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Abstract. Optimization techniques such as loop-unrolling and trace-scheduling
can result in long straight-line codes. It is, however, unclear how well the register
allocation algorithms of current compilers perform on these codes. Compilers
may well have been optimized for human written codes, which are likely to have
short basic blocks. To evaluate how the state of the art compilers behave on long
straight-line codes, we wrote a compiler that implements the simple Belady’s
MIN algorithm.
The main contribution of this paper is the evaluation of Belady’s MIN algorithm
when used for register allocation for long straight-line codes. These codes were
executed on a MIPS R12000 processor. Our results show that applications com-
piled using Belady’s MIN algorithm run faster than when compiled with the MIP-
SPro or GCC compiler. In particular, Fast Fourier Transforms (FFTs) of size 32
and 64 run 12% and 33% faster than when compiled using the MIPSPro compiler.

1 Introduction

In modern processors, optimizations such as loop-unrolling and trace-scheduling help
increase the Instruction Level Parallelism (ILP). These techniques have traditionally
been applied by compilers, and in the recent past, have also been incorporated into li-
brary generators. Two examples of the latter are SPIRAL [6, 18] that generates Digital
Signal Processing (DSP) libraries and ATLAS [17] that generates linear algebra subrou-
tines. These systems use empirical search to determine the best shape of the transfor-
mations to be applied. One of the values they search for is the degree of loop unrolling.
Usually large degrees of unrolling improve the performance. The body of these unrolled
loops takes the form of long basic blocks.

ATLAS and SPIRAL produce high-level code incorporating program transforma-
tions. A compiler is then used to translate the high-level code into machine code. The
compiler is thus responsible for the low-level optimizations such as instruction schedul-
ing and register allocation. However, given that the code produced by these library gen-
erators may contain long basic blocks (with sizes ranging from 300 to 5000 statements),
it is unknown whether the register allocation algorithms in the today’s compilers are ef-
fective. If they are not, we could be missing the benefit of one of the most important
compiler optimization techniques [12].
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A standard solution to the problem of register allocation is based on graph col-
oring [4] and it tries to assign registers so that simultaneously live variables are not
assigned to the same register. Coloring produces an optimal solution when there are
no spills. However when the number of variables is larger than the number of regis-
ters, some registers need to be spilled. Since coloring and spilling is an NP-complete
problem [9], heuristics are used to select the register to spill [3, 7, 4, 10]. It was argued
in [14] that these heuristics work well in most cases because programs usually contain
small procedures and basic blocks where register spilling is unlikely to happen.

The task of assigning values to registers over an entire block of straight-line code is
usually done by local register allocation algorithms. Horwitz [13] published the first al-
gorithm on register allocation for straight-line codes that minimizes the number of load
and stores. Faster algorithms [14–16] were later proposed to achieve the same goal.
A simpler algorithm that can be applied for register allocation in long basic blocks
is based on Belady’s MIN [2] algorithm. The idea is that, on a register replacement,
the register to replace is the one that contains the variable with the farthest next use.
This heuristic guarantees the minimum number of reloads. However, it does not guar-
antee the minimum number of stores because it does not take into account whether
the register to replace needs to be written back to memory. In this paper, we evaluate
the performance of the Belady’s MIN algorithm for register allocation on long basic
blocks. We developed a back-end compiler that implements Belady’s MIN algorithm
and used it to compile codes implementing FFTs and Matrix Multiplication (MM), that
were generated by SPIRAL and ATLAS, respectively.

The main contribution of this paper is an evaluation of Belady’s MIN algorithm
for register allocation for long basic blocks (more than 1,000 lines). We measured per-
formance by running the codes on a MIPS R12000 processor, and we compared the
performance obtained with the performance of the codes generated by the MIPSPro
and GCC compilers. To the best of our knowledge this is the first report of the per-
formance of Belady’s MIN algorithm for a modern out-of-order superscalar processor.
In fact, previous papers have evaluated the performance of this algorithm primarily by
measuring the number of load and stores, and rarely report the execution time on the
real machine.

Our results show that our compiler always performs better than GCC. In addition,
the FFT codes of size 32 and 64 generated by SPIRAL, when compiled using Belady’s
MIN algorithm, run 12% and 33% faster than when compiled using the MIPSPro com-
piler. For the MM generated by ATLAS, Belady’s MIN algorithm can also execute
faster than the the MIPSPro compiler by an average of 10% for highly unrolled loops.
However, for MM, the best performance in the MIPS processor is achieved by limiting
the amount of unrolling. For the limited unrolling, our compiler and MIPSPro obtain
the same performance. Our experiments show that when the number of live variables
is smaller than the number of registers, MIPSPro and our compiler have similar per-
formance. However, as the number of live variables increases, register allocation seems
to become more important. Under high register pressure, the simple Belady’s MIN al-
gorithm performs better than the MIPSPro compiler, although MIN is not an optimal
register allocation algorithm.



This paper is organized as follows. Section 2 outlines some of the characteristics
of the code that we used for register allocation, and shows the performance benefit ob-
tained when unroll is applied. Section 3 explains the implementation of our compiler.
Section 4 evaluates performance. Section 5 presents related work, and Section 6 con-
cludes.

2 Long Straight-line Code

In modern processors, loop unrolling is a well-known transformation that compilers ap-
ply in order to increase the Instruction Level Parallelism (ILP). Loop unrolling has the
additional benefit of reducing the number of bookkeeping operations that are executed.
Although unrolling is usually beneficial, too much unrolling could result in instruction
cache overflow or increased register spilling. If either of these happens, performance
degrades. Thus, different methods are used to control the amount of unrolling. One ap-
proach applied by many compilers is to use heuristics to decide the degree of unrolling.
Another approach, taken by SPIRAL [6, 18], ATLAS [17], as well as several compilers,
is to empirically search for the best amount of unrolling.

As mentioned above, SPIRAL and ATLAS use empirical search to find the best
values for important transformation parameters. Empirical search generates different
versions of the program with different forms of the transformation they apply, run the
code after applying the transformation, and choose the transformation that achieves
the best performance. When compilers perform empirical search, they usually estimate
execution time instead of actually executing the code. One of the transformations tested
is the degree of unrolling of loops. The codes tested are implementations of FFT in the
case of SPIRAL and MM in the case of ATLAS.

Figure 1 shows the speedup of the unrolled versions over the non-unrolled versions
in FFT codes of size 16-64, and MM. In each case, two bars are shown. The first one
(SPARC) corresponds to the speed-up obtained when the codes were executed on a
UltraSparcIII 900 Mhz, and the compiler was the Workshop SPARC compiler, version
5.0. In the second bar (MIPS) the codes were executed on a R12000 270 Mhz processor,
and the compiler was the MIPSpro compiler version 7.3.3.1m. For the MIPSPro com-
piler, the compilation flags were set to the values specified in Table 2. For the SPARC
compiler, the flags were set to “-fast -O5 -silent”.

The results for the FFT bars were collected using SPIRAL which applies dynamic
programming as a heuristic to find the formula that results in the best performance
for a particular FFT size. We use SPIRAL to find the formula that leads to the best
performance from all formulas implemented by fully unrolling, and the formula that
leads to the best performance when partially unrolling is applied. We used these two
formulas to compute the speedup shown in Figure 1. Notice that these two formulas
can be different, and what the plot shows is the performance benefit obtained from
unrolling.

Figure 1 shows that the best unrolled FFT formula runs between 2.4 and 1.4 faster
than the best non-unrolled formula of size 16, 32 and 64. In all the cases, the version
that achieved the best performance is the one totally unrolled. Notice that the speedups
obtained for SPARC and MIPS are quite similar.
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Fig. 1. Speedup obtained by unrolling FFTs of sizes 16, 32 and 64 and Matrix Multiplication
(MM).

Figure 1 also presents the benefits of unrolling for the Matrix Multiplication(MM).
These results were collected using ATLAS [17]. On MIPS, we used a matrix size of
64x64; on SPARC, we used a matrix size of 80x80. These are the optimal tile sizes that
ATLAS found for these platforms. ATLAS also does register tiling. The resulting code
is produced by applying unroll and jam to the innermost three loops.

The optimal degree of unrolling for the two outer loops depends on the number of
registers of the machine since too much unrolling can result in register spilling. The
degree of unrolling that obtained the best performance is 4x4x64 for MIPS, and 2x2x80
for SPARC [5]. Figure 1 shows that the unrolled version is 2.5 times faster that the
non-unrolled version.

The code generated by SPIRAL and ATLAS was compiled using a conventional
compiler. However, these codes have basic blocks with sizes that range from 300 -
5,000 statements. These sizes are by far much larger than what any person would write.
Although those fully unrolled versions perform much better than the same versions
without unrolling, it is not known how good is the register allocation applied in these
compilers to very long basic blocks where register replacements are likely to happen
frequently. In the next section, we explain the compiler we designed to perform the
register allocation on the FFT and MM codes.

3 A Compiler for Long Straight-line Code

Belady’s MIN [2] is a replacement algorithm for pages in virtual memory. On a re-
placement, the page to replace is the one with the farthest next use. The MIN algo-
rithm is optimal because it generates the minimal number of physical memory block
replacements. However, in the context of virtual memory the MIN algorithm is usually
impractical because in most cases it is usually not known which memory block will be
referenced in the future.

Belady’s MIN algorithm has been proposed for use in register allocation of long
basic blocks, where the compiler knows exactly the values that will be used in the
future. In this context, the MIN algorithm is also known as Farthest First(FF) [8] since,
on a register replacement, the register to replace first is the one holding the value with
the farthest next use.

The MIN algorithm is not optimal for register allocation since the replacement deci-
sion is simply based on the distance and not on whether the register has been modified.
When a register holds a value that is not consistent with the value in memory, we say



that the register is dirty. Otherwise, we say that the register is clean. If the register to
be replaced is dirty, the value of the register needs to be stored back to memory before
a new value can be loaded into it. Thus, for a given instruction scheduling, the MIN al-
gorithm guarantees the minimum number of register replacements, but it does not guar-
antee the minimum traffic with memory, that is, the minimum number of load/stores. In
our implementation, when there are several candidates for replacement with the same
distance, our compiler chooses the one with the clean state to avoid an extra store.

In order to further reduce the number of stores, another simple heuristic called Clean
First (CF) was proposed in [8]. With this heuristic, when a live register needs to be
replaced, CF first searches in the clean registers. The clean register which contains the
value with the farthest next use is chosen. If there are no clean registers, the most distant
dirty one is chosen.

We implemented a back-end compiler that uses the MIN and the CF algorithms for
register allocation. Next, we describe the implementation details of our compiler.

3.1 Implementations Details

We built a simple compiler that translates high-level code into MIPS assembly code.
Our compiler assumes that all optimizations other than register allocation have been
applied to the high-level code. Our compiler only performs register allocation using
Belady’s MIN or the CF heuristic explained above.

The compiler has two steps. In the first step we transform the long straight-line code
into a static single-assignment (SSA) form and build the definition-use chain for all the
variables. At the second step, we do register allocation using two data structures: (1)
the register file and (2) the definition-use chain. The register file is an array of registers.
Each register has 3 fields: current var, state and addr. The task is to assign a register to a
variable. First, our register allocator[1] checks 3 cases in order: 1) whether the variable
is already in a register, 2) whether there is a free register, 3) whether there is a variable
in a register that will never be used in the future. If one of these easy cases is satisfied,
it returns that register. Otherwise, it begins to calculate the next use for every variable
in the register file based on the definition-use chain. It chooses the register with the
farthest next use. If there are several candidates, it prefers those registers that have not
been modified since loading (clean). If the only option is a dirty register, the compiler
generates a store instruction before loading the new variable into the register.

For efficiency, the register file can be a priority queue implemented with a binary
heap, where the higher priority is given to the farther next use. Registers not used are
assigned to distance � and therefore would have the highest priority. Operations such
as extracting the register with the farthest next use can be executed in

���������
	��
, where

R is the number of registers. So the time complexity for MIN algorithm is ��
���������
	��

,
where  is the number of references to the variables in the program.

Figure 2 gives an example of how our compiler applies the MIN algorithm. The code
in Figure 2-(a) corresponds to the code for the FFT transform of size 4 generated by
SPIRAL [6, 18]. Suppose the number of Floating Point (FP) registers is 6. At statement
5, a register needs to be replaced for the first time. Table 1 gives a snapshot of the
data structures at statement 5. The variable t1 has the farthest next use. As a result,



1     t0 = x(1)  - x(5)
2     t1 = x(2)  - x(6)
3     t2 = x(1) + x(5)
4     t3 = x(2) + x(6)
5     t4 = x(3)  - x(7)
6     t5 = x(4)  - x(8)
7     t6 = x(3) + x(7)
8     t7 = x(4) + x(8)
9     y(5) = t2  - t6
10   y(6) = t3  - t7
11   y(1) = t2 + t6
12   y(2) = t3 + t7
13   y(7) = t0  - t5
14   y(8) = t1 + t4
15   y(3) = t0 + t5
16   y(4) = t1  - t4

load $f0, 0($5)
load $f1, 32($5)
sub $f2, $f0, $f1
load $f3, 8($5)
load $f4, 40($5)
sub $f5, $f3, $f4
add $f0, $f0, $f1
add $f1, $f3, $f4
load $f3, 16($5)
load $f4, 48($5)
store $f5, 24($sp)
sub $f5, $f3, $f4
store $f5, 48($sp)
load $f5, 24($5)
store $f2, 16($sp)
load $f2, 56($5)
… …

First spill

First spill

(a) (b)

Fig. 2. An example of register allocation using Be-
lady’s MIN algorithm. (a) Source code for FFT of
size 4. (b) The resulting assembly code using Belady’s
MIN algorithm.
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Table 1. Important data structures used
in the MIN algorithm. (a) The register
file (b). The du-chain and next use at
statement 5.

register $f5 is replaced. Since $f5 is dirty, there is a register spill. Figure 2-(b) shows
the assembly code after doing register allocation for the code in Figure 2-(a).

Notice that our compiler follows the instruction scheduling embedded in the source
code; that is, our compiler schedules the arithmetic operations in the same order as they
appear in the source code. Also, while most compilers do aggressive scheduling for
load operations, ours does not. Compilers try to hoist loads a significant distance above
so that cache latency can be hidden on a miss. However, our compiler loads values
into the registers immediately before they are used. Although load hoist can in some
cases increase register pressure, some loads could be moved ahead of their use without
increasing register pressure. Adding load hoisting would simply require an additional
pass to our compiler. However, we have not implemented that.

We placed each long basic block in a procedure in a separate file, and then we call
our compiler to do the register allocation and generate the assembly code. When the
generated code uses registers that contain values from outside of the procedure, we
save them at the beginning of the procedure, and restore them at the end.

4 Evaluation

4.1 Environmental Setup

In this section, we compare our compiler against GCC and MIPSPro compilers and
evaluate how well they behave on long straight-line codes. For the evaluation, we have
used the already optimized unrolled codes obtained from SPIRAL and ATLAS. SPI-
RAL produces Fortran codes, while ATLAS produces C code. Table 2 shows the ver-
sion and flags that we used for MIPSPro and GCC compilers. Our compiler is the one
described in Section 3.1 that implements MIN and CF algorithms. Remember that our



compiler schedules operations in the same order as they appear in the source code gener-
ated by ATLAS and SPIRAL. Both ATLAS and SPIRAL perform some kind of instruc-
tion scheduling in the source code. MIPSPro and GCC, however, rearrange the SPIRAL
or FORTRAN code. As a result, the instruction schedule they generate is different from
ours.

Appl. Compiler Version Flags
SPIRAL MIPSPro 7.3.2.1.m -OPT:Olimit=0 -03

(Fortran code) G77 3.2 -O3
MIPSPro 7.3.1.1m -O3 -64

-OPT:Olimit=15000
ATLAS -TARG:platform=IP27
(C code) -LN0:blocking=OFF

-LOPT:alias=typed
GCC 3.2 -fomit-frame-pointer -03

Table 2. Compiler Version and Flags for MIPSPro and GCC.

All the experiments were done on a MIPS R12000 processor with a frequency of
270 MHz. The machine has 32 floating point registers, a L1 Instruction Cache of 32
KB, and a L1 Data Cache of 32 KB. In all the experiments that use MIPSPro and our
compiler, the code fits into the L1 Instruction cache, like the data fit into the L1 Data
Cache. However, in a few cases where the code was compiled with GCC, it did not fit
into the instruction cache (we point this out in the evaluation in next section). Finally,
note that integer registers are not a problem in the FFT or MM codes because we only
use floating point registers.

Next, we study the effectiveness of our compiler on the long straight-line code of
FFT (Section 4.2) and MM (Section 4.3). Finally, in Section 4.4, we summarize our
results.

4.2 FFT

The FFT code that we use is the code generated by the SPIRAL compiler. In this section,
we first study the characteristics of the FFT code generated by the SPIRAL compiler
and then we evaluate the performance.

SPIRAL and FFT Code. SPIRAL translates formulas representing signal processing
transforms into efficient Fortran programs. It uses intelligent search strategies to auto-
matically generate optimized DSP libraries. In the case of FFT, SPIRAL first searches
for a good implementation for small-size transforms, 2 to 64, and then searches for a
good implementation for larger size transforms that use the small-size results as their
components. For FFT sizes smaller than 64, SPIRAL assumes that straight-line code
achieves the best performance since loop control overheads are eliminated and all the
temporary variables can be scalars.

To better understand the performance results, we first study the patterns that appear
in the FFT code. Some of these patterns are due to the way SPIRAL generates code,
while others are due to the nature of FFT. Patterns that come from SPIRAL are: 1) Each



variable is defined only once; that is, every variable holds only one value during its
lifetime. 2) If a variable has two uses, at most one statement is between the two uses
of the variable. Patterns due to the nature of FFT are: 3) Each variable is used at most
twice. 4) If two variables appear on the RHS of an expression, then they always appear
together, and they appear twice.

Thus, in Figure 2-(a), array � is the input, array � is the output, and �����  are tempo-
rary variables. The input array � has two uses. The uses of � � � � or ��� variables always
appear in pairs, and there is only one statement between the two uses.

This FFT code generated by SPIRAL is used as the input to our compiler. Therefore,
given the proximity of the two uses of each variable in the SPIRAL code, any compiler
would minimize register replacements by keeping the variable in the same register dur-
ing the two uses. As a result, the two uses of a variable can be considered as a single
use. Thus, the problem of register allocation for the FFT code generated by SPIRAL
is just the problem of register allocation where each variable is defined once and used
once.

Based on this simplified model, register replacement only occurs between the defi-
nition and the use of the variable. One consequence is that the MIN and CF algorithm
behave similarly and they always choose the same register to replace. In addition, since
the MIN algorithm implemented on our compiler is known to produce the minimum
number of register replacements, we can claim that for the FFT problem and given SPI-
RAL scheduling, our compiler generates the optimal solution, the one with the minimum
number of loads and stores. We evaluate next the performance differences between this
optimal solution and the MIPSPro or G77 compilers.

Performance Evaluation. SPIRAL does an exhaustive search to find the fastest FFT
formula for a given platform. We studied the performance obtained by the best formula
when the code was compiled using the MIPSPro compiler, G77, or our compiler. Fig-
ure 3 shows the best performance obtained for FFTs of size 4 - 64 using the MIPSPro
compiler (MIPSPro), the G77 compiler (G77), or our compiler (MIN). The performance
is measured in terms of ”pseudo MFlops”, which is the value computed by using the
equation �	� � ����
 ���� , where N is the size of the FFT and t is the execution time in mi-
croseconds. Notice that the formula that achieving the best performance can be different
in each case.

We focus on MISPPro and MIN, since G77 always produces much slower code. To
help understand the results, Table 3 shows the number of lines of the assembly code
(LOC), spills, and reloads for each point in Figure 3. A spill is a store of a value that
needs to be loaded again later. A reload is a load of a value that previously was in a
register. The data in Table 3 show that, using MIN, the number of spills and reloads is
always the same. This is due to SPIRAL scheduling. As Table 3 shows, for FFTs of size
4 and 8, the 32 FP registers are enough to hold the values in the program, and as a result
there is no register replacement. Thus, the difference in performance between MIPSPro
and MIN comes from the differences in instruction scheduling. From FFTs of size 16,
we start to see some spills and reloads, and MIN overcomes the effects of instruction
scheduling and obtains the same performance as MIPSPro. Finally, for FFTs of size
32 and 64, since the amount of spilling is larger, the effect of instruction scheduling
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Size Backend LOC spills reloads
4 MIPSPro 34 0 0

MIN 34 0 0
8 MIPSPro 90 0 0

MIN 95 0 0
16 MIPSPro 266 9 14

MIN 276 2 2
32 MIPSPro 921 150 212

MIN 764 34 34
64 MIPSPro 2468 552 606

MIN 1944 112 112

Table 3. Characteristics of the code that
MIPSPro and MIN generate for FFTs 4 -
64.

becomes less important, and MIN outperforms MIPSPro. MIN performs 12% and 33%
better than MIPSPro for FFTs of size 32 and 64 respectively.
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In Figure 4, we show the execution time of several FFT codes of size 64 that SPI-
RAL produced using different formulas. For each formula we show two points. One
corresponds to the performance obtained when the SPIRAL code for that formula was
compiled using the MIPSpro compiler (MIPSPro), or using our compiler (MIN). On
average, MIN runs 18% faster than MIPSPro. In addition, the figure shows that our
compiler always performs better. As before, as register pressure increases, register al-
location becomes the dominant factor.

4.3 Matrix Multiplication

In this section, we study the performance of register allocation for the matrix multi-
plication code produced by ATLAS. We first describe ATLAS and then present the
performance evaluation .

Overview of ATLAS. ATLAS is an empirical optimizer whose structure is shown in
Figure 5. ATLAS is composed of i) a Search Engine that performs empirical search of
certain optimization parameter values and ii) a Code Generator that generates C code
given these values. The generated C code is compiled, executed, and its performance



measured. The system keeps track of the values that produced the best performance,
which will be used to generate a highly tuned matrix multiplication routine.

MFLOPS

Tile Size
Unroll values 

Latency
Muladd
Fetch

Measure

Execute 

ATLAS Search 
ENGINE

ATLAS MM Code 
Generator

MiniMMM
C code Compiler 

    &

Fig. 5. Empirical optimizer in ATLAS.

For the search process, ATLAS generates a matrix multiplication of size Tile Size
that we call MiniMMM. This code for the MiniMMM is itself tiled to make better use of
the registers. Each of these small matrix multiplications multiplies a MUx1 sub-matrix
of A with a 1xNU submatrix of B, and accumulates the result in a MUxNU sub-matrix
of C. We call these micro-MMMs. Figure 6 shows a pictorial view and the pseudo-code
corresponding to the mini-MMM after register tiling and unrolling of the micro-MMM.
The codes of a micro-MMM are unrolled to produce a straight-line of code. After the
register tiling, the K loop in Figure 6 is unrolled by a factor KU. The result is a straight-
line code that contains KU copies of the micro-MMM code. Figure 8-(a) shows two
copies of the micro-MMM that corresponds to the unrolls MU=4 and NU=2 shown
in Figure 6. Notice that the degree of unroll MUxNU determines the number of FP
registers required. This number is MUxNU to hold the C values, MU to hold the A
values, and NU to hold the B values.

into registers
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A C

NU
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Size
Tile 

K

K

for (int j =0; j <TileSize; j +=NU)
for (int i =0; i <TileSize; i +=MU)
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...
*

Repeat * for k+1 .. k+KU-1
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* B
* B
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load C      

Fig. 6. Mini-MMM after register tiling.

Performance Evaluation. To evaluate our compiler, we ran it on the miniMMM code
generated by ATLAS that contains the straight-line code explained above. Figure 7
compares the performance in MFlops for different values of MUxNU unroll using the
MIPSpro compiler (MIPSPro), GCC compiler (GCC), or our compiler with the MIN
algorithm (MIN) (the line MINSched in the figure will be explained later). For this ex-
periment the rest of the parameters of the miniMMM have been set to the values that
ATLAS found to be optimal [5]. In particular, TileSize and KU have been set to 64 1;
that is, the innermost k loop in Figure 6 is totally unrolled. Notice that while unrolling
along the k dimension does reduces loop overheads, it does not increase register pres-
sure.

1 ATLAS only tries square tiles
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Unroll Compiler LOC spill reload
MIPSPro 917 0 3

2x4 MIN 921 0 0
MINSched 921 0 0
MIPSPro 1684 48 64

4x4 MIN 1577 0 0
MINSched 1604 9 18
MIPSPro 4046 438 709

4x8 MIN 4673 892 892
MINSched 3607 356 362

Table 4. Characteristics of the MM code
for different degrees of unroll.

Figure 7 shows that, as before, GCC produces the code with the worst performance.
In particular the sharp drop for unrolls 6x8 and larger is due to the size of the code, that
overflows the 32KB instruction cache of the MIPS R12000 processor. Figure 7 also
shows that MIN behaves almost like MIPSPro when the MU and NU are small and, as
a result, there is no register replacement. Thus, the slightly better performance of MIN
is mostly due to differences in instruction scheduling. Register replacement occurs for
unrolls 4x4 and larger in MIPSPro, and unrolls 4x5 and larger in MIN. For unrolls
4x6, where there are more values than registers and register replacement occurs, MIN
performs worse than MIPSPro.

The MIN algorithm performs worse because of the particular scheduling of the
operations in the MM in ATLAS. Figure 8-(a) shows the micro-MMM generated by
ATLAS for an unroll of 4x2 that is the input to our compiler. The code in Figure 8-(b) is
the resulting assembly code after our compiler does register allocation for the first few
instructions. For the example we have assumed that we have only 6 FP registers. It can
be seen that when register replacement starts (line 3 of 8-(a)), the farthest next use is the
variable � � that we have just computed. For this particular scheduling, variables � � al-
ways have the furthest next use. The registers holding the � � variables are in dirty state,
and consequently its contents need to be written back to memory. This results in an in-
crease in memory traffic because, at each register replacement, we have a register spill
that generates one  � ����� . In addition to the spills, the compiler introduces additional de-
pendencies by allocating the same register to independent instructions (storage-related
dependence). For instance, although all the ���
	�	
 are independent, due to the farthest
next use of the MIN algorithm, we always spill the register $f4. Thus, we have created a
chain of dependences along the instructions using register $f4, as shown in Figure 8-(b).
As a result, the performance of MIN decreases, as shown in Figure 7. We also tried our
compiler using the CF heuristic, but the performance was even worse. The CF heuris-
tic always replaces the registers containing the ai and bi values that tend to be needed
shortly again.

We looked then at the instruction scheduling in the MIPSPro assembly code. Since
the MIPSpro assembly code was the result of instruction scheduling and register allo-



load $f4, 24($5) 
store $f4, 16($7) 

  load $f4, 16($7) 
  store $f4, 8($7) 
  load $f5, 16($5) 

  load $f4, 8($7) 
  load $f3, 8($5) 

  load $f0, 0($5)
  load $f1, 0($6) 
  load $f2, 0($7)

4  madd $f2, $f2, $f4, $f1

. . .
madd $f2, $f2, $f5, $f1
load $f5, 8($5) 
madd $f2, $f2, $f5, $f4
load $f2, 8($7) 
store $f2, 0($7) 
load $f5, 520($5) 
madd $f2, $f2, $f3, $f4
load $f4, 8($6) 
load $f3, 512($5) 
madd $f2, $f2, $f0, $f1
load $f2, 0($7)
load $f1, 0($6) 

store $f2, 0($7) 

applied by MIPSPro       scheduling applied by MIPSPro
(d) MIN algorithm after the   

unscheduled code 
(b) MIN algorithm on the 

3   madd $f4, $f4, $f5, $f1

16  c67 += a68 x b65
15  c66 += a67 x b65
14  c65 += a65 x b65
13  c64 += a64 x b65
12  c3 += a67 x b1

10  c1 += a65 x b1
11  c2 += a66 x b1

9   c0 += a64 x b1

8   c67 += a3 x b64
7   c66 += a2 x b64
6   c65 += a1 x b64
5   c64 += a0 x b64
4   c3 += a3 x b0
3   c2 += a2 x b0
2   c1 += a1 x b0
1   c0 += a0 x b0

1   madd $f2, $f2, $f0, $f1

2   madd $f4, $f4, $f3, $f1

load $f2, 24($7) 

load $f0, 0($5)

First 
spill

c65 += a65 x b65
c67 += a68 x b65
c67 += a3 x b64
c65 += a1 x b64
c64 += a64 x b65
c66 += a67 x b65
c64 += a0 x  b64
c66 += a2 x b64

c3 += a67 x b1
c2 += a66 x b1
c3 += a3 x b0
c2 += a2 x b0
c1 += a1 x b0
c1 += a65 x b1
c0 += a64 x b1
c0 += a0 x b0

  

. . .

  

   

(c) Code scheduling  (a) Unscheduled code 

 

Fig. 8. Two micro-MMM codes for a miniMMM of size 64, MU=4 and NU=2.

cation, we extracted the scheduling of the � �
	 	 instructions in the MIPSpro assembly
code and obtained the code shown in Figure 8-(c). We ran our compiler on the code with
the new scheduling to do the register allocation. The resulting assembly code is shown
in Figure 8-(d). We executed this code and the performance obtained is line MINSched
in Figure 7. Now for unrolls larger than 4x6, our compiler behaves better. As Figure 8-
(d) shows, with this new scheduling, the � � variables have a higher reuse rate. Since
the registers containing these variables are in dirty state, this new scheduling helps to
reduce register spilling.

Table 4 helps understand the results in Figure 7. For each degree of unrolling, we
show the number of lines of the assembly code (LOC), spills, and reloads. Table 4
shows that MINSched always has fewer spills and reloads than MIPSPro. As the unroll
grows and register pressure becomes more prominent, fewer spills and reloads result in
better performance of MINSched (Figure 7). On average, for unrolls larger than 4x6,
MINSched performs 10% better than MIPSPro. Finally, we also tried the CF algorithm
with the new scheduling, but it performed worse than MIN, so we did not show results
for it.

We have used the long straight-lines code in the MM in ATLAS as an example
of where we apply register allocation. We have shown that MINSched performs better
than MIPSPro for large degrees of unroll. However, this improvement is not useful. The
reason is that the unroll that obtained the best performance corresponds to the largest
unroll before register replacement starts (this point is 4x4 in Figure 7). As a result,
ATLAS will select this unroll, where register replacement heuristics are not used.

4.4 Analysis

Next we summarize our results. When the straight-line code is such that the number
of simultaneously live values is smaller than the number of registers, there is no need
to do register replacement. In that case, instruction scheduling is the dominant factor
in optimization. This is the case for FFTs of size 4 and 8, as well as for MM, because
the best performance is obtained for a degree of unrolling without register spilling or
reloads.



When the number of simultaneously live values is larger than the number of regis-
ters, register replacement becomes important. In FFT, we observed that as register pres-
sure increases, register allocation becomes more important than instruction scheduling.
For FFTs of size 32 and 64, where the number of spills and reloads is larger, register
allocation becomes important, and our compiler achieves a higher performance. The
higher performance of our compiler also can be due to the use of the SPIRAL schedul-
ing together with the MIN algorithm, which result in an optimal register allocation for
that scheduling.

On the other hand, for degrees of unrolling larger than 4x6, when register pres-
sure was high for the MM code, the use of ATLAS scheduling and the MIN algorithm
resulted in additional dependences. As a result, MIPSPro performed better than our
compiler. It is unclear to us whether by using the scheduling in ATLAS, we could have
found an optimal register replacement better than the MIPSPro instruction scheduling.
However, it is clear that there are schedulings that can reduce register pressure, and
these schedules should be used when register spills and reloads become important.

In summary, by using our compiler with the simple MIN algorithm we have im-
proved on the performance obtained by the MIPSPro compiler for long straight-lines
of code when register pressure was high. Today’s compilers like MIPSPro or GCC are
not optimized to handle this type of codes and, as a result, highly optimized code like
those with loop unrolling and trace scheduling could result in sub-optimal performance.
Performance could be improved by an appropriate register allocator, and maybe an in-
struction scheduling chosen to minimize register pressure.

5 Related Work

Local register allocation is the task of assigning values to registers over a basic block
so that the traffic between registers and memory is minimized. Belady’s MIN [2] and
Horwitz [13] are often used in local register allocation. Belady’s MIN [2] optimizes
for the minimal number of register replacements, and not for the minimum number
of load/stores. As a result, it may not find the optimal solution. Horwitz’s algorithm
minimizes the number of loads and stores but it is for index registers, not for general
purpose registers. Later algorithms [14–16] are mainly improvements to the compilation
efficiency. However, they are still exponential in time and space. On the other hand,
Belady’s MIN algorithm runs in polynomial time, although it may not find the optimal
solution.

The problem of register allocation and instruction scheduling in straight-line code
has also been studied in the literature. In particular Goodman [11] proposes two differ-
ent scheduling algorithms: one tries to minimize pipeline stalls, and the other one tries
to reduce register pressure. The algorithm is chosen based on the register pressure. It
agrees with our observation in section 4.4.

6 Conclusion

In this paper, we have shown that a simple algorithm like Belady’s MIN can beat the
performance of state-of the art compilers like the MIPSPro or GCC compilers in long



straight-line codes. We have applied Belady’s MIN algorithm to codes corresponding
to FFTs transforms and Matrix Multiplication that are produced by SPIRAL and AT-
LAS, respectively. We have measured the performance by running these codes on a real
machine (a MIPS R12000 processor).

Our results show that Belady’s MIN algorithm is about 12% and 33% faster for
FFTs of size 32 and 64. In the case of Matrix Multiplication, it can also execute faster
than the the MIPSPro compiler by an average 10%. However, in this application, the
unroll that achieves the best performance is the one without register spilling. Our com-
piler and MIPSPro perform similarly using this unroll. Our experiments show, that when
the number of live variables is smaller than the number of registers, MIPSPro and our
compiler have similar performance. However, as the number of live variables increases,
register allocation seems to become more important. We believe that, in this case of
high register pressure, instruction scheduling needs to be considered in concert with
register allocation so that the number of register spills and reloads can be minimized.
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