
Load Elimination in the Presence of Side Effects,
Concurrency and Precise Exceptions

Christoph von Praun, Florian Schneider, and Thomas R. Gross

Laboratory for Software Technology
ETH Zürich

8092 Zürich, Switzerland

Abstract. Partial redundancy elimination can reduce the number of
loads corresponding to field and array accesses in Java programs. The
reuse of values loaded from memory at subsequent occurrences of load
expressions must be done with care: Precise exceptions and the potential
of side effects through method invocations and concurrent modifications
in multi-threaded programs must be considered.
This work focuses on the effect of concurrency on the load optimization.
Unlike previous approaches, our system determines accurate information
about side effects and concurrency through a whole-program analysis.
Partial redundancy elimination is extended to exploit this information
and to broaden the optimization scope.
There are three main results: (1) Load elimination is effective even in
the most conservative variant without side effect and concurrency anal-
ysis (avg. dynamic reduction of loads 21.1%, max. 55.6%). (2) Accurate
side effect information can significantly increase the number of optimized
expressions (avg. dynamic reduction of loads 26.4%, max. 66.1%). (3) In-
formation about concurrency can make the optimization independent of
the memory model, enables aggressive optimization across synchroniza-
tion statements, and improves the number of optimization opportunities
compared to an uninformed optimizer that is guided by a (weak) memory
model (avg. dynamic reduction of loads 30.1%, max. 70.3%).

1 Introduction

A common storage model for object-oriented programs is to allocate objects
explicitly and access them indirectly through references. While this model is
convenient for the programmer and the memory management (garbage collec-
tion), indirect memory accesses may become a performance bottleneck during
program execution. Object and array access is done through access expressions.

Objects can refer to other objects, resulting in a sequence of indirect loads,
so called path expressions (e.g., o.f1.f2.f3). The evaluation of a path expres-
sion results in a pointer traversal, which is a common runtime phenomenon in
object-oriented programs. Current processor architectures and memory subsys-
tems are not designed to handle pointer traversals at peak rates, and hence
pointer traversals may cause a performance bottleneck.

Standard optimization techniques such as common subexpression elimination
(CSE) and partial redundancy elimination (PRE) can be applied to reduce the



number of (indirect) loads that are evaluated at runtime. The technique is also
known as register promotion because non-stack variables are ’promoted’ to faster
register memory during a certain period of the program execution. However, the
elimination and motion of loads must be done with special care to account for
constraints imposed by the programming language:

Aliasing The assignment to a reference field may invalidate a loaded value in
the assigning method.

Side effects Method calls may modify objects and hence invalidate loaded val-
ues in the caller.

Precise exception semantics The evaluation of an indirect load may raise an
exception. Hence code motion that involves indirect loads must not lead to
untimely exceptions.

Concurrency In multi-threaded programs, objects may be modified concur-
rently. The elimination of a load is only admissible if the visibility of concur-
rent updates, as prescribed in the thread and memory model of the language,
is not violated.

Java programs may be affected by all of these aspects. Previous work [6] has
employed a simple type-based alias analysis to account for some of these im-
pediments to load elimination but situations that could not be resolved through
simple alias information are handled in the most conservative manner. This
paper improves upon previous studies by employing a detailed side effect and
concurrency analysis. We classify redundant load expressions according to their
interaction with aliasing, side effects, exception handling and concurrency, and
quantify the consequences of the individual aspects on the effectiveness of PRE.

In the context parallel programs, Lee and Padua [9] define a program trans-
formation as correct, if “the set of possible observable behaviors of a transformed
programs is a subset of the possible observable behaviors of the original program”.
The possible observable behaviors of a parallel program (and consequently the
permissible program transformations) are determined by the memory model. A
restrictive memory model like SC would defeat a number of standard reordering
optimizations (due to the potential of data races) [12].

One way to handle the problem is to conceive the memory model as weak
as possible, allow a large number of behaviors, and hence designate standard
transformations that are known from the optimization of sequential programs
as “correct” in the context of the parallel program. The design of the revised
Java memory model (we refer to this model as JMM) follows this strategy [11,
Appendix A].

Our technique pursues a different strategy that is independent of the memory
model, i.e., its correctness does not rely on a consistency weaker than SC. Con-
currency analysis determines a conservative set of variables and access sites with
access conflicts. An conflict is found, if the analysis cannot determine start/join
or monitor-style synchronization for read/write accesses to the same data from
different threads. The number of conflicting variables and access sites is typically
moderate and such sites are exempted from the optimization. For the remaining
accesses, the synchronization strategy is known (determined by the concurrency
analysis) and a number of aggressive optimizations are possible that would not be



performed if the optimizer only followed the minimal constraints of the memory
model.

The main difference between (1) the conventional application of standard
optimizations constrained by the memory model and (2) our approach based
on concurrency analysis is as follows: Approach (1) applies optimization to all
loads disregarding the potential of sharing or access conflict. Access to volatile
variables or synchronization kill the availability of previous loads. Approach (2) is
conservative about loads of variables with access conflicts and in addition puts
fewer constraints on the availability of load expressions. Hence, approach (2)
enables a number of optimizations that are rejected by approach (1). Consider
the program in Figure 1.

... = s1.f;

<call to synchronized method>

... = s1.f;

Fig. 1. Program fragment illustrating uninvolved synchronization.

Approach (1) would abstain from optimizing the second load expression due
to the intervening synchronization (kill). Approach (2) can determine that the
object referenced by s1 is not conflicting (it is thread-local or accesses are pro-
tected by enclosing monitor synchronization); hence the synchronization that
occurs in the call is uninvolved in protecting variable s1.f and hence the second
load can be optimized.

2 Example

Figure 2 reviews several simple control-flow graphs that illustrate a classifica-
tion of load-redundancies. We assume that local variables follow static single
assignment constraints and that – unless explicitly specified – there are no side
effects on the involved objects. The classification applies to occurrences of ex-
pressions and is not exclusive, i.e., a single expression occurrence could fall into
several categories. Partial and full redundancies can be affected by updates due
to aliasing, side effects, or concurrency:

(a) Loss of redundancy due to aliasing: The expression in block (4) is fully
redundant wrt. the syntactically equivalent expression in block (1). However,
the aliasing of local variables p and o in combination with the update in block
(3) invalidates this redundancy.

(b) Loss of redundancy due to side effect: Assume that the call in block
(3) has a potential side effect on the object referenced by o. Hence, the
redundancy of the load in block (4) wrt. the load in block (1) is lost due
to a side effect since the call occurs on some control-flow path between the
redundant expressions.

(c) Loss of redundancy due to precise exceptions: The load in block (4)
is partially redundant wrt. the load in block (2). This redundancy could be
avoided by hoisting the expression from block (4) to the end of block (3).



Such code motion would however violate precise exception semantics: The
evaluation of the access expression o.f may throw a NullPointerException.
Assume that code motion is performed (o.f is hoisted above the assignment
to variable a) and the hoisted expression throws an exception at runtime;
then the update to a would not be performed and hence would not be visible
in the handler. Thus, code motion to avoid partial redundancies must not
bypass updates that should be visible in some handler. The occurrence of
o.f in block (4) is hence a partial redundancy that is lost due to precise
exceptions and must not be optimized.
Redundancies like the load in block (4) can be optimized in combination
with speculative code motion and compensation code that is executed in the
case of an exception [5]. This approach is further discussed in Section 5.

(d) Loss of redundancy due to concurrent update: Let v be a volatile
variable. The load in block (4) is fully redundant wrt. the load in block (1).
There is however an intervening load of a volatile variable that enforces that
updates of thread 2 become available to thread 1. This includes an update of
field f on the object referenced by s1 and s2, and hence the elimination of
the load expression in block (4) should not be performed. The redundancy
in block (4) is lost due to a concurrent update, because its elimination might
lead to the phenomenon that the update of thread 2 might not become visible
to thread 1.

(e) Loss of redundancy due monitor boundary: There is a full redun-
dancy of the second load in block (1) and the load in block (2) wrt. the
first load in block (1). Accesses to the object referenced by s1 and s2 are
guarded through locks, hence there is no access conflict. The elimination of
loads must nevertheless be done with special care: The second load in block
(1) can be optimized. The load in block (2) however must not be eliminated
due to the potential update done in thread 2.

In cases (a), (b), (d) and (e) a full or partial redundancy can be lost. In
case (c), it is the opportunity to optimize a partial redundancy that is lost. In
cases (d) and (e), redundancy is is lost irrespective the memory model, i.e., an
optimization would not be permissible in SC and weaker models.

3 PRE of path expressions

PRE is a well-known technique to reduce the number of load expressions, and
Chow et al. [2] describe a practical approach (SSAPRE) to use PRE with an
SSA intermediate representation. SSAPRE was originally developed in the con-
text of translating C/C++ programs. Java programs must obey precise excep-
tion semantics, and the language prescribes a thread model, so a compiler that
wants to eliminate (some) path expressions for this language must handle the
situations illustrated in Section 2. We describe here an algorithm that builds
on SSAPRE of [2] to remove load operations. This algorithm requires additional
whole-program analyses that provide information about aliasing, side effects and
concurrency.



Fig. 2. Possible losses of full and partial redundancies.

The outline of the algorithm is as follows:

1. Transform the program such that covert redundancies are revealed (3.1).
2. Compute alias information (Section 3.2).
3. Determine side effects at all call sites (Section 3.3).
4. Compute escape information and conflicting fields (Section 3.4).
5. Perform partial redundancy elimination (Section 3.6).

3.1 Program transformations

The detection of redundancies through the compiler is enhanced by two program
transformations: First, method inlining allows the intraprocedural algorithm to
operate to some degree across method boundaries. Second, loop peeling allows
to hoist loop invariant expressions and can significantly reduce the dynamic
frequency of loads inside loops.

3.2 Alias analysis

The alias analysis is based on global value numbering, where value sets are
associated (1) with local variables and parameters, (2) with fields, and (3) with
array variables. A value number is created at an allocation site and flows into



the value set of the variable holding the reference to the allocated object. Value
numbers are propagated in a flow-insensitive, interprocedural manner along a
variable-type analysis (VTA) that is described in detail in [14].

Value numbers approximate may-alias information: Two reference variables
may refer to the same object at runtime if the intersection of their value number
sets is not empty.

3.3 Side effect analysis

The purpose of the side effect analysis is to determine at a specific call site if
the callee updates objects that are referenced in available load expressions in
the caller. If a side effect is determined, the call site kills the availability of the
respective load expression.

The update effects and the aliasing relationships introduced by the callee are
encoded in a method summary, which is computed separately for each method
in a bottom up traversal of the call graph. A summary contains abstractions of
the objects that are accessed or allocated in the dynamic scope of a method and
the reference relationships among those objects induced through field variables.
Updates are specified per object and do not differentiate individual fields. The
concept and computation of method summaries is described in more detail in
Ruf [13]; the method also accounts for recursion.

A method summary encodes updates in a generic form and this information
has to be adapted to individual contexts where the method is called. At a call
site, the actual parameters and the objects reachable through those are unified
with the corresponding formal parameters of the summary. Caller-side aliasing
is approximated through the may-alias information computed in Section 3.2. At
this point, the embedded method summary provides a conservative approxima-
tion about the objects that are modified in the callee at a specific call site.

3.4 Concurrency analysis

Concurrency analysis determines for a specific access expression if the accessed
object is shared and if there are potential access conflicts on field variables. A
variable is subject to a conflict if there are two accesses that are not ordered
through enclosing monitor synchronization and at least one access is an up-
date. In our model, we limit the optimization to loads that access data without
conflicts.

In addition to access conflicts, certain statements may necessitate a reload of
a variable even if the variable is not subject to an access conflict. Such statements
are called killing statements because they kill the availability of preceding load
expressions.

First, two methods for determining the absence of access conflicts are dis-
cussed, then the notion of killing statements and their computation is defined.

Stack-locality In a simple approximation, concurrent access can be excluded
for those objects that remain confined in the scope of their allocating method and



hence are not made available to other threads. Such abstract objects are called
stack-local. Stack-locality can be computed similar to update effects (Section
3.3): Instead of abstract objects that are updated, sets of objects that escape
from the stack are noted in the method summary.

Stack locality is however a very conservative approximation to the property
of ‘having no conflicting access’: First, the definition applies to whole objects
instead of individual field variables. Second, there is typically a significant num-
ber of objects that escape the stack and are nevertheless not shared or subject
to conflicting access [16].

Object use analysis The object use analysis determines the set of field vari-
ables that are regarded as conflicting. A context-sensitive symbolic program
execution is used to track accesses to fields in different object and locking con-
texts. Synchronization patterns like “init then shared read”, thread start/join,
and monitors can be recognized and allow to determine the absence of conflicts
for a large number of variables and statements. A detailed description of the
object use analysis is presented in [16].

Given the set of fields on which potential conflicts arise, the load elimination
refrains from optimizing loads of such fields through reference variables that are
stack-escaping. If arrays are subject to conflicts accesses to escaping arrays are
not optimized.

Kill analysis Kill information specifies if a statement necessitates to reload
previously loaded values from memory. Our load optimization is intraprocedural
and only targets objects that have no conflicts. For shared variables that are
protected by a monitor, a reload is necessary if the scope of the protecting
monitor is temporarily quit (... other threads could enter the monitor and update
the loaded variable). In Java, there are two cases in which a monitor can be
temporarily left at the method scope: First, at the boundary of a block monitor;
second, at a call site of Object::wait or callers of it. The kill analysis determines
such killing statements a in a single pass over the caller hierarchy of the program.

3.5 Exceptions

The potential of exceptions narrows the flexibility of code motion when elim-
inating partial redundancies. Precise exception semantics in Java demand the
following behavior in the case of an exception:

– All updates prior to the excepting statement must appear to have taken
place.

– Updates that follow the excepting statement must not appear to have taken
place.

– Program transformation must not change the order of thrown exceptions.

To account for these semantics, a simple program traversal identifies potentially
excepting instructions (PEI) [5]: explicit raise of exception, indirect loads, mem-
ory allocation, synchronization, type check, and calls. We assume that PEIs are



the only source of exceptions (synchronous exceptions) and do not account for
Java’s asynchronous exceptions that are raised at very severe error conditions
(e.g., machine error, lack of memory) and often hinder the further execution of
a thread or program.

Information about PEIs is used to restrain load elimination, such that indirect
load expressions are not hoisted above PEIs or assignments to local variables, if
the current method defines an exception handler.

3.6 PRE

This section elaborates on the modifications to the SSAPRE algorithm [2] to
account for side effects, concurrency and precise exception semantics. The algo-
rithm is driven by a worklist of expressions and optimizes one expression at a
time; compound expressions (e.g., access path expressions) are split and handled
in the appropriate order.

SSAPRE performs the following steps:
– Initialize worklist with candidate expressions.
– Insert availability barriers.
– While worklist not empty do:

1. Φ-Insertion
2. Rename
3. DownSafety
4. WillBeAvail
5. Finalize
6. CodeMotion
7. If there are new expressions then:

– Add new expressions to worklist.
– Determine availability barriers.

The detailed description of each of these steps can be found in [2]. We describe
the changes to the original algorithm in the following paragraphs. The steps (5),
(6) and (7) remain unchanged.

Candidate expressions The PRE implementation described here optimizes
three types of expressions:
– Arithmetic expressions
– Scalar loads (static field accesses)
– Indirect loads (non-static field and array accesses)

Optimization candidates are determined during the collection phase, where ex-
pressions that cannot be optimized due to an access conflict are filtered out. If a
program is single-threaded, there are no further constraints. For multi-threaded
programs, the results of the escape and concurrency analysis inhibit the opti-
mization of a load expression if
– the base object is globally visible (for direct loads, this is always true, for

indirect loads, all stack-escaping objects are assumed to be globally visible),
and

– there is a conflict on the accessed field.

Accesses to volatile variables are also excluded from the optimization.



Availability barriers A second pass over the program determines statements
that kill the availability of an expression, i.e., call sites with side effects or po-
tentially aliased stores (may-defs). There are two cases that render an access
expression invalid: (1) An update of the base reference variable; (2) An update
of the accessed field variable.

Updates of the callee that are visible in the caller are determined from the
method summary information. (Section 3.3). If a side effect is detected, the
affected expression must be invalidated and a so called kill-occurrence of that
expression is inserted at the call-site; this is done for both cases of invalidation,
(1) and (2). Similarly, kill-occurrences are inserted at stores that are potentially
aliased to the base reference variable of an expression (case (1)).

The availability of load expression is also killed by a store through the same
reference variable to the same field (must-def, case(2)). In this case however,
a so called left-occurrence [10] is inserted. Since such a store is a definition, a
left-occurrence makes an expression available, so that subsequent loads of the
same variable are redundant wrt. this store.

For PEIs and other statements with side effects that are potentially visible in
a local exception handler or outside the current method, an exception-side-effect
occurrence is inserted; such occurrences do not specify a potential update, but
only serve to prohibit optimization.

Φ-Insertion Φ-nodes for an expression are inserted at the iterated dominance
frontier (IDF) of each real occurrence. Additionally, Φs are inserted at the IDF
of left occurrences and kill occurrences since these may change the value of an
expression.

Rename The rename step builds the factored redundancy graph [2] (FRG) and
assigns version numbers to each occurrence of an expression. This is done in
a pre-order pass over the dominator tree. Left occurrences always get a new
version number, whereas kill occurrences simply invalidate the current version.
PEIs have no impact on the version numbers. Multiple expression occurrences
with the same version number indicate redundancy.

Exception safety To account for the restrictions of Java’s exception semantics,
the computation of safe insertion points for expressions needs to be extended.
In the original algorithm, down-safety is a sufficient criterion for the insertion of
E at a position S in the program. Here, we add the concept of exception-safety,
which needs to be satisfied in addition to down-safety for expressions E that
contain PEIs (e.g., indirect loads, division).

A position T in a program is exception-safe with respect to an expression
occurrence E iff there is no critical statement on any path from T to E. Critical
statements are:

– PEIs
– Stores to escaping objects
– Stores to local variables that are visible inside a local exception handler.



The exception-safe flag is initialized along the rename-step. For each critical
statement, the immediately dominating Φ-node is determined and marked as not
exception-safe. In a second step, the exception-safe flag is propagated upward
beginning at the Φ-nodes that are initially not exception-safe. If an operand of
such a Φ is defined by another Φ we mark the defining Φ as not exception-safe.
This is done recursively until no more Φs are reached.

For example, the insertion point at the end of block (3) in Figure 2(c) is not
exception-safe with respect to the expression occurrences in block (4) because
there is an assignment with side effect that is visible inside the exception han-
dler. In the scenario of Figure 2(b), the occurrence of o.f in block (4) is fully
redundant. In that case a thrown exception does not impose any restrictions
because there is no insertion of o.f on a new path.

WillBeAvail This step determines at which points an expression will be made
available by inserting code. There are two modifications related to precise ex-
ception semantics in this step: First, for partially available Φ-nodes marked as
not exception safe the willBeAvail flag is reset so that there will be no code
motion that violates the exception semantics. Second, expressions that are par-
tially available at the beginning of an exception handler must be invalidated.
Hence the willBeAvail flag of partially available Φ-nodes at the beginning of an
exception handler is reset.

4 Evaluation

We implemented the modified SSAPRE in a Java-X86 way-ahead compiler and
report here on its effectiveness. The runtime system is based on GNU libgcj
version 2.96 [4]. The numbers we present in the static and dynamic assessment
refer to the overall program including library classes, but excluding native code.
The effect of native code for aliasing and object access is modeled explicitly in
the compiler.

The efficiency of the optimization has been evaluated for several single- and
multi-threaded benchmarks, including programs from the SPEC JVM98 [15] and
the Java Grande Forum [7] suite (Table 1).

Name Description LOC

moldyn* Molecular dynamics simulation (Java Grande Forum) 864
montecarlo* Monte Carlo simulation (Java Grande Forum) 3132
mtrt* Multi-threaded raytracer (JVM98) 3821
tsp* Traveling Salesmen Problem 705
db Memory resident database (JVM98) 1087
compress Modified Lempel-Ziv compression (JVM98) 952
jess Java Expert Shell System (JVM98) 10441

Table 1. Benchmarks, * = multi-threaded benchmark.

The benchmarks have been compiled in four variants:



(A) (B) (C) (D)
program #exprs #exprs (B/A) #exprs (C/A) (C/B) #exprs (D/C)

moldyn* 663 725 109.4% 782 117.9% 107.9% 783 100.1%
montecarlo* 234 301 128.6% 334 142.7% 111.0% 349 104.5%
mtrt* 311 597 192.0% 630 202.6% 105.5% 656 104.1%
tsp* 245 297 121.2% 313 127.8% 105.4% 324 103.5%
compress 296 375 126.7% 434 146.6% 115.7% 434 100.0%
db 281 346 123.1% 495 176.2% 143.1% 495 100.0%
jess 669 807 120.6% 1232 184.2% 152.7% 1232 100.0%
average 131.7% 156.8% 120.2% 101.8%

Table 2. Static number of optimized load expression occurrences. Multi-threaded
benchmarks are marked with *.

(A) No side effect and no concurrency analysis: Every method call is as-
sumed to have side effects and all loads are optimized according to the JMM,
i.e., all synchronization barriers invalidate the availability of loads. Alias in-
formation is used to disambiguate the value of reference variables. This is
the most conservative configuration of our algorithm and could, e.g., be im-
plemented in an optimizing JIT compiler. This configuration resembles the
analysis in [6].

(B) Side effect but no concurrency analysis: Side effects are determined
at method calls, and all loads are optimized according to the JMM.

(C) Side effect and concurrency analysis: Precise information about side
effects and concurrency guide the optimization. Loads of variables that are
not conflicting are aggressively optimized across synchronization statements;
loads of conflicting variables are not optimized. The resulting optimization
is correct with respect to an SC memory model.

(D) Upper limit for concurrency analysis: In case (C), some optimiza-
tions might be defeated because conservatism in the conflict analysis may
classify too many variables as conflicting. The artificial configuration (D)
constitutes an upper bound on the optimization potential that could be
achieved by a “ideal synchronization analysis”: All variables are assumed to
be free of conflicts and there are no synchronization barriers. The optimiza-
tion might be incorrect in this configuration and hence we present only static
counters (Table 2).

4.1 Number of optimized expressions

The comparison of column (A) and (B) in Table 2 shows the improvement due to
the side effect analysis: For mtrt, montecarlo, and compress the analysis is most
effective and many calls to short methods that have only local effects can be
identified. The increase of optimization opportunities for PRE ranges between
9.4% for moldyn and 92.0% for mtrt, with an average of 31.7%.

The concurrency analysis (Table 2, column (C)) increases the number of op-
timization opportunities for all benchmarks in comparison to the version that
optimizes according to the JMM (Table 2 column (B)). For the single-threaded
programs the improvement is generally a bit higher (15.7% to 52.7% for compress



orig (A) (B) (C)
program #ops #ops (A/orig) #ops (B/orig) #ops (C/orig) (C/B)

moldyn* 1022.6 763.8 74.7% 763.0 74.6% 763.0 74.6% 100.0%
montecarlo* 478.6 212.6 44.4% 162.5 33.9% 142.3 29.7% 87.6%
mtrt* 366.9 364.7 99.4% 333.4 90.9% 333.4 90.9% 100.0%
tsp* 899.0 671.5 74.7% 671.5 74.7% 674.3 75.0% 100.4%
compress 2423.5 1901.4 78.5% 1712.5 70.7% 1692.8 69.9% 98.8%
db 446.6 393.6 88.1% 393.6 88.1% 300.5 67.3% 76.3%
jess 323.5 299.1 92.4% 267.1 82.6% 265.8 82.2% 99.5%
average 78.9% 73.6% 69.9% 94.7%

Table 3. Dynamic count of loads in millions of operations.

resp. jess) because there are no conflicting accesses that prevent load elimina-
tion. For the multi-threaded benchmarks the improvement is between 5.4% (tsp)
and 11% (montecarlo). The average improvement due to concurrency analysis
is 20.2%. Column (D) shows the theoretical upper bound for a perfect concur-
rency analysis. For the multi-threaded benchmarks, version (C) lies within 5% of
that upper bound. For the single-threaded benchmarks the concurrency analysis
provides already “perfect” information, hence there is no further improvement.

Note that the concurrency analysis is only effective in combination with the
side effect analysis: If method calls kill all available expressions, then not much
is gained through the reduction of synchronization barriers provided by the con-
currency analysis. Overall, the combined side effect and concurrency analysis in-
creases the number of optimized occurrences from 17.9% (moldyn) up to 102.6%
(mtrt), with an overall average of 56.8%.

4.2 Dynamic count of load operations

Table 3 specifies the dynamic number of loads in different variants of the bench-
marks. The base variant (A) is already quite successful in reducing the number
of loads (avg. 21.1%, max. 55.6%). Side effect information improves the reduc-
tion further (avg. 26.4%, max. 66.1%). Most successful is again variant (C) which
achieves a reduction from 9.1% for mtrt up to 70.3% for montecarlo (avg. 30.1%).

For single-threaded benchmarks, the concurrency analysis determines the
absence of concurrency and hence creates additional optimization opportunities
compared to variant (B). The benefit is most pronounced for db where variant
(C) executes only 76.3% (last column of Table 3) of the loads of the variant
without concurrency information (B).

For the benchmarks mtrt, compress and jess, Table 2 shows an increase in the
number of optimized expressions among variant (B) and (C). This effect is not
manifested at runtime, i.e., the last column in Table 3 specifies no reduction in
the number of dynamic loads. There are two reasons for this behavior: First, the
execution frequency of optimized expressions can vary greatly, i.e., few optimized
expressions can contribute to a majority of the dynamic savings. Second, variant
(C) might optimize other expressions than variant (B) and consequently the
overall dynamic effect can be different.



Similarly for tsp: Side effect analysis produces only an insignificant reduc-
tion and concurrency analysis even results in a slight increase of dynamic load
operations. In this benchmark, the concurrency analysis classifies a frequently
accessed variable as conflicting and hence the configuration (C) is conservative
about corresponding loads. Configuration (B) in contrast allows to optimize the
respective load expressions, resulting in an overall dynamic benefit over config-
uration (C).

The speedup of execution time compared to the unoptimized version ranges
between 0% and 12% (avg. 8%).

5 Related work

There are numerous contributions in the field of program analysis and optimiza-
tion for Java and related programming languages. We discuss only a selection of
approaches that are closely related to our work.

Side effect analysis Modification side effect analysis for C programs has been
done by Landi, Ryder, and Zhang [8]. The analysis computes a precise set of
modified abstract storage locations for call sites and indirect store operations.
It is difficult to compare this work with ours: On the one hand, Java has a
more uniform storage model, on the other hand, polymorphism and loose type
information in object-oriented languages necessitate conservatism when approx-
imating side effects at compile-time.

Clausen [3] developed an interprocedural side effect analysis for Java byte-
codes and demonstrates its utility for various optimizations like dead code re-
moval and common subexpression elimination. Side effects are specified by field
variables that a method and its callees might modify. The computational com-
plexity of this analysis is lower than ours, however the analysis is not sensitive
to the heap-context of a method call and hence is less precise. In contrast to
Clausen’s work, our analysis does not distinguish individual fields, but merely
specifies updates for specific abstract objects (including field information would
however be a straightforward extension).

Optimization in the presence of precise exceptions Optimizing Java pro-
gram in the presence of exceptions has been studied by Gupta, Choi, and Hind
[5]. Since common Java programs contain many PEIs (about 40%), many op-
timization opportunities are prohibited by the dependencies created through
Java’s precise exception model. However [5] observes that the visibility of up-
dates in exception handlers can be limited to a few variables that are live. Hence
liveness information helps to significantly reduce the number of dependencies
and enables reordering transformations. Reordering of PEIs remains however
critical as, in case an exception occurs, the order of thrown exceptions must not
be altered. For preserving the correct order, compensation code is introduced
that triggers the correct exception that would have been thrown by the unop-
timized code. [5] is orthogonal to our work, because liveness analysis could also
be used to enable optimization that our algorithm neglects due to conservatism



assumptions. Gupta, Choi and Hind use the relaxed dependency model to enable
loop transformations with aggressive code motion; Our focus is on PRE for load
elimination where code motion is only required to handle partial redundancies.
Hence the overall limitations of precise exception semantics in our work is not
as pronounced as in [5].

Load elimination Lo et al. [10] have developed an algorithm for eliminat-
ing direct and indirect load operations in C programs, promoting memory that
is accessed through these operations to registers. The algorithm is based on
their previous work on SSAPRE [2], which we also use as a foundation. The
authors employ aggressive code motion, relying on speculative execution and
hardware support to mask potential exceptions; this is possible, because the C
programming language does not require precise exception semantics. In addition
to eliminating loads, the authors have defined SSU (static singe use) form which
allows to eliminate stores through the dual of the SSAPRE algorithm. Bodik,
Gupta, and Soffa also explore PRE-based load elimination in [1] and consider,
besides syntactical information, also value-number and symbolic information to
capture equivalent loads. The focus of our study is on object-oriented programs
(Section 4). Compared to the C routines that have been investigated in [10, 1],
the size of methods is usually smaller and the call-interaction among methods
is more vivid. Hence our work emphasizes the modeling of side effects through
procedure interaction and concurrency.

PRE has also been used by Hosking at al. [6] to eliminate access path expres-
sions in Java; program transformation is done at the level of bytecodes. Similar
to our evaluation, the authors achieve a clear reduction of load operations (both
static and dynamic counts). Contrary to our work, the authors do not use whole-
program information to determine inter procedural side effects. Moreover, our
evaluation clarifies the impact of precise exceptions, interprocedural side effects
and concurrency on the effectiveness of load elimination.

Lee and Padua [9] adopt standard reordering transformations to parallel
programs and describe caveats and limitations. Similar to our approach, a par-
ticular program analysis and IR are used to determine the interaction of threads
on shared data (concurrent static single assignment form, CSSA) and to con-
clude on restrictions of the optimization. Their algorithms handle programs with
structured parallelism (SPMD) and hence allow for a precise analysis and selec-
tive optimization of accesses to variables with access conflicts. Our approach
addresses general programs with unstructured parallelism but is more conserva-
tive in the treatment of loads from conflicting variables.

6 Conclusions

There are three main results: (1) Load elimination is effective even in the most
conservative variant without side effect and concurrency analysis (avg. dynamic
reduction of loads 21.1%, max. 55.6%). (2) Accurate side effect information
can significantly increase the number of optimized expressions (avg. dynamic
reduction of loads 26.4%, max. 66.1%). (3) Information about concurrency can



make the optimization independent of the memory model, enables aggressive
optimization across synchronization statements, and improves the number of
optimization opportunities compared to an uninformed optimizer that is guided
by a (weak) memory model (avg. dynamic reduction of loads 30.1%, max. 70.3%).

7 Acknowledgments

We thank Matteo Corti for his contributions to our compiler infrastructure and
the anonymous referees for their useful comments. This research was supported,
in part, by the NCCR “Mobile Information and Communication Systems”, a
research program of the Swiss National Science Foundation, and by a gift from
the Microprocessor Research Lab (MRL) of Intel Corporation.

References

1. R. Bodik, R. Gupta, and M. Soffa. Load-reuse analysis: Design and evaluation. In
Proc. PLDI’99, pages 64–76, 1999.

2. F. Chow, S. Chan, R. Kennedy, S. Liu, R. Lo, and P. Tu. Partial redundancy
elimination in SSA form. ACM TOPLAS, 21(3):627–676, May 1999.

3. L. R. Clausen. A Java bytecode optimizer using side-effect analysis. In ACM
Workshop on Java for Science and Engineering Computation, June 1997.

4. GNU Software. gcj - The GNU compiler for the Java programming language.
http://gcc.gnu.org/java, 2000.

5. M. Gupta, J. Choi, and M. Hind. Optimizing Java programs in the presence of
exceptions. In Proc. ECOOP’00, pages 422–446, June 2000. LNCS 1850.

6. A. Hosking, N. Nystrom, D. Whitlock, Q. Cutts, and A. Diwan. Partial redun-
dancy elimination for access path expressions. Software Practice and Experience,
31(6):577–600, May 2001.

7. Java Grande Forum. Multi-threaded benchmark suite.
http://www.epcc.ed.ac.uk/javagrande/, 1999.

8. W. Landi, B. G. Ryder, and S. Zhang. Interprocedural modification side effect
analysis with pointer aliasing. ACM SIGPLAN Notices, 28(6):56–67, 1993.

9. J. Lee, D. Padua, and S. Midkiff. Basic compiler algorithms for parallel programs.
In Proc. PPoPP’99, pages 1–12, May 1999.

10. R. Lo, F. Chow, R. Kennedy, S. Liu, and P. Tu. Register promotion by sparse
partial redundancy elimination of loads and stores. In Proc. PLDI’98, pages 26–
37, 1998.

11. J. Manson and B. Pugh. JSR-133: Java Memory Model and Thread Specification.
http://www.cs.umd.edu/̃ pugh/java/memoryModel, 2003.

12. S. Midkiff and D. Padua. Issues in the optimization of parallel programs. In
D. Padua, editor, Proc. ICPP’90, pages 105–113, Aug. 1990.

13. E. Ruf. Effective synchronization removal for Java. In Proc. PLDI’00, pages 208–
218, June 2000.

14. V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon,
and C. Godin. Practical virtual method call resolution for Java. In OOPSLA’00,
pages 264–280, Oct. 2000.

15. The Standard Performance Evaluation Corporation. SPEC JVM98 Benchmarks.
http://www.spec.org/osg/jvm98, 1996.

16. C. von Praun and T. Gross. Static conflict analysis for multi-threaded object-
oriented programs. In Proc. PLDI’03, pages 115–128, June 2003.


