
Improving the Performance of Morton Layout by Array
Alignment and Loop Unrolling

Reducing the Price of Naivety

Jeyarajan Thiyagalingam, Olav Beckmann, and Paul H. J. Kelly

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2AZ, United Kingdom

{jeyan,ob3,phjk}@doc.ic.ac.uk

Abstract. Hierarchically-blocked non-linear storage layouts, such as the Morton
ordering, have been proposed as a compromise between row-major and column-
major for two-dimensional arrays. Morton layout offers some spatial locality
whether traversed row-wise or column-wise. The goal of this paper is to make this
an attractive compromise, offering close to the performance of row-major traver-
sal of row-major layout, while avoiding the pathological behaviour of column-
major traversal. We explore how spatial locality of Morton layout depends on
the alignment of the array’s base address, and how unrolling has to be aligned to
reduce address calculation overhead. We conclude with extensive experimental
results using five common processors and a small suite of benchmark kernels.

1 Introduction

Programming languages that offer support for multi-dimensional arrays generally use
one of two linear mappings to translate from multi-dimensional array indices to loca-
tions in the machine’s linear address space: row-major or column-major. Traversing an
array in the same order as it is laid out in memory leads to excellent spatial locality;
however, traversing a row-major array in column-major order or vice-versa, can lead to
an order-of-magnitude worse performance. Morton order is a hierarchical, non-linear
mapping from array indices to memory locations which has been proposed by several
authors as a possible means of overcoming some of the performance problems associ-
ated with lexicographic layouts [2, 4, 9, 11]. The key advantages of Morton layout are
that the spatial locality of memory references when iterating over a Morton order array
is not biased towards either the row-major or the column major traversal order and that
the resulting performance tends to be much smoother across problem-sizes than with
lexicographic arrays [2]. Storage layout transformations, such as using Morton layout,
are always valid. These techniques complement other methods for improving locality
of reference in scientific codes, such as tiling, which rely on accurate dependence and
aliasing information to determine their validity for a particular loop nest.

Previous Work. In our investigation of Morton layout, we have thus far confined our
attention to non-tiled codes. We have carried out an exhaustive investigation of the effect
of poor memory layout and the feasibility of using Morton layout as a compromise
between row-major and column-major [7]. Our main conclusions thus far were

2 Jeyarajan Thiyagalingam, Olav Beckmann, and Paul H. J. Kelly

– It is crucial to consider a full range of problem sizes.
The fact that lexicographic layouts can suffer from severe interference problems for
certain problem sizes means that it is important to consider a full range of randomly
generated problem sizes when evaluating the effectiveness of Morton layout [7].

– Morton address calculation: table lookup is a simple and effective solution.
Production compilers currently do not support non-linear address calculations for
multi-dimensional arrays. Wise et al. [11] investigate the effectiveness of the “di-
lated arithmetic” approach for performing the address calculation. We have found
that a simple table lookup scheme works remarkably well [7].

– Effectiveness of Morton layout.
We found that Morton layout can be an attractive compromise on machines with
large L2 caches, but the overall performance has thus far still been disappointing.
However, we also observed that only a relatively small improvement in the perfor-
mance of codes using Morton layout would be sufficient to make Morton storage
layout an attractive compromise between row-major and column-major.

Contributions of this Paper. We make two contributions which can improve the effec-
tiveness of the basic Morton scheme and which are both always valid transformations.

– Aligning the Base Address of Morton Arrays (Section 2).
A feature of lexicographic layouts is that the exact size of an array can influence the
pattern of cache interference misses, resulting in severe performance degradation
for some datasizes. This can be overcome by carefully padding the size of lexico-
graphic arrays. In this paper, we show that for Morton layout arrays, the alignment
of the base address of the array can have a significant impact on spatial locality
when traversing the array. We show that aligning the base address of Morton arrays
to page boundaries can result in significant performance improvements.

– Unrolling Loops over Morton Arrays (Section 3).
Most compilers unroll regular loops over lexicographic arrays. Unfortunately, cur-
rent compilers cannot unroll loops over Morton arrays effectively due to the na-
ture of address calculations: unlike with lexicographic layouts, there is no general
straight-forward (linear) way of expressing the relationship between array locations
A[i][j] and A[i][j+1] which a compiler could exploit. We show that, provided
loops are unrolled in a particular way, it is possible to express these relationships
by simple integer increments, and we demonstrate that using this technique can
significantly improve the performance of Morton layout.

1.1 Background: Morton Storage Layout

Lexicographic array storage. For an M×N two-dimensional array A, a mapping S(i, j)
is needed, which gives the memory offset at which array element Ai, j will be stored.
Conventional solutions are row-major (for example in C and Pascal) and column-major
(as used by Fortran) mappings expressed by

S (M,N)
rm (i, j) = N × i+ j and S (M,N)

cm (i, j) = i+M× j

respectively. We refer to row-major and column-major as lexicographic, i.e. elements
are arranged by the sort order of the two indices (another term is “canonical”).

Array Alignment and Loop Unrolling for Morton Layout 3

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

0 1 2

7

8

4 5 6

3

13 15

9 10 11

14

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 3837 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

12

Row−major traversal: one in four
accesses hits a new cache line

hits a new cache line.

1

2

3

4

5

6

7

i

j 0

0 1 2 3 4 5 6 7

Column−major traversal: one in four accesses

Fig. 1. Blocked row-major (“4D”) layout with
block-size P = Q = 4. The diagram illustrates
that with 16-word cache lines, illustrated by
different shadings, the cache hit rate is 75%
whether the array is traversed in row-major or
column-major order.

��

��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

	�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��

��
��
��
��

������������������������������

0 1

7

8

6

9

16 17

24 25

30

57

1

2

3

4

5

6

7

i

j 0

0 1 2 3 4 5 6 7

4 5

2 3

10 11

12 13

18

20

19 22

26 2714 15

2928

21

31

23

34 35

32 33 36 37

38 39

40 41

42 43

44 45

46 47

48 49 52 53

50 51 54 55

56

58

60

59

61

62 63

mz
S (5,4)

(8,8)

Fig. 2. Morton storage layout for an 8×8 array.
Location of element A[5,4] is calculated by in-
terleaving “dilated” representations of 5 and 4
bitwise: D0(5) = 1000102, D1(4) = 0100002.
Smz(5,4) = D0(5) | D1(4) = 1100102 = 5010.

Blocked array storage. Traversing a row-major array in column-major order, or vice-
versa, leads to poor performance due to poor spatial locality. An attractive strategy is
to choose a storage layout which offers a compromise between row-major and column-
major. For example, we could break the M×N array into small, P×Q row-major sub-
arrays, arranged as a M/P×N/Q row-major array. We define the blocked row-major
mapping function (this is the 4D layout discussed in [2]) as:

S (M,N)
brm (i, j) = (P×Q)×S (M/P,N/Q)

rm (i/P, j/P)+S (P,Q)
rm (i%P, j%Q)

For example, consider 16-word cache blocks and P = Q = 4, as illustrated in Figure 1.
Each block holds a P×Q = 16-word subarray. In row-major traversal, the four iterations
(0,0), (0,1), (0,2) and (0,3) access locations on the same block. The remaining 12
locations on this block are not accessed until later iterations of the outer loop. Thus,
for a large array, the expected cache hit rate is 75%, since each block has to be loaded
four times to satisfy 16 accesses. The same rate results with column-major traversal.
Most systems have a deep memory hierarchy, with block size, capacity and access time
increasing geometrically with depth [1]. Blocking should therefore be applied for each
level. Note, however, that this becomes very awkward if larger blocksizes are not whole
multiples of the next smaller blocksize.

Bit-interleaving and Morton layout. Assume for the time being that, for an M×N array,
M = 2m, N = 2n. Write the array indices i and j as

B(i) = im−1im−2 . . . i1i0 and B(j) = jn−1 jn−2 . . . j1 j0

4 Jeyarajan Thiyagalingam, Olav Beckmann, and Paul H. J. Kelly

Row-major layout Morton layout Column-major layout
32B cache line 75% 50% 0%
128B cache line 93.75% 75% 0%

8kB page 99.9% 96.875% 0%

Table 1. Theoretical hit rates for row-major traversal of a large array of double words on different
levels of memory hierarchy. Possible conflict misses or additional hits due to temporal locality
are ignored. This illustrates the compromise nature of Morton layout.

respectively. From this point, we restrict our analysis to square arrays (where M = N).
Now the lexicographic mappings can be expressed as bit-concatenation (written “‖”):

S (M,N)
rm (i, j) = N × i+ j = B(i)‖B(j)= in−1in−2 . . . i1i0 jn−1 jn−2 . . . j1 j0

S (M,N)
cm (i, j) = i+M× j= B(j)‖B(i) = jn−1 jn−2 . . . j1 j0in−1in−2 . . . i1i0

If P = 2p and Q = 2q, the blocked row-major mapping is

S (M,N)
brm (i, j) = (P×Q)×S (M/P,N/Q)

cm (i, j)+S (P,Q)
rm (i%P, j%Q)

= B(i)(n−1)...p‖B(j)(m−1)...q‖B(i)(p−1)...0‖B(j)(q−1)...0

Now, choose P = Q = 2, and apply blocking recursively:

S (N,M)
mz (i, j) = in−1 jn−1in−2 jn−2 . . . i1 j1i0 j0

This mapping is called the Morton Z-order, and is illustrated in Figure 2.

Morton layout can be an unbiased compromise between row-major and column-major.
The key property which motivates our study of Morton layout is the following: Given
a cache with any even power-of-two block size, with an array mapped according to the
Morton order mapping Smz, the cache hit rate of a row-major traversal is the same as the
cache-hit rate of a column-major traversal. This applies given any cache hierarchy with
even power-of-two block size at each level. This is illustrated in Figure 2. The cache hit
rate for a cache with block size 22k is 1− (1/2k).

Examples. For cache blocks of 32 bytes (4 double words, k = 1) this gives a hit rate
of 50%. For cache blocks of 128 bytes (k = 2) the hit rate is 75% as illustrated earlier.
For 8kB pages, the hit rate is 96.875%. In Table 1, we contrast these hit rates with the
corresponding theoretical hit rates that would result from row-major and column-major
layout. Notice that traversing the same array in column-major order would result in a
swap of the row-major and column-major columns, but leave the hit rates for Morton
layout unchanged. In Section 2, we show that this desirable property of Morton layout
is conditional on choosing a suitable alignment for the base address of the array.

Morton-order address calculation using dilated arithmetic or table lookup. Bit-inter-
leaving is too complex to execute at every loop iteration. Wise et al. [11] explore an

Array Alignment and Loop Unrolling for Morton Layout 5

intriguing alternative: represent each loop control variable i as a “dilated” integer, where
the i’s bits are interleaved with zeroes. Define D0 and D1 such that

B(D0(i)) = 0in−10in−2 . . .0i10i0 and B(D1(i)) = in−10in−20 . . . i10i00

Now we can express the Morton address mapping as S (N,M)
mz (i, j) = D1(i) |D0(j), where

“|” denotes bitwise-or. At each loop iteration we increment the loop control variable;
this is fairly straightforward. Let “&” denote bitwise-and. Then:

D0(i+1) = ((D0(i) | Ones0)+1) & Ones1

D1(i+1) = ((D1(i) | Ones1)+1) & Ones0 where

B(Ones0) = 10101 . . .01010 and B(Ones1) = 01010 . . .10101 .

This approach works when the array is accessed using an induction variable which can
be incremented using dilated addition. We found that a simpler scheme often works
nearly as well: we simply pre-compute a table for the two mappings D0(i) and D1(i).
Table accesses are likely cache hits, as their range is small and they have unit stride.

2 Alignment of the Base Address of Morton Arrays

With lexicographic layout, it is often important to pad the row or column length of an
array to avoid associativity conflicts [5]. With Morton layout, it turns out to be important
to pad the base address of the array. In our discussion of the cache hit rate resulting from
Morton order arrays in the previous Section, we have implicitly assumed that the base
address of the array will be mapped to the start of a cache line. For a 32 byte, i.e. 2×2
double word cache line, this would mean that the base address of the Morton array is
32-byte aligned. As we have illustrated previously in Section 1.1, such an allocation
is unbiased towards any particular order of traversal. However, in Figure 3 we show
that if the allocated array is offset from this “perfect” alignment, Morton layout may no
longer be an unbiased compromise storage layout: The average miss-rate of traversing
the array, both in row- and in column-major order, is always worse when the alignment
of the base address is offset from the alignment of a 4-word cache line. Further, when the
array is mis-aligned, we lose the symmetry property of Morton order being an unbiased
compromise between row- and column-major storage layout.

Systematic study across different levels of memory hierarchy. In order to investigate this
effect further, we systematically calculated the resulting miss-rates for both row- and
column-major traversal of Morton arrays, over a range of possible levels of memory
hierarchy, and for each level, different miss-alignments of the base address of Morton
arrays. The range of block sizes in memory hierarchy we covered was from 22 double
words, corresponding to a 32-byte cache line to 210 double words, corresponding to an
8kB page. Architectural considerations imply that block sizes in the memory hierarchy
such as cache lines or pages have a power-of-two size. For each 2n block size, we cal-
culated, over all possible alignments of the base address of a Morton array with respect
to this block size, respectively the best, worst and average resulting miss-rates for both

6 Jeyarajan Thiyagalingam, Olav Beckmann, and Paul H. J. Kelly

�������
�������
�������
�������

�������
�������
�������
�������

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

2

2

2

2

2 2 2 2

���������
���������
���������
���������

�������
�������
�������
�������

�����
�����
���
���

0 1 4 5

2 3 6 7

8 9 12 13

151410 11

3

2

2

3

4 42 2 Misses per column

Misses per row

Average Hit Rate
RM CM
50% 50%

Average Hit Rate
RM CM

37.5% 25%

�������
�������
	�	�	�	
	�	�	�	

�
�
�

�
�
�

�������
�������

0 1 4 5

2 3 6 7

8 9

10 11 14 15

12 13

2

2

2

2

4 4 4 4

���
���
�
�

���������
���������
���������
���������

�������
�������
�������
�������

6

54

12 13

1411 15

8 9

7

10

0 1

2 3

2

3

2

3

4 42 2

Average Hit Rate
RM CM
50% 0%

Average Hit Rate
RM CM

37.5% 25%

Fig. 3. Alignment of Morton-order Arrays. This figure shows the impact of mis-aligning the
base address of a 4×4 Morton array from the alignment of a 4-word cache line. The numbers next
to each row and below each column indicate the number of misses encountered when traversing
a row (column) of the array in row-major (column-major) order, considering only spatial locality.
Underneath each diagram, we show the average theoretical hit rate for the entire Morton array for
both row-major (RM) and column-major (CM) traversal.

row-major and column-major traversal of the array. The standard C library malloc()
function returns addresses which are double-word aligned. We therefore conducted our
study at the resolution of double words. The results of our calculation are summarised
in Figure 4. Based on those results, we offer the following conclusions.

1. The average miss-rate is the performance that might be expected when no special
steps are taken to align the base address of a Morton array1. We note that the miss
rates resulting from such alignments is always suboptimal.

2. The best average hit rates for both row- and column-major traversal are always
achieved by aligning the base address of Morton array to the largest significant
block size of memory hierarchy (e.g. page size).

3. The difference between the best and the worst miss-rates can be very significant,
up to a factor of 2 for both row-major and column-major traversal.

4. We observe that the symmetry property which we mentioned in Section 1.1 is in
fact only available when using the best alignment and for even power-of-two block

1 In reality, some operating systems do not return randomly aligned addresses (modulo double
word size). Linux, for example, seems to consistently return “page plus 8 bytes” addresses for
large arrays. However, these are consistently sub-optimal for Morton arrays.

Array Alignment and Loop Unrolling for Morton Layout 7

��������	��
������	��
������������
������
���
�����
��������

���
�

�

���

���

���

���

���

��

��!

��"

��#

�

� " � �� � ��" �� ��� ����

$���%	&��	��'�()���*��+

�
	

��

��

����
,	�(�

����	�	�(�

�������
-�

��������	��
������	��
���������������
������
���
�����
�

����������
�

�

���

���

���

���

��

��!

��"

��#

��$

�

� # �! �� !� ��# � ! �� ����

%���&	'��	��(��)���*��+

�
	

��

��

����
,	���

����	�	���

�������
-�

.....
��������	��
������	��
������������
����
�����������
����

��
���
�����
�����������
�

����

���

�

� � ! " # $ % & �� ��

��'�()���*	+��	��,��-���.���/

�
	

��

��

�������
'�

�������
'�

Fig. 4. Miss-rates for row-major and column-major traversal of Morton arrays. We show
the best, worst and average miss-rates for different units of memory hierarchy (referred to as
blocksizes), across all possible alignments of the base address of the Morton array. The top two
graphs, use a linear y-axis, whilst the graph underneath uses a logarithmic y-axis to illustrate that
the pattern of miss-rates is in fact highly structured across all levels of the memory hierarchy.

sizes in the memory hierarchy. For odd power-of-two block sizes (such as 23 = 8
double words, corresponding to a 64-byte cache line), we find that the Z-Morton
layout, which we use, is still significantly biased towards row-major traversal. An
alternative recursive layout [3] may have better properties in this respect.

5. The absolute miss-rates we observe drop exponentially through increasing levels of
the memory hierarchy (see the graphs in Figure 4). However, if we assume that not
only the block size but also the access time of different levels of memory hierarchy
increase exponentially [1], the penalty of miss-alignment of Morton arrays does not
degrade significantly for larger block sizes. From a theoretical point of view, we
therefore recommend aligning the base address of all Morton arrays to the largest
significant block size in the memory hierarchy, i.e. page size.

In real machines, there are conflicting performance issues apart from maximising spatial
locality, such as aliasing of addresses that are identical modulo some power-of-two,
and some of these could negate the benefits of increased spatial locality resulting from
making the base address of Morton arrays page-aligned.

Experimental Evaluation of Varying the Alignment of the Base Address of Morton Ar-
rays. In our experimental evaluation, we have studied the impact on actual performance

8 Jeyarajan Thiyagalingam, Olav Beckmann, and Paul H. J. Kelly

of the alignment of the base address of Morton arrays. For each architecture and each
benchmark, we have measured the performance of Morton layout both when using the
system’s default alignment (i.e. addresses as returned by malloc()) and when aligning
arrays to each significant size of memory hierarchy. Our experimental methodology is
described in Section 3.1. Detailed performance figures showing the impact of varying
the alignment of the base address of Morton arrays over all significant levels of mem-
ory hierarchy are contained in an accompanying technical report [8]. Our theoretical
assertion that aligning with the largest significant block size in the memory hierarchy,
i.e. page size, should always be best is supported in most, but not all cases, and we
assume that where this is not the case2, this is due to interference effects. Figures 5–8
of this paper include performance results for Morton storage layout with default- and
page-alignment of the array’s base address.

3 Unrolling Loops over Morton Arrays

Linear array layouts have the following property. Let L(
(i

j

)

) be the address calculation
function which returns the offset from the array base address at which the element
identified by index vector

(i
j

)

is stored. Then, for any offset-vector
(

k
l

)

, we have

L
((i

j

)

+
(

k
l

))

= L
(i

j

)

+L
(

k
l

)

. (1)

As an example, for a row-major array A, A(i, j + k) is stored at location A(i, j) + k.
Compilers can exploit this transformation when unrolling loops over arrays with linear
array layouts by strength-reducing the address calculation for all except the first loop
iteration in the unrolled loop body to simple addition of a constant.

As stated in Section 1.1, the Morton address mapping is Smz(i, j) = D1(i) | D0(j),
where “|” denotes bitwise-or, which can be implemented as addition. Given offset k,

Smz(i, j + k) = D1(i) | D0(j + k) = D1(i)+D0(j + k) .

The problem is that there is no general way of simplifying D0(j + k) for all j and all k.

Proposition 1 (Strength-reduction of Morton address calculation). Let u be some
power-of-two number such that u = 2n. Assume that j mod u = 0 and that k < u. Then,

D0(j + k) = D0(j)+D0(k) . (2)

This follows from the following observations: If j mod u = 0 then the n least significant
bits of j are zero; if k < u then all except the n least significant bits of k are zero.
Therefore, the dilated addition D0(j + k) can be performed separately on the n least
significant bits of j.

As an example, assume that j mod 4 = 0. Then, the following strength-reductions of
Morton order address calculation are valid:

Smz(i, j +1) = D1(i)+D0(j)+1

Smz(i, j +2) = D1(i)+D0(j)+4

Smz(i, j +3) = D1(i)+D0(j)+5 .

2 For MMijk on Alpha, L2-aligned is better than page-aligned.

Array Alignment and Loop Unrolling for Morton Layout 9

Adi Cholk Jacobi2D MMijk MMikj
Alternating-directi-
on implicit kernel,
ij-ij order

Cholesky k-variant
Two-dimensional
four-point stencil
smoother

Matrix multiply, ijk
loop nest order

Matrix multiply, ikj
loop nest order

min max min max min max min max min max

Alpha 27.0 84.5 6.8 41.1 24.2 167.1 6.0 139.5 37.6 177.0
Athlon 43.8 210.4 8.8 308.5 150.6 1078.6 9.5 262.5 117.4 884.2
P3 13.7 46.6 3.9 42.1 38.7 122.3 15.5 91.8 43.9 153.8
P4 46.2 134.1 4.8 266.1 159.6 1337.3 12.6 147.3 281.4 939.1
Sparc 11.4 54.3 3.5 78.4 33.2 138.6 5.0 131.9 20.5 142.8

Table 2. Numerical kernels used in our evaluation, together with their baseline performance
on the different platforms used. For each kernel, for each machine, we show the performance
range in MFLOPs for row-major array layout over all problem sizes covered in our experiments.

System Processor Operating L1/L2/Memory Compiler
System Parameters and Flags Used

Alpha Alpha 21264 OSF1 V5.0 L1 D-cache: 2-way, 64KB, 64B cache line Compaq C
Compaq (EV6) 500MHz L2 cache: direct mapped, 4MB Compiler V6.1-020
AlphaServer Page size: 8KB -arch ev6 -fast -O4
ES40 Main Memory: 4GB RAM
Sun UltraSparcIII(v9) SunOS 5.8 L1 D-cache: 4-way, 64KB, 32B cache line Sun Workshop 6
SunFire 6800 750MHz L2 cache: direct-mapped, 8MB -fast -xcrossfile

Page size: 8KB -xalias level=std
Main Memory: 24GB

PIII PentiumIII Linux 2.4.20 L1 D-cache: 4-way, 16KB, 32B cache line Intel C/C++
Coppermine L2 cache: 4-way 512KB, sectored 32B cache line Compiler v7.00
450MHz Page size: 4KB -xK -ipo

Main Memory: 256MB SDRAM -O3 -static
P4 Pentium 4 Linux 2.4.20 L1 D-cache: 4-way, 8KB, sectored 64B cache line Intel C/C++

2.0 GHz L2 cache: 8-way, 512KB, sectored 128B cache line Compiler v7.00
Page size: 4KB -xW -ipo
Main Memory: 512MB DDR-RAM -O3 -static

AMD AMD Athlon Linux 2.4.20 L1 D-Cache: 2-way, 64KB, 64B cache line Intel C/C++
XP 2100+ 1.8GHz L2 cache: 16-way, 256KB, 64B cache line Compiler v7.00

Page size: 4KB -xK -ipo
Main Memory: 512MB DDR-RAM -static

Table 3. Cache and CPU configurations used in the experiments. Compilers and compiler
flags match those used by the vendors in their SPEC CFP2000 (base) benchmark reports [6].

An analogous result holds for the i index. Therefore, by carefully choosing the align-
ment of the starting loop iteration variable with respect to the array indices used in the
loop body and by choosing a power-of-two unrolling factor, loops over Morton order ar-
rays can benefit from strength-reduction in unrolled loops. In our implementation, this
means that memory references for the Morton tables are replaced by simple addition
of constants. Existing production compilers cannot find this transformation automati-
cally. We therefore implemented this unrolling scheme by hand in order to quantify the
possible benefit. We report very promising initial performance results in Section 3.1.

3.1 Experimental Evaluation

Benchmark kernels and architectures. To test our hypothesis that Morton layout is a
useful compromise between row-major and column-major layout experimentally, we
have collected a suite of simple implementations of standard numerical kernels operat-

10 Jeyarajan Thiyagalingam, Olav Beckmann, and Paul H. J. Kelly

ing on two-dimensional arrays and carried out experiments on five different architec-
tures. The kernels used are shown in Table 2 and the platforms in Table 3.

Performance Results. Figures 5–8 show our results in detail, and we make some com-
ments directly in the figures. We have carried out extensive measurements over a full
range of problem sizes: the data underlying the graphs in Figures 5–8 consist of more
than 25 million individual measurements. For each experiment / architecture pair, we
give a broad characterisation of whether Morton layout is a useful compromise between
row-major and column-major in this setting by annotating the figures with win, lose, etc.

Impact of Unrolling. By inspecting the assembly code, we established that at least the
icc compiler on x86 architectures does automatically unroll our benchmark kernels
for row-major layout. In Figures 5–8, we show that manually unrolling the loops over
Morton arrays by a factor of four, using the technique described in Section 3, can result
in a significant performance improvement of the Morton code: On several architectures,
the unrolled Morton codes are for part of the spectrum of problem sizes very close to,
or even better than, the performance of the best canonical code. We plan to explore this
promising result further by investigating larger unrolling factors.

4 Related Work and Conclusions

Related Work. Chatterjee et al. [2] study Morton layout and a blocked “4D” layout.
They focus on tiled implementations, for which they find that the 4D layout achieves
higher performance than the Morton layout because the address calculation problem is
easier, while much or all the spatial locality is still exploited. Their work has similar
goals to ours, but all their benchmark applications are tiled for temporal locality; they
show impressive performance, with the further advantage that performance is less sensi-
tive to small changes in tile size and problem size, which can result in cache associativ-
ity conflicts with conventional layouts. In contrast, the goal of our work is to evaluate
whether Morton layout can simplify the performance programming model presented
by compilers for languages with multi-dimensional arrays. In [10] Wise et al. argue
for compiler-support for Morton order matrices. They use the recursive implementa-
tion of the Morton layout, with the base case being manually unfolded and re-rolled, to
compare against the BLAS-3 kernels. They justify that such a technique is valid as op-
timising compilers should provide similar support for small loops. However, they find
it hard to overcome the cost of addressing without recursion.

Conclusions. We believe that work on nonlinear storage layouts, such as Morton order,
is applicable in a number of different areas.

– Simplifying the performance-programming model offered to application program-
mers is one important objective of language design and compiler research. We be-
lieve that the work presented in this paper can reduce the price of the attractive
properties offered by Morton layout over canonical layouts.

– Storage layout transformations are always valid and can be applied even in codes
where tiling is not valid or hard to apply. Store layout transformation can thus be
additional and complementary to iteration space transformations.

Array Alignment and Loop Unrolling for Morton Layout 11

Future Work. We have reason to believe that unrolling loops over Morton arrays by fac-
tors larger than four is likely to yield greater benefits than we have measured thus far.
We are also planning to investigate the performance of Morton layout in tiled codes and
software-directed pre-fetching for loops over Morton arrays. We believe that the tech-
niques we have presented in this paper facilitate an implementation of Morton layout
for two-dimensional arrays that is beginning to fulfil its theoretical promise.

Acknowledgements. This work was partly supported by mi2g Software, a Universities UK
Overseas Research Scholarship and by the United Kingdom EPSRC-funded OSCAR project
(GR/R21486). We also thank Imperial College Parallel Computing Centre (ICPC) for access
to their equipment. We are grateful to David Padua and J. Ramanujam for suggesting that we
investigate unrolling during discussions at the CPC 2003 workshop in Amsterdam.

References

1. B. Alpern, L. Carter, E. Feig, and T. Selker. The uniform memory hierarchy model of com-
putation. Algorithmica, 12(2/3):72–109, Aug./Sept. 1994.

2. S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi. Nonlinear array
layouts for hierarchical memory systems. In ICS ’99: Proceedings of the 1999 International
Conference on Supercomputing, pages 444–453, June 20–25, 1999.

3. S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thottethodi. Recursive array layouts
and fast parallel matrix multiplication. In SPAA ’99: Eleventh Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 222–231, New York, June 1999.

4. P. Drakenberg, F. Lundevall, and B. Lisper. An efficient semi-hierarchical array layout. In
Proceedings of the Workshop on Interaction between Compilers and Computer Architectures,
Monterrey, Mexico, Jan. 2001. Kluwer. Available via www.mrtc.mdh.se.

5. G. Rivera and C.-W. Tseng. Data transformations for eliminating conflict misses. In
PLDI ’98: Proceedings of the ACM SIGPLAN’98 Conference on Programming Language
Design and Implementation, pages 38–49, Montreal, Canada, 17–19 June 1998.

6. www.specbench.org.
7. J. Thiyagalingam, O. Beckmann, and P. H. J. Kelly. An exhaustive evaluation of row-major,

column-major and Morton layouts for large two-dimensional arrays. In S. A. Jarvis, editor,
Performance Engineering: 19th Annual UK Performance Engineering Workshop, pages 340–
351. University of Warwick, UK, July 2003.

8. J. Thiyagalingam, O. Beckmann, and P. H. J. Kelly. Improving the performance of basic
morton layout by array alignment and loop unrolling — towards a better compromise storage
layout. Technical report, Department of Computing, Imperial College London, Sept. 2003.
Available via www.doc.ic.ac.uk/˜jeyan/.

9. V. Valsalam and A. Skjellum. A framework for high-performance matrix multiplication
based on hierarchical abstractions, algorithms and optimized low-level kernels. Concurrency
and Computation: Practice and Experience, 14(10):805–839, Aug. 2002.

10. D. S. Wise and J. D. Frens. Morton-order Matrices Deserve Compilers’ Support. Technical
Report, TR533, Nov. 1999.

11. D. S. Wise, J. D. Frens, Y. Gu, and G. A. Alexander. Language support for Morton-order
matrices. ACM SIGPLAN Notices, 36(7):24–33, July 2001. Proceedings of PPoPP 2001.

12 Jeyarajan Thiyagalingam, Olav Beckmann, and Paul H. J. Kelly

Win over CM Win over CM

0

20

40

60

80

100

120

100 200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on Alpha: Performance in MFLOP/s (Unrolling)

RM Default Alignment
CM Default Alignment

Morton Default Alignment
Morton 8192-Byte Aligned

Morton 8192-Byte Aligned Unrolled

0

10

20

30

40

50

60

70

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on Sparc: Performance in MFLOP/s (Unrolling)

RM Default Alignment
CM Default Alignment

Morton Default Alignment
Morton 8192-Byte Aligned

Morton 8192-Byte Aligned Unrolled

Marginal Win Win over CM with Alignment

0

50

100

150

200

250

300

350

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on Athlon: Performance in MFLOP/s (Unrolling)

RM Default Alignment
CM Default Alignment

Morton Default Alignment
Morton 4096-Byte Aligned

Morton 4096-Byte Aligned Unrolled

0

5

10

15

20

25

30

35

40

45

50

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on P3: Performance in MFLOP/s (Unrolling)

RM Default Alignment
CM Default Alignment

Morton Default Alignment
Morton 4096-Byte Aligned

Morton 4096-Byte Aligned Unrolled

Mariginal Win

0

50

100

150

200

250

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on P4: Performance in MFLOP/s (Unrolling)

RM Default Alignment
CM Default Alignment

Morton Default Alignment
Morton 4096-Byte Aligned

Morton 4096-Byte Aligned Unrolled

– Notice for Alpha, the upper limit is
1024×1024.

– For Alpha (Sun), the fall-off in RM
performance occurs at 725×725
(1024×1024) when the total
datasize exceeds L2 cache size of
4MB (8MB), direct mapped. This
assumes a working set of 725×725
(1024×1024) doubles.

– Alignment significantly improves
performance of the default Morton
array on P3. On other platforms,
alignment also yields slight
improvements.

Fig. 5. ADI performance in MFLOPs on different platforms. We compare row-major, column-
major, Morton with default alignment of the base address of the array, Morton with page-aligned
base address and unrolled-Morton with page-aligned base address and factor 4 loop unrolling.

Array Alignment and Loop Unrolling for Morton Layout 13

Win over CM Win over CM for problem sizes
larger than about 600×600

0

20

40

60

80

100

120

140

160

180

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Jacobi2D on Alpha: Performance in MFLOP/s (Unrolling)

RM Default Alignment
CM Default Alignment

Morton Default Alignment
Morton 8192-Byte Aligned

Morton 8192-Byte Aligned Unrolled

0

20

40

60

80

100

120

140

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Jacobi2D on Sparc: Performance in MFLOP/s (Unrolling)

RM Default Alignment
CM Default Alignment

Morton Default Alignment
Morton 8192-Byte Aligned

Morton 8192-Byte Aligned Unrolled

Win over CM Win over CM

0

200

400

600

800

1000

1200

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Jacobi2D on Athlon: Performance in MFLOP/s (Unrolling)

RM Default Alignment
CM Default Alignment

Morton Default Alignment
Morton 4096-Byte Aligned

Morton 4096-Byte Aligned Unrolled

0

20

40

60

80

100

120

140

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Jacobi2D on P3: Performance in MFLOP/s (Unrolling)

RM Default Alignment
CM Default Alignment

Morton Default Alignment
Morton 4096-Byte Aligned

Morton 4096-Byte Aligned Unrolled

Marginal Win/Win over CM

0

200

400

600

800

1000

1200

1400

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Jacobi2D on P4: Performance in MFLOP/s (Unrolling)

RM Default Alignment
CM Default Alignment

Morton Default Alignment
Morton 4096-Byte Aligned

Morton 4096-Byte Aligned Unrolled

– L2-aligned version on Alpha, and
page-aligned on other platforms,
improves basic Morton
performance.

– Unrolling improves performance of
the best aligned Morton
implementation, in particular on x86
where the unrolled Morton
performance is within reach of the
best canonical.

Fig. 6. Jacobi2D performance in MFLOPs on different platforms. We compare row-major,
column-major, Morton with default alignment of the base address of the array, Morton with page-
aligned base address and Morton with page-aligned base address and factor 4 loop unrolling.

14 Jeyarajan Thiyagalingam, Olav Beckmann, and Paul H. J. Kelly

Win over CM for problem sizes Win over CM for problem sizes
larger than about 330×330 larger than about 500×500

0

50

100

150

200

100 200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMikj on Alpha: Performance in MFLOP/s (Unrolling)

RM Default Alignment
CM Default Alignment

Morton Default Alignment
Morton 8192-Byte Aligned

Morton 8192-Byte Aligned Unrolled

0

20

40

60

80

100

120

140

160

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMikj on Sparc: Performance in MFLOP/s (Unrolling)

RM Default Alignment
CM Default Alignment

Morton Default Alignment
Morton 8192-Byte Aligned

Morton 8192-Byte Aligned Unrolled

Marginal Win/Win over CM Marginal Win/Win over CM

0

100

200

300

400

500

600

700

800

900

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMikj on Athlon: Performance in MFLOP/s (Unrolling)

RM Default Alignment
CM Default Alignment

Morton Default Alignment
Morton 4096-Byte Aligned

Morton 4096-Byte Aligned Unrolled

0

20

40

60

80

100

120

140

160

100 200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMikj on P3: Performance in MFLOP/s (Unrolling)

RM Default Alignment
CM Default Alignment

Morton Default Alignment
Morton 4096-Byte Aligned

Morton 4096-Byte Aligned Unrolled

Win over CM

0

100

200

300

400

500

600

700

800

900

1000

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMikj on P4: Performance in MFLOP/s (Unrolling)

RM Default Alignment
CM Default Alignment

Morton Default Alignment
Morton 4096-Byte Aligned

Morton 4096-Byte Aligned Unrolled

– For Alpha, notice that upper limit is
1024×1024.

– Alignment causes a small
improvement in Morton
performance on all platforms except
Athlon.

Fig. 7. MMikj performance in MFLOPs on different platforms. We compare row-major,
column-major, Morton with default alignment of the base address of the array, Morton with page-
aligned base address and Morton with page-aligned base address and factor 4 loop unrolling.

Array Alignment and Loop Unrolling for Morton Layout 15

Win over both RM and CM for problem Win over both RM and CM for problem
sizes larger than about 360×360 sizes larger than about 750×750

0

20

40

60

80

100

120

140

100 200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMijk on Alpha: Performance in MFLOP/s (Unrolling)

RM Default Alignment
CM Default Alignment

Morton Default Alignment
Morton 8192-Byte Aligned

Morton 8192-Byte Aligned Unrolled

0

20

40

60

80

100

120

140

100 200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMijk on Sparc: Performance in MFLOP/s (Unrolling)

RM Default Alignment
CM Default Alignment

Morton Default Alignment
Morton 8192-Byte Aligned

Morton 8192-Byte Aligned Unrolled

Win over both RM and CM for problem Marginal Win/Win over CM
sizes smaller than about 1200×1200

0

50

100

150

200

250

300

350

400

450

500

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMijk on Athlon: Performance in MFLOP/s (Unrolling)

RM Default Alignment
CM Default Alignment

Morton Default Alignment
Morton 4096-Byte Aligned

Morton 4096-Byte Aligned Unrolled

0

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMijk on P3: Performance in MFLOP/s (Unrolling)

RM Default Alignment
CM Default Alignment

Morton Default Alignment
Morton 4096-Byte Aligned

Morton 4096-Byte Aligned Unrolled

Win over both RM and CM for problem
sizes smaller than about 1200×1200

0

50

100

150

200

250

300

350

400

450

500

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMijk on P4: Performance in MFLOP/s (Unrolling)

RM Default Alignment
CM Default Alignment

Morton Default Alignment
Morton 4096-Byte Aligned

Morton 4096-Byte Aligned Unrolled

– For Alpha, notice that the upper
limit is 1024×1024.

– Notice the sharp drop in RM and
CM performance on Alpha (around
360×360) and on Sparc (around
700×700) platforms .

– Page-aligned Morton is marginally
faster than default on most
platforms.

Fig. 8. MMijk performance in MFLOPs on different platforms. We compare row-major,
column-major, Morton with default alignment of the base address of the array, Morton with page-
aligned base address and Morton with page-aligned base address and factor 4 loop unrolling.

