plan.

locality (1 and 2), execution time decreases by up to 55%. Conversely, for batches
with low locality there is little decrease in execution time, as expected.

Plan Generation Time The application of compiler optimization strategies
introduces costs for computing the optimized query plan for the query batch.
Figure 4 illustrates how much time is needed to obtain the execution plan for a
query batch. There are two key observations here. The first observation is that
the planning time depends on the number of exploitable optimization oppor-
tunities that exist in the batch (i.e., locality across queries). Hence, if there is
no locality in the query batch, the time to generate the optimized plan (which
should be the same as the unoptimized plan) is roughly equivalent to the time
to compute the non-optimized plan. The second observation is that the time to
compute a plan for batches that have heavily correlated queries increases expo-
nentially (due to the fact that each spatio-temporal overlap detected produces
multiple new loops that must be recursively inserted into the optimized plan).
However, even though much more time is spent in computing the plan, executing
the query batch is several orders of magnitude more expensive than computing
the plan. As seen from Figures 3 and 4, query batch planning takes milliseconds,
while query batch execution time can be hundreds of seconds, depending on the
complexity and size of the data products being computed. Finally, a somewhat
surprising observation is that adding dead code elimination to the set of opti-
mizations slightly decreases the time needed to compute the plan. The reason
is that the loop merging operation and subsequent common subexpression elim-
ination operations become simpler if useless statements are removed from the
loop body. This additional improvement is doubly beneficial because dead code
elimination also decreases batch execution time, as seen in Figures 3 (a) and
(b).
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5 Conclusions

In this paper we have described a framework for optimizing the execution of sci-
entific data analysis query batches that employs well-understood compiler opti-
mization strategies. The queries are described using a declarative representation
– PostgreSQL – which in itself represents an improvement in how easily queries
can be formulated by end users. This representation is transformed into an im-
perative representation using loops that iterate over a multidimensional spatio-
temporal bounding box. The imperative representation lends itself to various
compiler optimizations techniques, such as loop fusion, common subexpression
elimination, and dead code elimination. Our experimental results using a real ap-
plication show that the optimization process is relatively inexpensive and that
when there is some locality across the queries in a batch, the benefits of the
optimizations greatly outweigh the costs.
Two important issues we plan to address in the near future are batch schedul-

ing for parallel execution and resource management. Use of loop fusion tech-
niques not only reduces loop overheads, but also exposes more operations for
parallel execution and local optimization. In fact, because of the nature of our
target queries (i.e., queries involving primitives with no side effects and general-
ized reduction operations), each statement of the loop body can be carried out in
parallel. This means that scheduling the loop iterations in a multithreaded envi-
ronment or across a cluster of workstations can improve performance, assuming
that synchronization and communication issues are appropriately handled. With
respect to resource utilization, there are complex issues to be addressed, in par-
ticular with regard to memory utilization. When two or more queries are fused
into the same loop, all the output buffers for the queries need to be allocated
(at least partially) to hold the results produced by the loop iteration. Moreover,
those buffers may need to be maintained in memory for a long time, since all the
iterations required to complete a query may be spread across a large collection of
loops that may be executed over a long time period (i.e., the first and last loop
for a query may be widely separated in the batch plan). Another extension we
plan to investigate in a future prototype is to integrate the active caching system
and the batch optimizer. In that case, the batch optimizer can also leverage the
cache contents when performing common subexpression eliminations.
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