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Abstract. Co-array Fortran (CAF) is an emerging model for scalable, global ad-
dress space parallel programming that consists of a small set of extensions to the
Fortran 90 programming language. Compared to MPI, the widely-used message-
passing programming model, CAF’s global address space programming model
simplifies the development of single-program-multiple-data parallel programs by
shifting the burden for choreographing and optimizing communication from de-
velopers to compilers. This paper describes an open-source, portable, and retar-
getable CAF compiler under development at Rice University that is well-suited
for today’s high-performance clusters. Our compiler translates CAF into Fortran
90 plus calls to one-sided communication primitives. Preliminary experiments
comparing CAF and MPI versions of several of the NAS parallel benchmarks
on an Itanium 2 cluster with a Myrinet 2000 interconnect show that our CAF
compiler delivers performance that is roughly equal to or, in many cases, better
than that of programs parallelized using MPI, even though our compiler presently
lacks support for global optimization of communication.

1 Introduction

Parallel languages and parallelizing compilers have been a long term focus of compiler
research. To date, this research has not had the widespread impact on the development
of parallel scientific applications that had been hoped. The two standard parallel pro-
gramming models suited to scientific computation that have received industrial backing
are OpenMP [1] and High Performance Fortran (HPF) [2]. However, both of these mod-
els have significant shortcomings that reduce their utility for writing portable, scalable,
high-performance parallel programs. OpenMP programmers have little control over
data layout; as a result, OpenMP programs are difficult to map efficiently to distributed
memory platforms. In contrast, HPF enables programmers to explicitly control the map-
ping of data to processors; however, to date, commercial HPF compilers have failed to
deliver high-performance for a broad range of programs. As a result, the Message Pass-
ing Interface (MPI) [3] has become the de facto standard for parallel programming
because it enables application developers to write portable, scalable, high-performance
parallel programs using very sophisticated parallelizations under programmer’s control.
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Recently, there has been a significant interest in trying to improve the productiv-
ity of parallel programmers by using language-based parallel programming models that
abstract away most of the complex details of high-performance communication (e.g.
asynchronous calls), yet provide programmers with sufficient control to enable them
to employ sophisticated parallelizations. Two languages in particular have been the fo-
cus of recent attention as promising near-term alternatives to MPI: Co-array Fortran
(CAF) [4, 5] and Unified Parallel C (UPC) [6]. Both CAF and UPC support a global
address space model for single-program-multiple-data (SPMD) parallel programming.
Communication in these languages is simpler than MPI: one simply reads and writes
shared variables. With communication and synchronization as part of the language,
these languages are more amenable to compiler-directed communication optimization
than MPI programs.

To date, CAF has not appealed to application scientists as a model for develop-
ing scalable, portable codes, because the language is still somewhat immature and a
fledgling compiler is only available on Cray platforms. At Rice University, we are
working to create an open-source, portable, retargetable, high-quality CAF compiler
suitable for use with production codes. Our compiler translates CAF into Fortran 90
plus calls to ARMCI [7], a multi-platform library for one-sided communication. Re-
cently, we completed implementation of the core CAF language features, enabling us
to begin experimentation to assess the potential of CAF as a high-performance pro-
gramming model. Preliminary experiments comparing CAF and MPI versions of the
BT, MG, SP and CG NAS parallel benchmarks [8] on a large Itanium 2 cluster with a
Myrinet 2000 interconnect, show that our CAF compiler prototype already yields code
with performance that is roughly equal to hand-tuned MPI.

In the next section, we briefly describe the CAF language and the ARMCI library
that serves as the communication substrate for our generated code. Section 3 proposes
extensions to CAF to enable it to deliver portable high performance. In Section 4, we
outline the implementation strategy of our source-to-source CAF compiler. Section 5
presents our recommendations for writing high-performance CAF programs. In Sec-
tion 6, we describe experiments using versions of the NAS parallel benchmarks to com-
pare the performance of CAF and MPI. Section 7 presents our conclusions and outlines
our plans for future work.

2 Background

Co-Array Fortran (CAF) supports SPMD parallel programming through a small set of
language extensions to Fortran 90. Like MPI programs, an executing CAF program
consists of a static collection of asynchronous process images. CAF programs explic-
itly manage locality, data and computation distribution; however, CAF is a global ad-
dress space programming model. CAF supports distributed data using a natural exten-
sion to Fortran 90 syntax. For example, the declaration integer :: x(n,m)[*]
declares a shared co-array with n × m integers local to each process image. The di-
mensions inside brackets are called co-dimensions. Co-arrays may also be declared for
user-defined types as well as primitive types. A local section of a co-array may be a
singleton instance of a type rather than an array of type instances. Instead of explicitly



coding message exchanges to obtain data belonging to other processes, a CAF pro-
gram can directly reference non-local values using an extension to Fortran 90 syntax
for subscripted references. For instance, process p can read the first column of data in
co-array x from process p+1 with the right-hand side reference to x(:,1)[p+1].
The CAF language includes several synchronization primitives; the most important of
them are sync all, which implements a synchronous barrier, sync team, which
is used for barrier-style synchronization among dynamically-formed teams of two or
more processes, and start critical/end critical primitives for controlling
entry to a single global critical section. Since both remote data access and synchroniza-
tion are language primitives in CAF, communication and synchronization are amenable
to compiler-based optimizing transformations. In contrast, communication in MPI pro-
grams is expressed in a more detailed form, which makes it more difficult to improve
with a compiler. CAF also contains several features that improve the expressiveness
and power of the language including dynamic allocation of co-arrays, co-arrays of user-
defined types containing pointers, and fledgling support for parallel I/O. A more com-
plete description of the CAF language can be found elsewhere [5].

2.1 ARMCI

As its implementation substrate for global address space communication, the CAF
compiler we describe in this paper uses the Aggregate Remote Memory Copy Inter-
face (ARMCI) [7]—a multi-platform library for high-performance one-sided (get and
put) communication. One-sided communication separates data movement from syn-
chronization; this can be particularly useful for simplifying the coding of irregular
applications. ARMCI provides both blocking and split-phase non-blocking primitives
for one-sided communication. On some platforms, using split-phase primitives enables
communication to be overlapped with computation. ARMCI provides an excellent im-
plementation substrate for global address space languages because it achieves high per-
formance on a variety of networks (including Myrinet, Quadrics, and IBM’s switch
fabric for its SP systems) while insulating its clients from platform-specific implemen-
tation details such as shared memory, threads, and DMA engines. A notable feature of
ARMCI is its support for noncontiguous data transfers [9].

3 Towards Portable High-Performance CAF

The CAF programming model is still emerging. Prior to our compiler, the only exist-
ing CAF compiler implementation was for the Cray T3E and X1 platforms—tightly-
coupled shared memory architectures with high-performance interconnects that sup-
port efficient fine-grain communication and global synchronization. The original CAF
language specification [4, 5] was influenced by these features leading to CAF codes
that would not perform well on less tightly-coupled architectures. Evaluating the per-
formance of CAF codes written according to the original language specification on a
Myrinet cluster helped us to identify several features of the specification that reduce the
potential performance of CAF codes. Below we discuss some of these features along
with approaches we propose to address the problems they cause.



Memory fence semantics associated with CAF procedure calls. The sync memory
intrinsic is a memory fence that ensures the consistency of a process image’s local mem-
ory by waiting for the completion of all of that process’s outstanding communication
events. To ensure a consistent state for co-array data accessed during or after a pro-
cedure call, the original CAF model requires implicit memory fences before and after
every procedure invocation. We found this requirement to be overly restrictive since it
prevents overlapping communication with a procedure call, which is often an impor-
tant strategy for hiding communication latency. It should be possible for a sophisticated
programmer to relax this requirement where it is unnecessary for correctness. We are in
the process of exploring design alternatives that will make this possible.

Overly restrictive synchronization primitives. Another issue that arose during our
application evaluation was that using synchronization primitives in the original CAF
language specification reduced the performance of applications we studied. For exam-
ple, the original CAF specification only supports collective synchronization (sync all
and sync team), whereas we discovered that many applications only required unidi-
rectional, point-to-point synchronization. Using collective synchronization where only
point-to-point synchronization was needed degraded performance and in some cases
made it harder to program. We propose two new CAF intrinsics for point-to-point syn-
chronization: sync notify(q) and sync wait(p). When a process executes a
sync notify, it initiates notification of the specified process image and then can
continue immediately. When a process executes a sync wait, it must block until it is
notified by the specified process image. When a notification from process p is delivered
to process q, all pending communication events (both puts and gets) that p issued to q

before p initiated the sync notify have completed.
Collective operations. The CAF language specification does not provide collective

communication intrinsics. CAF is expressive enough so that users can write collective
communication routines in CAF; however this is likely to result in programs tailored
to a particular architecture (and in many cases to a range of processor counts too) that
are unlikely to deliver high performance on architectures with different communica-
tion latency and bandwidth characteristics. We propose that CAF should be extended to
include collective communication intrinsics. This strategy gives a CAF compiler flexi-
bility in choosing an appropriate algorithm and implementation suited to the target ar-
chitecture at hand. We are currently in the process of designing a set of CAF intrinsics
for collective communication.

4 Compiler Implementation Strategy

We have implemented a corpus of CAF language features that are sufficient to express
non-trivial CAF programs. Section 6 gives a description of some of the programs we
have compiled and evaluated. Our compiler performs source-to-source transformation
of CAF codes into F90 plus calls to a communication library (currently ARMCI). This
strategy was designed to leverage the best back-end compiler available on the target
platform to optimize local computation. Our CAF compiler is implemented on top of
OPEN64/SL [10], a version of the OPEN64 compiler infrastructure [11] that we have
modified to support source-to-source transformation of Fortran 90. Below we outline



some of the principal CAF compiler design issues that arose when implementing core
CAF language features.

Memory management issues. Current operating systems do not usually allow for
sharing of arbitrary memory allocated independently by different processes. For this
reason, memory for co-arrays must be managed by the communication substrate sep-
arately from memory managed conventionally by an F90 compiler’s language runtime
system. Having the communication library allocate co-array memory enables our gener-
ated code to use the most efficient communication strategy for a particular platform. For
example, on an SMP machine the memory can be allocated in shared memory which
would enable communication to be performed using processor load and store instruc-
tions. On a Myrinet-based cluster, allocating the endpoints of a communication event
in pinned physical memory enables the library to perform data transfers on the memory
directly using the Myrinet adapter’s DMA engine.

For CAF programs to perform well, access to the local portions of co-arrays must
be efficient. Since co-arrays are not supported in F90, we need to translate references
to the local portion of a co-array into a valid F90 construct and this construct must be
amenable to back-end compiler optimization. We believe that the best strategy is to use
an F90 pointer to access local co-array data. However, the difficulty with this strategy
is that we want to allocate co-array data outside F90-managed memory. To use an F90
pointer to access co-array data, we must initialize the pointer’s dope vector outside an
F90 compiler’s language runtime system. This requires compiler-dependent code for
initializing F90 pointers, which poses a minor difficulty when retargeting.

Co-array sequence association and reshaping. CAF explicitly provides sequence
association between local parts of co-arrays in common blocks, but equivalence of co-
array and non-co-array memory is prohibited. In order to support sequence association,
our compiler allocates storage once for each common block (at program start-up time)
and then sets up the procedure-level view for each common block containing co-arrays.
Our CAF compiler implements this using a two-part strategy. First, at compile time, it
generates a set of static initializers which set up the procedure-level view of the com-
mon block containing co-arrays. Next, at link time, a global initialization routine is
generated by collecting the static initializers. This routine allocates memory once for
each common block and invokes each static initializer in turn.

CAF allows programmers to pass co-arrays as arguments to procedures, which if
not implemented intelligently, could cause procedure invocations to be inefficient. For
each formal co-array parameter passed by reference, our implementation augments the
subroutine prototype with a “hidden” parameter; each hidden parameter is a pointer to
a runtime data structure describing the co-array to the callee. Every reference to the
original formal co-array parameter is replaced by the F90 pointer to the local part of
the co-array. Similarly, for expressions involving co-arrays passed by value, only the
address of the local part of the co-array need be passed.

Co-array communication generation. Communication events expressed with CAF’s
bracket notation must be converted into F90; however, this is not straightforward be-
cause the remote memory is in a different address space. Although the language pro-
vides shared-memory semantics, the target architecture may not. The compiler must
provide the transformations to bridge this semantic gap. On a hardware shared mem-



ory platform, the transformation is relatively straightforward since references to remote
memory in CAF can be expressed as loads and stores to shared locations. The situation
is more complicated for cluster-based systems with distributed memory. To perform the
data movement, the compiler must generate calls to a communication library since the
data resides on a remote node. Moreover, storage must be managed to temporarily hold
off-processor data to perform a computation.

Naive translation may lead to situations where excessive storage is used and super-
fluous copying is performed. Eventually, our compiler will automatically detect such
situations and eliminate the extraneous storage and copying, when possible. Compare
two statements where remote memory is updated:

a(:)[p] = b(:)
a(:)[p] = b(:) + 1

In the first case, a separate communication buffer may not be necessary since the
data to be sent to processor p is already available in b. On the other hand, the second
statement calls for local computation; the result should be computed into a temporary
communication buffer and then transferred to processor p. Now consider the case when
remote data is used:

a(:) = b(:)[p] + 1
a(:) = b(:)[p] + c(:)[q]

In the first statement, no extra communication buffer is necessary because we can
use a for temporarily storing b(:)[p] (a becomes dead) to evaluate the expression.
But for the second case, one extra communication buffer is required because we need
to transfer a vector of off-processor data to evaluate the expression.

Key missing features. There are a number of language features that are not yet im-
plemented in our preliminary compiler. The most important of these are allocatable
co-arrays, co-arrays of user-defined types (including those with pointer components),
triplet notation in co-dimensions, and multiple co-dimensions.

5 Writing High Performance Co-array Fortran Code

Once we completed support for core CAF language features in our prototype CAF com-
piler, we undertook a study of several of the NAS parallel benchmarks to understand
the interplay of CAF language, compiler, and runtime issues and their impact on the
programmability, scalability, performance and performance portability of applications.
From our colleagues Bob Numrich at University of Minnesota and Allan Wallcraft at
Naval Research Lab, we received draft CAF versions of the MG, CG, SP, and BT NAS
parallel benchmarks that they created from the MPI codes in the NPB version 2.3 re-
lease. Analyzing variants of these codes gave us a better understanding of how to de-
velop high performance programs in CAF.

All of the CAF code transformations we describe in this section represent manual
source-level tuning we applied to CAF sources for the NAS benchmarks to best exploit
CAF language features for performance. It is our goal to enhance the capabilities of
our prototype CAF compiler to apply such transformations automatically. Our aim is
to generate high-performance code that meets or exceeds the performance of hand-
coded MPI parallelizations from easy to write CAF source programs. To provide the



analysis we need to automate such transformations, we are in the process of adapting the
program analysis components in the OPEN64 infrastructure upon which our compiler
is based.

In our study, we found that there are several key coding strategies for writing high
performance CAF code. We list them in the decreasing order of importance:

Communication aggregation and vectorization. This is a critical optimization for ar-
chitectures in which the communication fabric does not support low-latency, fine-grain
memory transactions. Analysis of the NAS benchmark loops revealed that all major
communication could be vectorized manually using triplet notation for subscripts of
co-array references. Once support for data flow and dependence analysis are in place
in our CAF compiler, in most cases it should be straightforward to automate this trans-
formation. Consider Figure 1(a) which is a simple code fragment from the conj grad
routine of a first-draft CAF parallelization of NAS CG that we received from our col-
leagues. For this code, our prototype CAF compiler generates a get for every iteration,
which is expensive.

do k=n1,n2
q(k) = w(j)[reduce_exch_proc(i)]
j = j + 1

enddo

(a) unvectorized

q(n1:n2) =
w(j:j+n2-n1)[reduce_exch_proc(i)]

(b) vectorized

Fig. 1. NAS CG before and after communication vectorization.

Using the triplet notation as in Figure 1(b) enables our present CAF compiler pro-
totype to generate a single ARMCI communication event for such a statement, which
is substantially faster than the original. We observed performance improvements up to
two orders of magnitude by applying this transformation, even for relatively small prob-
lem sizes of the NAS benchmarks we studied. In CAF, when the shapes of source and
destination array sections are conformant, vectorized communication can be expressed
using triplet notation. Otherwise, a buffer copy is necessary at the source or destination
to yield conformant shapes or to pack the data on the sender and unpack the data on the
receiver. The latter approach mimics the message packing and unpacking in MPI.

Synchronization strength reduction. Analogous to the well-known operator strength
reduction transformation, synchronization strength reduction involves transforming a
strong synchronization primitive, e.g., a barrier, into a weaker one(s), e.g., point-to-
point notify/wait, while preserving the meaning of the program, with the aim of im-
proving performance. Others have previously employed similar optimizations with sig-
nificant benefits [12]. This optimization was a key performance boost for each of the
NAS benchmarks we studied. Figure 2 uses a fragment from NAS MG, a 3D multigrid
solver, to illustrate this transformation. Figure 2(a) shows the original CAF version of
the code in which processors perform a barrier synchronization before and after ex-
changing boundary layers of its 3D block with its pair of neighbors along a coordinate
dimension. This code was originally written for the Cray T3E, which has fast hardware
support for barriers. However, a barrier provides much stronger synchronization than
necessary; only synchronization with the adjacent neighbors is needed. On cluster in-
terconnects that do not have fast hardware support for barriers it is more efficient to
use point-to-point synchronization. Figure 2(b) shows the code recast to use our new



if( .not. dead(kk) )then
do axis = 1, 3
if( nprocs .ne. 1) then
call sync_all()

call give3(axis,+1,u,n1,n2,n3,kk)
call give3(axis,-1,u,n1,n2,n3,kk)

call sync_all()

call take3(axis,-1,u,n1,n2,n3)
call take3(axis,+1,u,n1,n2,n3)

else
call comm1p(axis,u,n1,n2,n3,kk)

endif
enddo

else ...

(a) using barrier synchronization

if( .not. dead(kk) )then
do axis = 1, 3
if( nprocs .ne. 1) then
call sync_notify(nbr(axis,1,kk)+1)
call sync_notify(nbr(axis,-1,kk)+1)
call sync_wait(nbr(axis,1,kk)+1)
call sync_wait(nbr(axis,-1,kk)+1)
call give3(axis,+1,u,n1,n2,n3,kk)
call sync_notify(nbr(axis,1,kk)+1)
call give3(axis,-1,u,n1,n2,n3,kk)
call sync_notify(nbr(axis,-1,kk)+1)
call sync_wait(nbr(axis,1,kk)+1)
call sync_wait(nbr(axis,-1,kk)+1)
call take3( axis,-1,u,n1,n2,n3)
call take3( axis,+1,u,n1,n2,n3)

else
call comm1p(axis,u,n1,n2,n3,kk)

endif
enddo

else ...

(b) using point-to-point synchronization

Fig. 2. Communication in NAS MG before and after synchronization strength reduction.

CAF one-way point-to-point synchronization primitives. On a Myrinet 2000 cluster,
this transformation improved performance by about 30% for 64 processors.

Conversion of Gets into Puts. On some communication fabrics such as Myrinet
and the interconnect in IBM’s Blue Gene [13] put operations are supported directly,
whereas get operations require asking a server-side thread to supply the requested data
with a put. For such interconnects, when using regular algorithms, it is feasible and
potentially profitable to transform each get operation into a put.

6 Experiments and Discussion

In this section we compare the performance of the code our compiler generates from
CAF with hand-coded MPI implementations of the MG, CG, BT and SP NAS parallel
benchmark codes. For our study, we used MPI versions from the NPB 2.3 release.
Sequential performance measurements used as a baseline were performed using the
NPB 2.3-serial release. The NPB codes are widely regarded as useful for evaluating the
performance of compilers on parallel systems.

For each benchmark, we compare the parallel efficiency of MPI and CAF imple-
mentations of each benchmark. We compute parallel efficiency as follows. For each
parallelization ρ, the efficiency metric is computed as ts

P×tp(P,ρ) . In this equation, ts is
the execution time of the original sequential version implemented by the NAS group
at the NASA Ames Research Laboratory; P is the number of processors; tp(P, ρ) is
the time for the parallel execution on P processors using parallelization ρ. Using this
metric, perfect speedup would yield efficiency 1.0 for each processor configuration. We
use efficiency rather than speedup or execution time as our comparison metric because
it enables us to accurately gauge the relative performance of multiple versions across
the entire range of processor counts.



All experiments were performed on a cluster of 92 HP zx6000 workstations in-
terconnected with Myrinet 2000. Each workstation node contains two 900MHz Intel
Itanium 2 processors with 32KB/256KB/1.5MB of L1/L2/L3 cache, 4GB of RAM, and
the HP zx1 chipset. Our operating environment is the GNU/Linux operating system
(kernel version 2.4.20 plus patches). Although this Linux kernel is SMP-capable, we
used only one of the processors on each SMP node for our experiments (to avoid con-
tention for the Myrinet) and disabled the other processor to avoid process ping-ponging
since affinity scheduling is not available in our present kernel configuration. We used the
Intel Fortran v7.0 for Itanium (efc) as the back-end compiler for all F90 code generated
by the CAF translator as well as for the MPI versions of the benchmarks. Optimization
level 3 was used along with the override-limits option to prevent the compiler from
automatically disabling certain expensive optimizations. CAF executables were linked
against ARMCI 1.1-beta for Myrinet GM. All executables were linked against Myri-
com’s MPI implementation MPICH-GM 1.2.5..10 (compiled with Intel’s efc) running
on Myricom’s GM 1.6.4 driver substrate.

In the following sections, we briefly describe the NAS benchmarks used in our
evaluation, the key features of their MPI and CAF parallelizations and compare the
performance of the CAF and MPI implementations.

6.1 NAS CG

In the NAS CG parallel benchmark, a conjugate gradient method is used to compute an
approximation to the smallest eigenvalue of a large, sparse, symmetric positive definite
matrix. This kernel is typical of unstructured grid computations in that it tests irregular
long distance communication and employs sparse matrix vector multiplication. The
irregular communication requirement of this benchmark is evidently a challenge for
all systems.

In the MPI version, on each iteration of loops involving communication an MPI
non-blocking receive from reduce exch proc(i) processor is initiated followed
by an MPI send to the same processor. After the send, the process waits until its MPI
receive completes. Thus, no overlap of communication and computation is possible.

! notify our partner that we are here and wait for
! him to notify us that the data we need is ready

call sync_notify(reduce_exch_proc(i)+1)
call sync_wait(reduce_exch_proc(i)+1)

! get data from our partner
q(n1:n2) = w(m1:m1+n2-n1)[reduce_exch_proc(i)]

! synchronize again with our partner to
! indicate that we have completed our exchange
! so that we can safely modify our part of w

call sync_notify(reduce_exch_proc(i)+1)
call sync_wait(reduce_exch_proc(i)+1)

! local computation
... use q, modify w ...

Fig. 3. A typical fragment of optimized CAF for NAS CG.



Our tuned CAF version of NAS CG does not differ much from the MPI hand-coded
version. In fact, we directly converted two-sided MPI communication into equivalent
calls to notify/wait and a vectorized one-sided get communication event. Figure 3 shows
a typical fragment of our CAF parallelization using notify/wait synchronization. Our
experiments showed that for this code, replacing the co-array read (get) operation with
a co-array write (put) had a negligible effect on performance because of the amount of
synchronization necessary to preserve data dependences.

In initial experimentation with our CAF version of CG on various numbers of pro-
cessors, we found that on less than eight processors, performance was significantly
lower than its MPI counterpart. In our first CAF implementation of CG, the receive
array q was a common block variable, allocated in the static data by the compiler and
linker. To perform the communication shown in Figure 3 our CAF compiler prototype
allocated a temporary buffer in memory registered with ARMCI so that the Myrinet
hardware could initiate a DMA transfer. After the get was performed, data was copied
from the temporary buffer into the q array. For runs on a small number of processors,
the buffers are large. Moreover, the registered memory pool has the starting address
independent of the addresses of the common blocks. Using this layout of memory and
a temporary communication buffer caused the number of L3 cache misses in our CAF
code to be up to a factor of three larger than for the corresponding MPI code, resulting
in performance that was slower by a factor of five. By converting q and other arrays
used in this way to co-arrays, it moved their storage allocation into the segment with
co-array data (reducing the potential for conflict misses) and avoided the need for the
temporary buffer. Overall, this change greatly reduced L3 cache misses and brought the
performance of the CAF version back to level of the MPI code. Our lesson from this
experience is that memory layout of communication buffers, co-arrays, and common
block/save arrays might require thorough analysis and optimization.

As Figure 4 (a) shows, our CAF version of NAS CG achieves comparable perfor-
mance to that of the MPI version. The parallel efficiency of the CAF and MPI codes are
almost indistinguishable across a range of processor numbers.

6.2 NAS MG

The MG multigrid kernel calculates an approximate solution to the discrete Poisson
problem using four iterations of the V-cycle multigrid algorithm on a n × n × n grid
with periodic boundary conditions. The communication is highly structured and goes
through a fixed sequence of regular patterns.

In the NAS MG benchmark, for each level of the grid, there are periodic updates
of the border region of a three-dimensional rectangular data volume from neighboring
processors in each of six spatial directions. Four buffers are used: two as receive buffers
and two as send buffers. For each of the three spatial axes, two messages (except for
the corner cases) are sent using basic MPI send to update the border regions on the
left and right neighbors. Therefore, two buffers are used for each direction, one buffer
to store data to be sent and the other to receive the data from the corresponding neigh-
bor. Because two-sided communication is used, there is implicit two-way point-to-point
synchronization between each pair of neighbors.



The CAF version of MG mimics the MPI version. The communication buffers used
in the MPI version are replaced by co-arrays; the communication is expressed using
CAF syntax, as opposed to using MPI primitives. This approach requires explicit syn-
chronization. The example code is shown on Figure 2 (b). The give3 procedure per-
forms a one-sided put to the appropriate neighbor. Because of communication buffer
reuse, two sync notify are necessary to signal our left and right neighbors that
our receive buffers are ready to receive data from them; two following sync wait
ensure that the remote buffers on the left and the right neighbors are ready for us to
send data. The sync notify following each give3 call is matched by the neigh-
bor’s sync wait and signals the completion of the put. Similarly, our sync wait
matches the neighbor’s sync notify signaling that the data transfer from the neigh-
bor is complete and we can proceed to the unpacking phase in take3.

As the performance graph on Figure 4 (b) illustrates, our CAF version of NAS MG
achieves comparable performance to that of the MPI version.
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Fig. 4. Comparison of MPI and CAF parallel efficiency for NAS MG and CG.

6.3 NAS SP and BT

As described in a NASA Ames technical report [8], the NAS benchmarks BT and SP
are two simulated CFD applications that solve systems of equations resulting from
an approximately factored implicit finite-difference discretization of three-dimensional
Navier-Stokes equations. The principal difference between the codes is that BT solves
block-tridiagonal systems of 5x5 blocks, whereas SP solves scalar penta-diagonal sys-
tems resulting from full diagonalization of the approximately factored scheme [8]. Both
consist of an initialization phase followed by iterative computations over time steps. In
each time step, boundary conditions are first calculated. Then the right hand sides of
the equations are calculated. Next, banded systems are solved in three computationally
intensive bi-directional sweeps along each of the x, y, and z directions. Finally, flow
variables are updated. During each timestep, loosely-synchronous communication is
required before the boundary computation, and tightly-coupled communication is re-
quired during the forward and backward line sweeps along each dimension.



Because of the line sweeps along each of the spatial dimensions, traditional block
distributions in one or more dimensions would not yield good parallelism. For this
reason, SP and BT use a skewed block distribution called multipartitioning [8, 14]. With
multi-partitioning, each processor handles several disjoint blocks in the data domain.
Blocks are assigned to the processors so that there is an even distribution of work for
each directional sweep, and that each processor has a block on which it can compute in
each step of every sweep. Using multipartitioning yields full parallelism with even load
balance while requiring only coarse-grain communication.
lhs( 1:BLOCK_SIZE, 1:BLOCK_SIZE,

cc, -1,
0:JMAX-1, 0:KMAX-1,
cr) [successor(1)] =

lhs( 1:BLOCK_SIZE, 1:BLOCK_SIZE,
cc, cell_size(1,c)-1,
0:JMAX-1, 0:KMAX-1, c)

(a) NAS BT

.... pack into out_buffer_local......

out_buffer(1:p, stage+1:stage+1)
[successor(1)] =

out_buffer_local(1:p, 0:0)

.... unpack from out_buffer..........

(b) NAS SP

Fig. 5. Forward sweep communication in NAS BT and NAS SP.

The MPI implementation of NAS BT and SP attempts to hide communication la-
tency by overlapping communication with computation, using non-blocking commu-
nication primitives. For example, in the forward sweep, except for the last tile, non-
blocking sends are initiated in order to update the ghost region on the next tile. After-
wards, each process advances to the next tile it is responsible for, posts a non-blocking
receive, performs some local computation, then waits for the completion of both non-
blocking send and receive. The same pattern is present in the backward sweep.

The CAF implementation for BT and SP inherits the multipartitioning scheme used
by the MPI version. In BT, the main working data resides in co-arrays, while in SP it
resides in non-shared arrays. For BT, during the boundary condition computation and
during the forward sweep for each of the axes, no buffers are used for packing and
unpacking, as shown in Figure 5(a). On the contrary, in SP all the communication is
performed via co-array buffers, see Figure 5(b). This shows that when an application is
written in the spirit of the Co-array Fortran programming model, it might require less
memory copies. In the backward sweep, both BT and SP use auxiliary co-array buffers
to communicate data.

In our CAF implementations, we had to consider the trade-off between the amount
of memory used for buffers and the amount of necessary synchronization. By using
more buffer storage we were able to eliminate both output and anti-dependences due
to buffer reuse, thus obviating the need for extra synchronization. We used a dedicated
buffer for each communication event during the sweeps, for a total buffer size increase
by a factor of square root of the number of processors. Experimentally we found that
this was beneficial for performance while the memory increase was acceptable.

The performance graphs in figure 6 show that the CAF version performs consis-
tently better than the MPI version for BT, but is about 5% slower for SP. For both
benchmarks, our compiler uses blocking communication primitives. By applying hand
optimization to the code generated by our CAF compiler for SP, we discovered that
using non-blocking communication enables us to achieve performance comparable to
that of MPI.
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Fig. 6. Comparison of MPI and CAF parallel efficiency for NAS SP and BT.

We observed that even though we used blocking communication for both BT and
SP, we only paid a performance penalty for SP. This difference is due to the computation
and communication characteristics of the benchmarks. Measurements showed that BT
communicates half the number of messages that SP does, whereas the communication
volume is about 2/3 of the communication volume for SP. Therefore, in BT the commu-
nication is less frequent than in SP, and consists of larger messages. As a consequence,
overlapping computation with communication is more critical for performance in SP.

6.4 Discussion

In the course of our experimentation on our Itanium2+Myrinet2000 cluster, we ob-
served that allocating co-arrays and temporary communication buffers in registered
memory provides a noticeable boost in performance. Myrinet is only able to perform
DMA on registered (pinned) pages. If all local variables involved in communication are
allocated in registered memory, they can be used by the communication library directly,
without copying into temporary buffers allocated from a pool of registered memory.
In our prototype compiler, we don’t automatically migrate local variables involved in
communication into pinned memory; instead, we accomplished this by modifying the
source code to turn them into co-arrays that are never referenced remotely. Automati-
cally migrating local variables into co-array storage can be complex to do because of
the need to preserve sequence association among local variables in common blocks and
Fortran data initialization statements.

Our experiments showed that using split-phase, non-blocking communication and
overlapping computation with DMA transfers significantly boosts performance. Our
prototype compiler implements communication by an in-place conversion of language-
level communication constructs into blocking gets and puts. Once we have a framework
for data-flow and dependence analysis in place, we will be able to automatically trans-
late blocking communication into split-phase, non-blocking equivalents to effectively
overlap communication with computation.



At a higher level, the original semantics of CAF as defined by Numrich and Reid [4,
5] require an implicit sync memory at each procedure call boundary which com-
pletes any outstanding gets or puts. This requirement makes it impossible to overlap
communication with a procedure call that does not use any of the data involved in com-
munication. Requiring this implicit sync memory for SP would remove a significant
opportunity for latency hiding that is exploited by the MPI hand-coded parallelization,
so we believe that this language requirement should be dropped.

In the first draft CAF versions of the NAS benchmarks, we found that it was of-
ten the case that there were frequent references to read-only data that was stored off-
processor. For example, there were frequent off-processor references: to the variable
reduce send start in the initial CAF version of CG, to the communication buffer
offsets for each face in SP, and to the cell size information of neighboring processors
in BT. We improved code performance by fetching these values once after they had
been initialized and storing them locally. With interprocedural analysis to determine
that these variables are essentially run-time constants, we could potentially apply this
transformation automatically.

7 Conclusions

This paper presents an overview of the issues we have been grappling with as we work
on (1) refinement of the CAF language to make it the programming model of choice
for portable, high-performance scientific programming in Fortran and (2) design and
implementation of a portable and retargetable CAF compiler. Preliminary performance
results for several NAS benchmarks on a cluster of workstations show that CAF is
capable of achieving good performance despite the current lack of automatic communi-
cation and synchronization optimizations in our prototype CAF compiler. We were able
to achieve performance comparable to highly-tuned, hand-coded MPI versions of the
same benchmarks. The expressive syntax and explicit, one-sided communication model
enabled us to manually perform key optimizations such as communication vectorization
and synchronization strength reduction in the CAF source code. The CAF model is ex-
pressive enough to allow the user to perform these transformations manually when a
compiler cannot. This is in contrast to HPF, for example, where it is more difficult for
the user to improve the code performance through source code adjustments.

While we performed optimizing transformations manually on our CAF source code
in this preliminary work, it is our intention to improve our prototype CAF compiler to
perform automatically most of the optimizing transformations described in this paper.
An advantage of writing parallel programs in CAF over MPI is that because commu-
nication and synchronization are expressed at the language level, it is possible for a
compiler to analyze and tailor code to whatever target platform is at hand. On a shared
memory architecture, CAF accesses to remote data can simply be turned into loads and
stores; performing such a radical transformation on an MPI program would be exceed-
ingly difficult. While it may be possible to annotate MPI libraries so that compilers
could understand the semantics of the communication expressed by library calls, CAF
offers a simpler, coherent model for parallel programming.



Because CAF is amenable to automatic analysis and transformation, it is possible
and desirable to express computation and communication in a natural and general way,
leaving the burden of platform-specific code tuning to the compiler. This is important
because user-applied optimizations that perform well on one architecture may actually
be counter-productive on a different architecture.
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