
Spatial Views: Space-Aware Programming for

Networks of Embedded Systems ?

Yang Ni, Ulrich Kremer, and Liviu Iftode

Department of Computer Science
Rutgers University

Piscataway, NJ 08854
{yangni, uli, iftode}@cs.rutgers.edu

Abstract. Networks of embedded systems, in the form of cell phones,
PDAs, wearable computers, and sensors connected through wireless net-
working technology, are emerging as an important computing platform.
The ubiquitous nature of such a platform promises exciting applications.
This paper presents a new programming model for a network of embed-
ded systems, called Spatial Views, targeting its dynamic, space-sensitive
and resource-restrained characteristics. The core of the proposed model
is iterative programming over a dynamic collection of nodes identified
by the physical spaces they are in and the services they provide. Hid-
den in the iteration is execution migration as the main collaboration
paradigm, constrained by user specified limits on resource usage such as
response time and energy consumption. A Spatial Views prototype has
been implemented, and first results are reported.

1 Introduction

The possibility of building massive networks of embedded systems (NES)
has become a reality. For instance, cell phones, PDA’s, and other gadgets
carried by passengers on a train can form an ad hoc network through
wireless connection. In addition to those volatile and dynamic nodes,
the network may contain fixed nodes installed on the train, for instance
public displays, keyboards, sensors, or Internet connections. Similar net-
works can be established across buildings, airports or even on highways
among car-mounted computers. Any device with a processor, some mem-
ory and a network connection, probably integrated on a single chip, can
join such a network. The application of such a network is limited only by
our imagination, if we had the right programming models and abstrac-
tions.
Existing programming models do not address key issues for applications
that will run on a network of embedded systems.

Physical Locations: An application has a physical target space region,
i.e., a space of interest in which it executes. The semantics of a pro-
gram executing outside its target space in not defined. For instance,
it makes a difference if an application collects temperature reading

? This research was partially supported by NSF ITR/SI award ANI-0121416.

2

within a building or outside a building, and whether all or only a sub-
set of temperature sensors are to be polled. A motion sensor reading
may trigger the activation of other sensors but only of those which
are in the spatial proximity of the motion sensor. A programmer
must be able to specify physical spaces and location constraints over
these spaces.

Volatile and Dynamic Networks: Nodes may join and leave at any
time, because of movements or failure. Portable devices or sensors,
carried by a person or an animal[16], may go out the space of inter-
est while they are moving with the carriers. Battery powered small
devices may go out of power at any point. A node available at time
t can not be assumed available at time t + ∆t or time t−∆t, where
∆t can be very small relative to the application execution time.

Resource Constraints: Resources like energy and execution time are
limited in a network of embedded systems, due to the hardware
form factor and application characteristics. Graceful degradation of
quality of results is necessary in such an environment. Instead of
draining the battery of the sensors, you might want to limit the total
energy used by a program and accept a slightly worse answer. Or
you may limit the response time of a query for traffic information
10 miles ahead on the highway, so you will have enough time to
choose a detour after getting the answer. In those cases, energy-
wasting or late answers are not better or even worse than no answer.
Programmers should be able to specify the amount of resource used
during a program execution, so trade-offs between quality of results
and resource usage can be made.

In this paper, we introduce Spatial Views, a novel programming model
targeting networks of embedded systems. Spaces, services and resource
constraints are explicit programming elements in Spatial Views. Spaces
and services are combined to define dynamic collections of interesting
nodes in a network, called Spatial Views. Iterators and Selectors specify
code to execute in a view under a specified time constraint, and possibly
additional user specified resource constraints. These high level program
constructs are based on a migratory execution model, guided by the
space and service of interest. However, Spatial Views does not exclude
an implementation using other communication mechanisms, such as re-
mote procedure calls, message passing or even socket programming, for
performance or energy efficiencies.
Network or node failures are transparent to the programming model.
However, there is no guarantee that the execution of an application will
be able to complete successfully. Our proposed model is not fault tolerant,
but allows answers of different qualities. In contrast, in a traditional
programming model for a stable target system, any answer is considered
to have perfect quality. In our programming model, it is the responsibility
of the programmer to assess the quality of an answer. For example, if a
user wants the average temperature calculated from readings of at least
ten network nodes, he or she should report the average temperature
together with the number of actually visited nodes to assess the quality
of the answer. A best-effort compiler and run-time system will try to
visit as many nodes as possible, as long as no user defined constraint is

3

violated, assuming that visiting more nodes will produce a potentially
better answer. A target space and a time constraint have to be specified
for each program to confine its execution, including node discovery, to a
space×time interval.
Security and privacy issues are also important in a NES but are not
currently part of our programming model. The same application will
run on a secure network as well as on a insecure network. We assume
that security-sensitive hosts will implement authentication and protec-
tion policies at a lower level than the programming model.
Smart Messages[3] and Spatial Programming[12] are possible implemen-
tation platforms for our proposed Spatial Views programming model.
A programming environment for execution migration that includes pro-
tection and encryption for Smart Messages is currently under investiga-
tion[26], which could be used as an secure infrastructure to implement
our programming model. However, in this paper we describe an imple-
mentation of Spatial Views on top of Sun’s K Virtual Machine (KVM)
independent of Smart Messages.
In the rest of this paper, we will present a survey of related works (section
2), the programming model (section 3), a discussion of the implementa-
tion of a prototype system (section 4) and experimental results (section
5).

2 Related Work

Our work is correlated to recent work on sensor networks[11, 19, 5, 15, 18]
in that they all target ad hoc networks of wireless devices with limited re-
sources. However, we broaden the spectrum of network nodes to include
more computing powerful devices like PDA’s, cell phones and even work-
stations or servers in addition to sensors. An ad hoc network including
more powerful devices with versatile IO capabilities would enable more
interesting applications. Our vision is that fixed nodes ,including sensors,
displays, speakers, workstations and servers, work as an infrastructure
in the environment. PDA’s, cell phones, intelligent watches or other gad-
gets play the role as personal terminals. These “personal terminals” not
only interact with the environments, but also interact among themselves
through wireless ad hoc network. In one word, our work targets different
applications and assumes different hardware than sensor networks.
TinyOS[11] and nesC[5] provide a component-based event-driven pro-
gramming environment for Motes, small wireless devices that have pro-
cessors of a couple of MHz, about 4KB RAM and 10Kbps wireless com-
munication capability. TinyOS and nesC use Active Messages as a com-
munication paradigm. Active Messages has a similar flavor to execution
migration of Spatial Views, but use non-migrating handlers instead of
migrating code. Mate[19] is a tiny virtual machine built over TinyOS
for sensor networks. It allows capsules in bytecode to forward themselves
through a network with a single instruction, which bears the resemblance
to execution migration in Spatial Views. Self forwarding enables on-line
software upgrading, which is important in large-scale sensor networks.
Our work can also be considered a research effort on ubiquitous comput-
ing[25] (also called pervasive computing[23] or context-aware computing

4

in recent literature). In this broad research area, we are only investigat-
ing certain relevant issues from the perspective of programming language
and compiler designing. Our focus is on proper programming abstractions
for elements such as services, locations and resource limitations, which
are very important in ubiquitous computing.
Next, we are going to discuss related work about services and locations.
We will also discuss related work about execution migration, which is
used in the reference implementation of our programming model.

2.1 Service Discovery

Service discovery is a research area with a long history. Service is usu-
ally specified either as an interface (like in Jini,)[24] or as a tuple of
attribute-and-value pairs (like in INS.)[2] Attribute-and-value pairs de-
scribe a hierarchical service space by adding new attributes and corre-
sponding values in a describing tuple. The same goal can be achieved
through interface sub-typing.
In this work we assume that service discovery is a basic function provided
by the operating system. Spatial Views programming model specify ser-
vices as interfaces. Applications and service providing nodes agree on the
semantics of the methods of the services.

2.2 Location Technology and Space Modeling

Space-awareness is crucial for NES computing. Spatial Views tries to
provide a general space model in a high-level programming language, by
uncoupling space knowledge from specific location technology.
GPS[6] is the most developed positioning technology. It has a history
of more than 30 years. It is all-weather world-wide available with very
high accuracy regarding its scale, 16 meters for absolute positions and 1
meter for relative positions. With the radio signals from 4 satellites out
of 24 in the system, a user with a receiver can calculate the distances
from each of them and thus solve equations to get his or her longitude,
latitude, altitude and, as a side-effect, the time to an accuracy of 100ns.
In spite of its many advantages, GPS is only available outdoor and its
accuracy is still not satisfactory for many mobile computing applica-
tions. In recent years, more accurate in-door positioning technologies
have been developed by the mobile computing community. Active Badges
and Bats[1, 10, 9] are tracking systems as accurate as to a few centime-
ters. Each object is attached a radio frequency tag, called Active Badge
or Bat, whose signal can be detected by a grid consisting of hundreds
of receivers installed on the ceiling of a building. Receiver readings are
stored in a central machine and analyzed to track the object associated
with a specific tag.
Although accurate, Active Badges and Bats are costly and hard to de-
ploy. User privacy is not protected since everyone with a tag exposes
his/her position by sending out radio signals. The central machine in
charge of analyzing each user’s position causes scalability problem and
represents a single point of failure.

5

Cricket[21, 20] tries to address those issues by using a distributed and
passive architecture similar to GPS. Beacons are installed in every space
of interest in a building, like offices, meeting rooms and hallways. A
beacon emits radio and ultrasound signals simultaneously. A user receiver
listens. After a radio signal is received from a beacon, the receiver times
the delay until the ultrasound signal is received from the same beacon.
The distance from the beacon can be calculated with the delay. Among
all the beacons whose distances are calculated, the user select the location
of the nearest beacon as his own. Beyond addressing the cost, scalability
and privacy problems, Cricket provides an accuracy to a few meters.

Embedded in the above location technologies are two categories of space
models, which provides an abstract representation of locations and spaces.
Cricket uses a symbolic model, while GPS uses a geometric model. In
a symbolic model, a space is represented using a human readable sym-
bolic name, usually hierarchical, such as “room301.core.busch.rutgers”.
In a geometric model, a space is represented as a set of locations (2- or 3-
tuples). The set is usually described analytically, by describing the shape
of the space with necessary parameters. For efficiency, instead of analyt-
ical representation, a quadtree can be used to represent the maximal
cover of a space[10].

2.3 Migratory Execution

Spatial Views is part of the Smart Messages project[4, 3]. The goal of
Spatial Views is to build a high-level space-aware programming language
over Smart Messages. We had a simple implementation of the migratory
execution feature of Smart Messages for fast development and evaluation
of Spatial Views.

Migratory execution has been extensively studied in the literature, espe-
cially in the context of mobile agents[8, 7]. Mobile agents are programs
autonomously migrating from one node to another. So, considering their
migratory execution feature, Spatial Views and Smart Messages fall into
the category of mobile agent programming models. However, Spatial
Views only supports implicit transparent migration hidden in its itera-
tion operation, and names a node based on the services that it provides.

D’Agents[8], once known as Agent Tcl[7], allow programmers to write
mobile agents in Tcl, Scheme and Java. D’Agents provide strong migra-
tion operations, named “jump”, using IP addresses or domain names to
address hosts. Transport is assumed a task of the underlying TCP/IP
network by D’Agents. Spatial Views/Smart Messages is different from
D’Agents in terms of the design goal. We are designing a programming
tool and infrastructure for cooperative computing on networks of em-
bedded systems. The major network connection is assumed wireless. In
Spatial Views/Smart Messages, we take a content naming approach, and
a migrating program is responsible for its own routing. All those features
are in an extension to KVM instead of a standard JVM. Experimental
results showed that our simple implementation of execution migration for
Spatial Views has similar performance to the performance of D’Agents.
We expect that using the Smart Messages implementation currently un-

6

der development[3] will further improve the performance of a Spatial
Views program.

3 Programming Model

To program a network of embedded system in Spatial Views, a program-
mer specifies the nodes in which he or she is interested based on the
properties of the nodes. Then he or she specifies the task to be executed
on those nodes. The properties used to identify interesting nodes include
the services of the nodes and their locations.

A program starts running on one node. Whenever it needs some services
which the current node does not provide, it discovers another node that
does, and migrates there to continue its execution.

Spatial Views provides necessary programming abstractions and con-
structs for this novel programming model. Node discovery, ad hoc net-
work routing, and execution migration are transparently implemented
by the compiler, runtime system, and the operating system. A program-
mer is freed from dealing directly with the dynamic network. Figure 1
shows an example of Spatial Views program. We will walk through this
example in Section 3.3.

3.1 Services and Virtual Nodes

NES computing is cooperative computing[4]. Nodes participate in a com-
mon computing task by providing some service and using services pro-
vided by other nodes at the same time. A service is described or named
with an interface in Spatial Views. Nodes provide services which are
discovered at run-time, and are provided as objects implementing cer-
tain interfaces. In our programming model, discovery is assumed a basic
function provided by the underlying middleware or OS. But we provide a
simple discovery implementation based on the “random walk” technique
in Section 4. The discovery procedure looks for nodes hosting classes im-
plementing the interface. When such a node is found, an object of the
class is created. The program is then able to use the service through the
object. The discovery may be confined to certain physical space as we
will discuss in Section 3.2.

The basic programming abstraction in Spatial Views is a virtual node,
which is denoted as a pair (service, location), representing a physical
node providing the service and locating in the location. Concrete phys-
ical nodes with IP addresses or MAC addresses are replaced by virtual
nodes. Depending on how many services it provides, a single physical
node may be represented by multiple virtual nodes. More interestingly,
if a physical node is mobile, it may be used as different virtual nodes at
different points during the application execution. Uniquely identifying a
particular physical node is not supported in Spatial Views. In case that
an application needs to do so, the programmer can use some application-
specific mechanism, for example, using MAC addresses.

7

3.2 Spatial Views, Iterators and Selectors

A spatial view is a dynamic group consisting of virtual nodes that provide
a common service and locate in a common space. Here a space is a set of
locations, which can be a room, a floor, or a parking lot. Iterators and
selectors describe actions to be performed over the nodes in a view. The
instructions specified in the body of an iterator are executed on all or as
many nodes as possible of the view. In contrast, the body of a selector
is executed on only one node in the view if the view is not empty.

The most important characteristics of a spatial view is its dynamic na-
ture. It is a changing set of virtual nodes. A physical node may move
out, or run out of power. So a virtual node may just disappear at an
arbitrary point. On the other hand, new nodes may join at any time.
For this reason, two consecutive invocations of the same iterator over
the same view may lead to different results.

A spatial view is defined as follows:

SpatialViewDefinition →
SpatialView SV id = new SpatialView(Service , Spaceopt)

where Service is the name of an interface and Space is the space of inter-
est. If the space is omitted, any node providing the interesting service is
included in the view no matter where it is.

A spatial view is accessed through an iterator or selector.

Iterator →
foreach node id in SV id do TimeConstraint ConstraintListopt

Statement
Selector →
forany node id in SV id do TimeConstraint ConstraintListopt

Statement
TimeConstraint →
within NumberOfMilliseconds

ConstraintList gives a list of energy, monetary or other constraints ap-
plied to an iterator or a selector. TimeConstraint gives a time constraint,
which is mandatory. At this point, only time constraints are supported.

A time constraint demands an iterator or selector finish in NumberOfMil-
liseconds. Time constraints are enforced following a best-effort semantics
with the iteration body as the minimal atomic unit of constraint control.
This means an iteration will never be partially executed even when a
time constraint is violated. A time constraint in Spatial Views is a soft
deadline, and is a time budget rather than a real-time deadline. In other
words, the time constraint does not ensure that a program terminates
successfully within the deadline, but ensures no further execution after
the budget is exhausted.

8

1: // Import space definitions.

2: import SpaceDefinition.Rutgers.*;

3:

4: public class SVExample {

5: public static void main(String args[]) {

6: // Define a Spatial View containing cameras on the 3rd floor

7: // of the CoRE building

8: SpatialView cameraView = new SpatialView("Camera",

9: BuschCampus.CoRE.3rdFloor);

10:

11: // Iterate over camera view in 30 seconds

12: foreach camera in cameraView do within 30000 {

13: Picture pic = camera.getPicture();

14: Rectangle redRegion = pic.findRegionInColor(Color.Red);

15:

16: if (redRegion != null) {

17: Rectangle face;

18:

19: // Define a Spatial View of nodes providing face

20: // detection service. The default space is anywhere.

21: SpatialView detectorView = new SpatialView("FaceDetector");

22:

23: // select a detector and finish face detection in 10 seconds

24: forany detector in detectorView do within 10000

25: face = detector.detectFaceInPicture(pic);

26:

27: Location loc = camera.getLocation();

28:

29: // Check if the the red region is close to the

30: // face so that we can think it is a person in red

31: if (face != null && face.isCloseTo(redRegion))

32: System.out.println("A person in red is found at " + loc);

33: else

34: System.out.println("Something red is found at " + loc);

35: }

36: }

37: }

38: }

Fig. 1. Spatial Views example application of locating a person in red

9

3.3 Example

The example shown in Figure 1 illustrates a Spatial Views application
that executes on a network that contains nodes with cameras and nodes
that provide image processing services such as human face detection[22].
The program tries to find a person with a red shirt or sweater on the
third floor of a building. An answer is expected back within 30 seconds
(soft deadline). A time limit is necessary because the computed answer
may become “stale” if returned too late (the missing person may have
left the building at the time the successful search result is reported).
Static physical spaces such as buildings and floors within buildings may
be defined as part of a Spatial Views space library. In the example,
we assume that the package “SpaceDefinition.Rutgers.*” contains such
definitions for the Rutgers University campuses.
Line 8 defines a spatial view of cameras on the third floor of a building
named CoRE (a building at Rutgers University.) Line 11-36 define the
task to be performed on the cameras in the spatial view defined in line 8.
It is an iterator, so the task will be executed on each camera discovered
within the time constraint, 30 seconds as defined in line 12. In line 13,
a picture is taken using a just discovered camera. Line 14 tries to find
a region in the picture that is mostly red. If such a red region is found,
another spatial view consisting of face detectors is defined (line 21.) Line
24 and 25 use a face detector in the view defined in line 21 to find a face
in the picture. (Because it is a selector, line 24 and 25 finishes as soon
as one face detector is discovered.) If the face is close to the red region
in the picture, the program concludes it is a person in a red shirt, and
reports the location of the camera where the picture is taken.

4 Implementation

The implementation itself is not the major contribution of this paper.
The programming model is. The purpose of this implementation is to
justify the programming model, and to provide an opportunity to study
the abstractions and constructs proposed in the model. It is part of our
on-going work to make this implementation faster, scalable, secure and
economic acceptable. However, the current implementation has shown
the feasibility of our programming model.
Our prototype is an extension to Java 2 Platform, Micro Edition (J2ME)[13].
Figure 2 shows the basic structure of the Spatial Views compilation sys-
tem. We are currently investigating optimization passes that improve
the chances of a successful program execution in a highly volatile target
network. The compiled bytecode runs on a network, each node of which
has a Spatial Views virtual machine and a Spatial Views runtime library.
Figure 3 shows the architecture of a single node.
We build the Spatial Views compiler, virtual machine and runtime li-
brary based on Sun’s J2ME technology[13]. J2ME is a Java runtime en-
vironment targeting extremely tiny commodities. KVM[14] is a key part
of J2ME. It is a virtual machine designed for small-memory, limited-
resource and networked devices like cell phones, which typically contain
16- or 32-bit processors and a minimum memory of about 128 kilobytes.

10

Optimization Pass

Java Bytecode
Spatial Views Compiler

(Modified javac)
Spatial Views Program

Fig. 2. Compilation of Spatial Views Programs

Applications

Spatial Views Library

Spatial Views KVM

OS/Hardware

Fig. 3. Architecture of a Node

We modified javac in Java 2 SDK 1.3.1 to support the new Spatial
Views language structures, including the foreach and forany statement
and space definition statements. We modified the KVM 1.0.3 to support
transparent process migration. And we extended CLDC 1.0.3 with new
system classes to support Spatial Views language features. We ported
our implementation to x86 and ARM architectures, running Linux 2.4.x.

4.1 Spatial Views Iteration and Selection

At the beginning of an iteration, a new thread is created to discover in-
teresting nodes and to migrate the process there. We call the new thread
Bus Thread. The Bus Thread implements a certain discovery/routing
algorithm and respects the user-specified constraints.
The Bus Thread migrates from one interesting node to another. An in-
teresting node is a node that provides the service locates in the space
specified in the spatial view definition. On such a node, the Bus Thread
blocks and switches to the user task thread the code of which is speci-
fied in the iteration body. When an iteration step finishes, the user task
thread blocks and switches back to the Bus Thread. The Bus Thread
finishes when no more interesting nodes can be found or the time bud-
get is used out. In the case of selectors, the Bus Thread finishes after
the first interesting nodes is found. When the Bus Thread finishes, the
corresponding spatial views iteration ends. The Bus Thread is like a bus
carrying passengers (user task threads in our case), running across a
region and stopping at certain interesting places, hence the name.
This implementation with a Bus Thread provides a simple framework
to iterate a spatial view as a dynamic set of interesting nodes. Node

11

discovery is transparent to the programmer and performed by the un-
derlying middleware or by the OS using existing or customized discovery
and routing algorithms.
Notice that such a framework does not limit the search algorithm a pro-
gram uses to discover an interesting node. In the current implementation.
We use “random walk” technique, which randomly picks a neighbor of the
current node and migrates there. On each node the bus thread checks for
the service and location. If the interesting service is found in the specified
space, it switches to user task. The Bus Thread remembers the nodes
that it has visited by recording their using a unique ID (IP addresses
and port numbers) and avoid visiting them again.
Such an algorithm may be slow and not scalable, but one can hardly do
better in an unstructured, dynamic network. However, if the network is
not changing very fast or not changing at all, then a static directory of
services can be maintained and used to find interesting nodes directly
than moving from node to node to look for them. Such a structure can
also be used by the Bus Thread to implement fast discovery algorithm.
Another possible improvement is to allow the Bus Thread to fork itself
and search the network in parallel. This optimization is currently under
investigation.
As to the constraints, so far we have implemented the time constraint.
The Bus Thread times each single iteration step, and checks the re-
mained time budget after each single iteration step finishes. If the bud-
get drops below zero, the iteration is stopped. So the time constraint
is a soft deadline implemented with “best-effort” semantics. This soft
deadline provides effective trade-offs between quality-of-results and time
consumption as shown in section 5.3.

4.2 Transparent Process Migration

Transparent process migration is implemented as a native method, migrate,
in a Spatial Views system class. It is used in the implementation of
foreach and forany operations. migrate takes the destination node ad-
dress as its parameter. When migrate is called, the Spatial Views KVM
sends the whole heap to the destination, as well as the virtual machine
status, including the thread queue, instruction counter, the execution
stack pointer and other information.
The KVM running on the destination node receives the heap contents
and the KVM status and starts a new process. Instead of ordinary process
initialization, the receiving KVM populates its heap with the contents
received from the network and adjusts its registers and data structures
with the KVM status received from the network. To make migrate more
efficient, we enforce a garbage collection before each migration.

5 Experiments

We use 10 Compaq iPAQ PDA’s (Model H3700 and H3800) as our test
bed, 2 of which are equipped with camera sleeves developed as part
of the Mercury project at HP Cambridge Research Laboratory (CRL)

12

Fig. 4. Mercury Backpaq from HP CRL

(Figure 4). The iPAQ’s were connected via 802.11b wireless technology.
Since we have not implemented a location service based on GPS or other
location technology, all node locations were statically configured in these
experiments.

5.1 Application Example

We implemented the person search application discussed in Section 3.3.
We timed the execution of the application on 10 iPAQ PDA’s connected
by a 802.11b wireless network. The network topology is shown in Figure
5. 1

b

c

g
d

h

f

e

i

j
a

Camera

Face Detector

Fig. 5. Network for the Person Search Application

Node “i” and “j” have cameras, shown as dark gray pentagons in the
figure; node “b”, ”c”, and “f” provide the face detection service, shown

1 In this paper, “network topology” refers to the network topology observed by one
program execution. Another execution is very likely to observe a different topology,
because the network is changing.

13

as light gray triangles in the figure. The program starts from node “a”
and eventually visits all the nodes in the network in the depth-first order.
Once it finds a node with a camera, it takes a picture and checks if there
is a red region in the picture. If there is, the program will look for a
node providing face detection service. It stops on the first node with the
service and looks for a face in the picture. If a face is found, and it is
close to the red region in the picture, the program records the location
where the picture is taken. Once the program finishes all the nodes, it
migrates back to the starting node.
We experimented with two situations. Situation 1: A red region is de-
tected on both node “i” and “j”, but a face is found only in the picture
from node “j”. Situation 2: No red region is detected on either node
“i” or “j”, so no face detection is triggered. We timed the executions in
both situations. The program took on average 23.1 seconds in situation
1 and 10.0 seconds in situation 2. In both cases, the time constraint was
not violated. It is important to note that all the iPAQ’s use SA-1100
StrongARM processors running at 206MHz. But the nodes that provide
face detection service offload the face detection computation to a PC.
The execution times for the first situation was dramatically reduced as
suggested in [17].

5.2 One-Hop Migration Time

To assess the efficiency of execution migration, we measured the one-hop
migration time. We measured the overall execution time of two consec-
utive migrations, one migrating to a neighbor, followed by another one
migrating back. The time taken by those two consecutive migrations is
the round-trip time for one-hop migration, which is twice the migration
time. We measured the time for different live data size (The heap size is
128KB, but only live data are transfered.) The result is shown in Fig-
ure 6 using a wired 100Mbps and a wireless 11Mbps (802.11b) Ethernet
connection.
In the KVM heap, there is a permanent space which is not garbage
collectible. For our test program, the size of the permanent space is 65KB
(66560 bytes). This includes garbage (e.g. one-time used strings) as well
as Java system classes which are available on all the nodes. The current
implementation transfers the entire 65KB in a migration operation. We
are making efforts to modify the KVM module for garbage collection and
memory management to avoid transferring the whole permanent space
in a migration. We expect a resulting speed up of the migration by an
order of magnitude.

5.3 Effects of Timeout Constraints

To evaluate the effects of timeout constraints, we fake failures with a
probability p for the network links. The test program iterates over “tem-
peratures sensors” and reads the temperatures to calculate the average
temperature. After finishing on each node, the program tries to connect
to a neighbor. If none of the neighbors is reachable, the program waits for

14

50

100

150

200

250

300

350

400

450

65000 70000 75000 80000 85000 90000 95000 100000 105000 110000 115000 120000

M
ig

ra
tio

n
T

im
e

(m
ill

is
ec

on
ds

)

Payload (Live Data) Size (bytes)

One-hop Migration Time

802.11b
100Mbps Ethernet

Fig. 6. One-Hop Migration Time

(a) (b)

Fig. 7. Topology

10ms and tries again. And it keeps trying until it successfully migrates
to a neighbor.

If the network link failure probability is high, the iteration time might be
very long. In that case, the timeout constraints can significantly reduce
the iteration time and still get some result. We did the experiments
with two different topologies shown in Figure 7(a) and 7(b), with the
experimental results shown in Figure 8.

The time to wait before a successful migration is 10ms× 1
1−p

, where p is
the failure probability of all the links to the neighbors. In Topology (a),
p = pl, where pl is the failure probability of a single link. In Topology (b),
p = p2

l . Then the time of a single iteration step is 10ms × 1
1−p

+ 400ms,
where 400ms is the maximum one-hop migration time(see Figure 6).

If no time constraint is imposed, the expected execution time is (n−1)×
10ms × 1

1−p
+ (n − 1) × 400ms, where n is the number of nodes visited.

We omit the task execution time on each node, because the temperature
reading is so fast that the time it takes is much less than migration and
waiting time.

If a timeout ttimeout is specified, the expected program execution time
will be ≤ ttimeout + 10ms × 1

1−p
+ 400ms. For Topology (a), link failure

probability pl=98% and ttimeout =2200ms, that upper bound is 3100ms
, which is verified by the experimental result, 3095ms (see Figure 8(a)).
For Topology (b), pl=98%, and ttimeout=1200ms, that upper bound is

15

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

60 65 70 75 80 85 90 95 100

Ite
ra

tio
n

T
im

e
(m

ill
is

ec
on

ds
)

Network Link Failure Probability (%)

Iteration Time w/ and w/o Timeout

w/o timeout (Bezier)
w/ timeout (Bezier)

w/o timeout
w/ timeout

timeout(2200ms)

(a) Iteration Time on Topology (a)

1000

1500

2000

2500

3000

3500

4000

4500

5000

60 65 70 75 80 85 90 95 100

Ite
ra

tio
n

T
im

e
(m

ill
is

ec
on

ds
)

Network Link Failure Probability(%)

Iteration Time w/ and w/o Timeout

w/o timeout (Bezier)
w/ timeout (Bezier)

w/o timeout
w/ timeout

timeout(1200ms)

(b) Iteration Time on Topology (b)

0

1

2

3

4

5

6

7

8

9

55 60 65 70 75 80 85 90 95 100

N
um

be
r

of
 N

od
es

 V
is

ite
d

Network Link Failure Probability (%)

(c) Number of Nodes Visited with Time-
out Constraint (Topology (a))

0

1

2

3

4

5

6

55 60 65 70 75 80 85 90 95 100

N
um

be
r

of
 N

od
es

 V
is

ite
d

Network Link Failure Probability (%)

(d) Number of Nodes Visited with Time-
out Constraint (Topology (b))

Fig. 8. Effects of Timeout

1850ms. which is also verified by the experimental result, 1802ms (see
Figure 8(b)).
Using time constraints, a programmer is able to keep a decent quality
of result of the program, while significantly reducing the execution time.
Instead of producing no answer (as it happens when a user presses “Ctrl-
C” in a traditional programming environment,) the program reports a
result of reduced quality (e.g. only two temperature readings.) when the
time budget is used out. The number of nodes visited in our experiments,
as the criterion for quality of result, is shown in Figure 8(c) and 8(d).

6 Conclusion

Spatial Views is a programming model that allows the specification of
programs to be executed on dynamic and resource-limited networks of
embedded systems. In such environments, the physical location of nodes
is crucial. Spatial Views allows a user to specify a virtual network based

16

on common node characteristics and location. Nodes in such a virtual
network can be visited using an iterator or selector. Execution migration,
node discovery, or routing is done transparently. Time and other resource
constraints allow the programmer to express quality of result trade-offs
and to manage the inherent volatility of the underlying network.
The Spatial Views programming model is simple and expressive. A pro-
totype of Spatial Views including a compiler, a runtime library and a
virtual machine, has been implemented as an extension to J2ME. Ex-
perimental results on a network of up to 10 iPAQ’s handheld computers
running Linux are very encouraging for a person search application. In
addition, the effectiveness of time constraints to allow graceful degrada-
tion of the quality of a program’s answer was experimentally evaluated
for a temperature sensor network with two different network topologies.
Spatial Views is one of the first spatial programming models with a best-
effort semantics. The model allows optimization such as parallelization
(multiple threads), and quality of result vs. resources usage trade-offs.

References

1. Mike Addlesee, Rupert Curwen, Steve Hodges, Joe Newman, Pete
Steggles, Andy Ward, and Andy Hopper. Implementing a sentient
computing system. IEEE Computer, August 2001.

2. W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The
design and implementation of an intentional naming system. In
SOSP, 1999.

3. Cristian Borcea, Chalermek Intanagonwiwat, Akhilesh Saxena, and
Liviu Iftode. Self-routing in pervasive computing environments using
smart messages.

4. Cristian Borcea, Deepa Iyer, Porlin Kang, Akhilesh Saxena, and
Liviu Iftode. Cooperative computing for distributed embedded sys-
tems. In Proceedings of the 22nd International Conference on Dis-
tributed Computing Systems (ICDCS), July 2002.

5. David Gay, Phil Levis, Robert von Behren, Matt Welsh, Eric Brewer,
and David Culler. The nesC language: A holistic approach to net-
worked embedded systems. In PLDI, 2003.

6. Ivan A. Getting. The global positioning system. IEEE Spectrum,
December 1993.

7. Robert S. Gray. Agent Tcl: A flexible and secure mobile-agent sys-
tem. PhD thesis, Dartmouth College, June 1997.

8. Robert S. Gray, George Cybenko, David Kotz, Ronald A. Peter-
son, and Daniela Rus. D’agents: Applications and performance of a
mobile-agent system. Software: Practice and Experience, May 2002.

9. Andy Harter and Andy Hopper. A distributed location system for
the active office. IEEE Network, 8(1), 1994.

10. Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, and Paul
Webster. The anatomy of a context-aware application. In MobiCom,
1999.

11. Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler,
and Kristofer Pister. System architecture directions for network sen-
sors. In ASPLOS, 2000.

17

12. L. Iftode, C. Borcea, D. Iyer, P. Kang, U. Kremer, and A. Saxena.
Spatial programming with Smart Messages for networks of embedded
systems. Technical Report DCS-TR-490, Department of Computer
Science, Rutgers University, May 2002.

13. Sun Microsystems Inc. Java 2 Platform, Micro Edition (J2ME).
14. Sun Microsystems Inc. KVM White Paper.
15. Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin.

Directed diffusion: A scalable and robust communication paradigm
for sensor networks. In MobiCom, 2000.

16. Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li-
Shiuan Peh, and Daniel Rubenstein. Energy-efficient computing for
wildlife tracking: Design tradeoffs and early experiences with Ze-
braNet. In ASPLOS, 2002.

17. U. Kremer, J. Hicks, and J. Rehg. A compilation frame work for
power and energy management on mobile computers. In Interna-
tional Workshop on Languages and Compilers for Parallel Comput-
ing (LCPC’01), August 2001.

18. Joanna Kulik, Wendi Rabiner, and Hari Balakrishnan. Adaptive
protocols for information dissemination in wireless sensor networks.
In MobiCom, 1999.

19. Philip Levis and David Culler. Mate: A tiny virtual machine for
sensor networks. In ASPLOS, 2002.

20. Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan.
The cricket location-support system. In MobiCom, 2000.

21. Nissanka B. Priyantha, Allen K. L. Miu, Hari Balakrishnan, and
Seth J. Teller. The cricket compass for context-aware mobile appli-
cations. In MobiCom, 2001.

22. H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based face
detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20:23–38, 1998.

23. M. Satayanarayanan. Pervasive computing: Vision and challenges.
IEEE Personal Communications, August 2001.

24. Jim Waldo. The Jini architecture for network-centric computing.
ACM Communications, July 1999.

25. Mark Weiser. The computer for the 21st century. Scientific Ameri-
can, September 1991.

26. Gang Xu, Cristian Borcea, and Liviu Iftode. Toward a security archi-
tecture for smart messages: Challenges, solutions, and open issues.
In Proceedings of the First International Workshop on Mobile Dis-
tributed Computing, May 2003.

