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Abstract. This paper describes an automated approach to hardware
design space exploration, through a collaboration between parallelizing
compiler technology and high-level synthesis tools. In previous work, we
described a compiler algorithm that optimizes individual loop nests, ex-
pressed in C, to derive an efficient FPGA implementation. In this paper,
we describe a global optimization strategy that maps multiple loop nests
to a pipelined FPGA implementation. The global optimization algorithm
automatically transforms the computation to incorporate explicit com-
munication and data reorganization between pipeline stages, and uses
metrics to guide design space exploration to consider the impact of com-
munication and to achieve balance between producer and consumer data
rates across pipeline stages. In a case study with a machine vision appli-
cation, we find that on-chip communication greatly reduces the number
of memory accesses, and thus results in designs that are less memory
bound.

1 Introduction
The extreme flexibility of Field Programmable Gate Arrays (FPGAs), coupled
with the widespread acceptance of Hardware Description Languages (HDLs)
such as VHDL or Verilog, has made FPGAs the medium of choice for fast hard-
ware prototyping and a popular vehicle for the realization of custom comput-
ing machines that target multi-media applications. Unfortunately, developing
programs that execute on FPGAs is extremely cumbersome, demanding that
software developers also assume the role of hardware designers.

In this paper, we describe a new strategy for automatically mapping from
high-level algorithm specifications, written in C, to efficient coarse-grain pipe-
lined FPGA designs. In previous work, we presented an overview of DEFACTO,
the system upon which this work is based, which combines parallelizing compiler
technology in the Stanford SUIF compiler with hardware synthesis tools [12].
In [20] we presented an algorithm for mapping a single loop nest to an FPGA
and a case study [27] describing the communication and partitioning analysis
necessary for mapping a multi-loop program to multiple FPGAs. In this paper,
we combine the optimizations applied to individual loop nests with analyses and
? This work is funded by the National Science Foundation (NSF) under Grant CCR-

0209228 and the Defense Advanced Research Project Agency under contract number
F30603-98-2-0113.



optimizations necessary to derive a globally optimized mapping for multiple loop
nests. This paper focuses on the mapping to a single FPGA, incorporating more
formally ideas from [27] such as the use of matching producer and consumer
rates to prune the search space.

As the logic, communication and storage are all configurable, there are many
degrees of freedom in selecting the most appropriate implementation of a compu-
tation, constrained by chip area. Further, due to the complexity of the hardware
synthesis process, the performance and area of a particular design cannot be
modelled accurately in a compiler. For this reason, the optimization algorithm
involves an iterative cycle where the compiler generates a high-level specifica-
tion, synthesis tools produce a partially synthesized result, and estimates from
this result are used to either select the current design or guide generation of an
alternative design. This process, which is commonly referred to as design space
exploration, evaluates what is potentially an exponentially large search space of
design alternatives. As in [20], the focus of this paper is a characterization of
the properties of the search space such that exploration considers only a small
fraction of the overall design space.

To develop an efficient design space exploration algorithm for a pipelined
application, this paper makes several contributions:
– Describes the integration of previously published communication and pipelin-

ing analyses [26] and the single loop nest design space exploration algo-
rithm [20].

– Defines and illustrates important properties of the design space for the global
optimization problem of deriving a pipelined mapping for multiple loop nests.

– Exploits these properties to derive an efficient global optimization algorithm
for coarse-grained pipelined FPGA designs.

– Presents the results of a case study of a machine vision kernel that demon-
strate the impact of on-chip communication on improving the performance
of FPGA designs.
The remainder of the paper is organized as follows. In the next section we

present some background on FPGAs and behavioral synthesis. In section 3,
we provide an overview of the previously published communication analysis. In
section 4, we describe the optimization goals of our design space exploration. In
section 5 we discuss code transformations applied by our algorithm. We present
the search space properties and a design space exploration algorithm in section 6.
We map a sample application, a machine vision kernel in section 7. Related work
is surveyed in section 8 and we conclude in section 9.

2 Background
We now describe FPGA features of which we take advantage and we also com-
pare hardware synthesis with optimizations performed in parallelizing compilers.
Then we outline our target application domain.

2.1 Field Programmable Gate Arrays and Behavioral Synthesis
FPGAs are a popular vehicle for rapid prototyping. Conceptually, FPGAs are
sets of reprogrammable logic gates. Practically, for example, the Xilinx Virtex



family of devices consists of 12, 288 device slices; each slice in turn is composed
of 2 look-up tables (LUTs), able to implement an arbitrary logic function of 11
boolean inputs and 6 outputs [25]. Two slices form a configurable logic block.
These blocks are interconnected in a 2-dimensional mesh. As with traditional
architectures, bandwidth to external memory is a key performance bottleneck
in FPGAs, since it is possible to compute orders of magnitude more data in a
cycle than can be fetched from or stored to memory. However, unlike traditional
architectures, FPGAs allow the flexibility to devote its internal configurable
resources either to storage or to computation.

#define IMAGE 16
int u[IMAGE][IMAGE]; v[IMAGE][IMAGE];
int peak[IMAGE][IMAGE];
int feature x[IMAGE][IMAGE];
int feature y[IMAGE][IMAGE];
int th, uh1, uh2;

/* stage s1. Apply Prewitt Edge Detector */
for(x = 0; x < IMAGE-3; x++){

for(y = 0; y < IMAGE-3; y++){
1. uh1= -3*u[x][y] - · · ·;
2. uh2= 3*u[x][y] + · · ·;
3. peak[x][y] = (uh1 + uh2);
}

}

/* stage s2. Find Features - threshold */
for(x = 0; x < IMAGE-3; x++){

for(y = 0; y < IMAGE-3; y++){
4. if(peak[x][y] > th){
5. feature x[x][y] = x;
6. feature y[x][y] = y;

} else {
7. feature x[x][y] = 0;
8. feature y[x][y] = 0;

}
}

for(x = 0; x < IMAGE-2; x++){
for(y = 0; y < IMAGE-2; y++){

9. if(feature x[x][y] != 0)
10. ssd[x][y] =

(u[x][y]-v[x][y+1])*(u[x][y]-v[x][y+1])
· · ·;

}

}
}

for(x = 0; x < (IMAGE-3)/2; x+=2){
for(y = 0; y < (IMAGE-3)/2; y+=2){

1. uh1= -3*u[x][y] - · · ·;
2. uh2= 3*u[x][y] + · · ·;
3. peak[x][y] = (uh1 + uh2);

4. uh1= -3*u[x+1][y] - · · ·;
5. uh2= 3*u[x+1][y] + · · ·;
6. peak[x+1][y] = (uh1 + uh2);

7. uh1= -3*u[x][y+1] - · · ·;
8. uh2= 3*u[x][y+1] + · · ·;
9. peak[x][y+1] = (uh1 + uh2);

10. uh1= -3*u[x+1][y+1] - · · ·;
11. uh2= 3*u[x+1][y+1] + · · ·;
12. peak[x+1][y+1] = (uh1 + uh2);
}

}

for(x = 0; x < IMAGE-3; x+=2){
for(y = 0; y < IMAGE-3; y+=2){

if (th < peak[x][y]) {
feature x 1 0 0 = x;
feature y 1 1 0 = y;

} else {
feature x 1 0 0 = 0;
feature y 1 1 0 = 0;

}
feature y[x][y] = feature y 1 1 0;
feature x[x][y] = feature x 1 0 0;

}
}

Fig. 1. MVIS Kernel with Scalar Replacement and Unroll and Jam for S2.



To configure an FPGA, designers download a bitstream file with information
to configure a set of slices in the FPGA as well as the routing. Using hardware
description languages such as VHDL or Verilog, designers can specify the desired
functionality at a high level of abstraction known as a behavioral specification
as opposed to a low level or structural specification. By using a behavioral spec-
ification, designers avoid committing to a particular hardware implementation.

The process of taking a behavioral specification and generating a low level
hardware specification is called behavioral synthesis. While low level optimiza-
tions such as binding, allocation and scheduling are performed during synthesis,
only a few high level optimizations may be performed. For example, the behav-
ioral synthesis compiler performs local optimizations, such as loop unrolling, but
only when directed by the programmer. The behavioral specification is synthe-
sized into a Register Transfer Level specification and then this used as input to
a place and route tool which generates the device configuration file.

2.2 Target Application Domain
Due to their customizability, FPGAs are commonly used for applications that
have significant amounts of fine-grain parallelism and possibly can benefit from
non-standard numeric formats (e.g., reduced data widths). Specifically, multi-
media applications, including image and signal processing on 8-bit and 16-bit
data, respectively, offer a wide variety of enormously popular applications that
map well to FPGAs.

For example, a fundamental image processing algorithm consists of scanning
a multi-dimensional image performing computation on a given pixel value and all
its neighbors. Typically images are represented as multi-dimensional array vari-
ables, and the computation is expressed as a loop nest. Such applications exhibit
abundant concurrency as well as temporal reuse of data. Examples of kernel com-
putations that fall into this category include image correlation, Laplacian image
operators, erosion/dilation operators and edge detection.

Fortunately, this domain of applications maps well to the capabilities of cur-
rent parallelizing compiler analyses. Parallelizing compilers are most effective
in the affine domain, where array subscript expressions are linear functions of
the loop index variables and constants [24]. In the work described in this paper,
we restrict input programs to loop nest computations on array and scalar vari-
ables (no pointers), where all subscript expressions are affine with a fixed stride.
The loop bounds must be constant.1 We support loops with control flow, but to
simplify control and scheduling, the generated code always performs conditional
memory accesses.

We illustrate the concepts discussed in this paper using a synthetic bench-
mark, a machine vision kernel, depicted in Figure 1. For clarity, we have omitted
some initialization and termination code as well as some of the numerical com-
plexity of the algorithm. The code is structured as three loop nests nested inside
1 Non-constant bounds could potentially be supported by the algorithm, but the gener-

ated code and resulting FPGA designs would be much more complex. For example,
behavioral synthesis would transform a for loop with a non-constant bound to a
while loop in the hardware implementation.



another control loop (not shown in the figure) that process a sequence of image
frames. The first loop nest extracts image features using the Prewitt edge detec-
tor. The second loop nest determines where the peaks of the identified features
reside. The last loop nest computes a sum square-difference between two consec-
utive images (arrays u and v). Using the data gathered for each image, another
algorithm would estimate the position and velocity of the vehicle.

3 Communication and Pipelining Analyses

A key advantage of parallelizing compiler technology over behavioral synthesis
is the ability to perform data dependence analysis on array variables. Analyzing
communication requirements involves characterizing the relationship between
data producers and consumers. This characterization can be thought of as a
data-flow analysis problem. Our compiler uses a specific array data-flow analysis,
reaching definitions analysis [2], to characterize the relationship between array
accesses in different pipeline stages [15]. This analysis is used for the following
purposes:
– Mapping each loop nest or straight line code segment to a pipeline stage.
– Determining which data must be communicated.
– Determining the possible granularities at which data may be communicated.
– Selecting the best granularity from this set.
– Determining the corresponding communication placement points within the

program.
We combine reaching definitions information and array data-flow analysis for

data parallelism [3] with task parallelism and pipelining information and capture
it in an analysis abstraction called a Reaching Definition Data Access Descrip-
tor (RDAD). RDADs are a fundamental extension of Data Access Descriptors
(DADs) [7], which were originally proposed to detect the presence of data depen-
dences either for data parallelism or task parallelism. We have extended DADs
to capture reaching definitions information as well as summarize information
about the read and write accesses for array variables in the high-level algorithm
description, capturing sufficient information to automatically generate commu-
nication when dependences exist. Such RDAD sets are derived hierarchically by
analysis at different program points, i.e., on a statement, basic block, loop and
procedure level. Since we map each nested loop or intervening statements to a
pipeline stage, we also associate RDADs with pipeline stages.

Definition 1 A Reaching Definition Data Access Descriptor, RDAD(A), de-
fined as a set of 5-tuples 〈 α | τ | δ | ω | γ 〉, describes the data accessed in the
m-dimensional array A at a program point s, where s is either a basic block, a
loop or pipeline stage. α is an array section describing the accessed elements of
array A represented by a set of integer linear inequalities. τ is the traversal order
of α, a vector of length ≤ m, with array dimensions from (1, · · · ,m) as elements,
ordered from slowest to fastest accessed dimension. A dimension traversed in re-
verse order is annotated as i. An entry may also be a set of dimensions traversed
at the same rate. δ is a vector of length m and contains the dominant induction
variable for each dimension. ω is a set of definition or use points for which α



captures the access information. γ is the set of reaching definitions. We refer
to RDADr,s(A) as the set of tuples corresponding to the reads of array A and
RDADw,s(A) as the set of writes of array A at program point s. Since writes
do not have associated reaching definitions, for all RDADw,s(A), γ = ∅.

After calculating the set of RDADs for a program, we use the reaching defi-
nitions information to determine between which pipeline stages communication
must occur. To generate communication between pipeline stages, we consider
each pair of write and read RDAD tuples where an array definition point in the
sending pipeline stage is among the reaching definitions in the receiving pipeline
stage. The communication requirements, i.e., placement and data, are related
to the granularity of communication. We calculate a set of valid granularities,
based on the comparison of traversal order information from the communicating
pipeline stages, and then evaluate the execution time for each granularity in the
set to find the best choice. We define another abstraction, the Communication
Edge Descriptor (CED), to describe the communication requirements on each
edge connecting two pipeline stages.

RDADw,s1(peak) =

〈
0 ≤ d1 ≤ 13
0 ≤ d2 ≤ 13

〈1, 2〉 〈x, y〉 {3} ∅
〉

RDADr,s1(u) =

〈
0 ≤ d1 ≤ 13
0 ≤ d2 ≤ 16

〈1, 2〉 〈x, y〉 {1, 2} ∅
〉

RDADr,s2(peak) =

〈
0 ≤ d1 ≤ 13
0 ≤ d2 ≤ 13

〈1, 2〉 〈x, y〉 {4} {3}
〉

RDADw,s2(feature x) =

〈
0 ≤ d1 ≤ 13
0 ≤ d2 ≤ 13

〈1, 2〉 〈x, y〉 {5, 7} ∅
〉

RDADw,s2(feature y) =

〈
0 ≤ d1 ≤ 13
0 ≤ d2 ≤ 13

〈1, 2〉 〈x, y〉 {6, 8} ∅
〉

RDADr,s3(feature x) =

〈
0 ≤ d1 ≤ 13
0 ≤ d2 ≤ 13

〈1, 2〉 〈x, y〉 {9} {5, 7}
〉

RDADr,s3(u) =

〈
0 ≤ d1 ≤ 13
0 ≤ d2 ≤ 13

〈1, 2〉 〈x, y〉 {10} ∅
〉

RDADr,s3(v) =

〈
0 ≤ d1 ≤ 13
0 ≤ d2 ≤ 13

〈1, 2〉 〈x, y〉 {10} ∅
〉

RDADw,s3(ssd) =

〈
0 ≤ d1 ≤ 13
0 ≤ d2 ≤ 13

〈1, 2〉 〈x, y〉 {10} ∅
〉

Fig. 2. MVIS Kernel Communication Analysis.



Definition 2 A Communication Edge Descriptor (CED), CEDsi→sj
(A), de-

fined as a set of 3-tuples 〈 α | λ | ρ 〉, describes the communication that must
occur between two pipeline stages si and sj. α is the array section, represented
by a set of integer linear inequalities, that is transmitted on a per communica-
tion instance. λ and ρ are the communication placement points in the send and
receive pipeline stages respectively.

Figure 2 shows the calculated RDADs for pipeline stages S1 and S2, for
arrays peak, feature x and feature y. These are used as input to calculate the
set of CEDs. Figure 3 shows the set of CEDs representing the communication
between pipeline stages S1 and S2. By inspection of the RDADs, we see that
there is a reaching definition for array peak from pipeline stage S1 to S2. This
implies that communication must occur between these two stages. From the
RDAD traversal order tuples, τ = 〈 1, 2 〉 we can see that both arrays are
accessed in the same order in each stage and we may choose from among all
possible granularities, e.g. whole array, row, and element. We calculate a CED
for each granularity, capturing the data to be communicated each instance and
the communication placement. We choose the best granularity, based on total
program execution time, and apply code transformations to reflect the results of
the analysis. The details of the analysis are found in [26].

Total Array-sized Communication

CEDs1→s2(peak) = 〈 0 ≤ d1 ≤ 13
0 ≤ d2 ≤ 13

0 0 〉

Row-sized Communication

CEDs1→s2(peak) = 〈 d1 = x
0 ≤ d2 ≤ 13

x x 〉

Element-sized Communication

CEDs1→s2(peak) = 〈 d1 = x
d2 = y

y y 〉

Best Communication

CEDs1→s2(peak) = 〈 d1 = x
0 ≤ d2 ≤ 13

x x 〉

Fig. 3. MVIS Kernel Communication Analysis.

4 Optimization Strategy

In this section, we set forth our strategy for solving the global optimization
problem. We briefly describe the criteria, behavioral synthesis estimates, and
metrics used for local optimization, as published in [20, 19] and then describe
how we build upon these to find a global solution.

A high-level design flow is shown in Figure 4. The shaded boxes represent
a collection of transformations and analyses, discussed in the next section, that
may be applied to the program. At a high-level, the design space exploration
algorithm involves selecting parameters for a set of transformations for the loop
nests in a program. By choosing specific unroll factors and communication gran-
ularities for each loop nest or pair of loop nests, we partition the chip capacity
and ultimately the memory bandwidth among the pipeline stages. The generated
VHDL is input into the behavioral synthesis compiler to derive a performance
and area estimates for each loop nest. From this information, we use balance
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and efficiency, along with our 2 optimization criteria to tune the transformation
parameters to obtain the best performance and also determine if we have a good
design.

The two optimization criteria, for mapping a single loop nest,
1. The design’s execution time should be minimized.
2. The design’s space usage, for a given performance, should be minimized.

are still valid for mapping a pipelined computation to an FPGA but the way
in which we calculate the input and evaluate these criteria has changed. The
area(d) of design d, related to criterion 2, is a summation of the individual
behavioral synthesis estimates of the FPGA area used for the data path, control
and communication for each pipeline stage in this design. The time(d) of design
d, related to criterion 1, is a summation of the behavioral synthesis estimates
for each pipeline stage of the number of cycles it takes to run to completion,
including the time used to communicate data and excluding time saved by the
overlap of communication and computation.

5 Transformations

We define a set of transformations, widely used in conventional computing, that
permit us to adjust computational and memory parallelism in FPGA-based
systems through a collaboration between parallelizing compiler technology and
high-level synthesis. To meet the optimization criteria set forth in the previous



section, we have reduced the optimization process to a tractable problem, that
of selecting a set of parameters, for local transformations applied to a single loop
nest or global transformations applied to the program as a whole, that lead to
a high-performance, balanced, and efficient design.

5.1 Transformations for Local Optimization

Unroll and Jam Due to the lack of dependence analysis in synthesis tools,
memory accesses and computations that are independent across multiple itera-
tions must be executed in serial. Unroll and jam [9], where one or more loops
in the iteration space are unrolled and the inner loop bodies are fused together,
is used to expose fine-grain operator and memory parallelism by replicating the
logical operations and their corresponding operands in the loop body. Following
unroll-and-jam, the parallelism exploited by high-level synthesis is significantly
improved.
Scalar Replacement. This transformation replaces array references by accesses
to temporary scalar variables, so that high-level synthesis will exploit reuse in
registers. Our approach to scalar replacement closely matches previous work [9].
There are, however, two differences: (1) we also eliminate unnecessary memory
writes on output dependences; and, (2) we exploit reuse across all loops in the
nest, not just the innermost loop. We peel iterations of loops as necessary to
initialize registers on array boundaries. Details can be found in [12].
Custom Data Layout This code transformation lays out the data in the
FPGA’s external memories so as to maximize memory parallelism. The com-
piler performs a 1-to-1 mapping between array locations and virtual memories
in order to customize accesses to each array according to their access patterns.
The result of this mapping is a distribution of each array across the virtual
memories such that opportunities for parallel memory accesses are exposed to
high-level synthesis. Then the compiler binds virtual memories to physical mem-
ories, taking into consideration accesses by other arrays in the loop nest to avoid
scheduling conflicts. Details can be found in [21].

5.2 Transformations for Global Optimization
Communication Granularity and Placement With multiple, pipelined tasks
(i.e., loop nests), some of the input/output data for a task may be directly com-
municated on chip, rather than requiring reading and/or writing from/to mem-
ory. Thus, some of the memory accesses assumed in the optimization of a single
loop nest may be eliminated as a result of communication analysis.

The previously-described communication analysis selects the communication
granularity that maximizes the overlap of communication and computation,
while amortizing communication costs over the amount of data communicated.
This granularity may not be ideal when other issues, such as on-chip space con-
straints, are taken into account. For example, if the space required for on-chip
buffering is not available, we might need to choose a finer granularity of commu-
nication. In the worst case, we may move the communication off-chip altogether.
Data Reorganization On-chip As part of the single loop solution, we calcu-
lated the best custom data layout for each accessed array variable, allowing for



a pipeline stage to achieve its best performance. When combining stages that
access the same data either via memory or on-chip communication on the same
FPGA, the access patterns for each stage may be different and thus optimal
data layouts may be incompatible. One strategy is to reorganize the data be-
tween loop nests to retain the locally optimal layouts. In conventional systems,
data reorganization can be very expensive in both CPU cycles and cache or mem-
ory usage, and as a result, usually carries too much overhead to be profitable. In
FPGAs, we recognize that the cost of data reorganization is in many cases quite
low. For data communicated on-chip between pipeline stages that is already con-
suming buffer space, the additional cost of data reorganization is negligible in
terms of additional storage, and because the reorganization can be performed
completely in parallel on an FPGA, the execution time overhead may be hidden
by the synchronization between pipeline stages. The implementation of on-chip
reorganization involves modifying the control in the finite state machine for each
pipeline stage, which is done automatically by behavioral synthesis; the set of
registers containing the reorganized array will simply be accessed in a different
order. The only true overhead is the increased complexity of routing associated
with the reorganization; this in turn would lead to increased space used for
routing as well as a potentially slower achieved clock rate.

6 Search Space Properties

The optimization involves selecting unroll factors, due to space and performance
considerations, for the loops in the nest of each pipeline stage. Our search is
guided by the following observations about the impact of the unroll factor and
other optimizations for a single loop in the nest. In order to define the global
design space, we discuss the following observations:

Observation 1 As a result of applying communication analysis, the number
of memory accesses in a loop is non-increasing as compared to the single loop
solution without communication.

The goal of communication analysis is to identify data that may be com-
municated between pipeline stages either using an on or off-chip method. The
data that is may now be communicated via on-chip buffers would have been
communicated via off-chip memory prior to this analysis.

Observation 2 Starting from the design found by applying the single loop with
communication solution, the unroll factors calculated during the global optimiza-
tion phase will be non-increasing.

We start by applying the single loop optimizations along with communication
analysis. We assume that this is the best balanced solution in terms of memory
bandwidth and chip capacity usage. We also assume that the ratio of performance
to area has the best efficiency rating as compared to other designs investigated
during the single loop exploration phase. Therefore, we take this result to be
the worst case space estimate and the best case performance achievable by this
stage in isolation; unrolling further would not be beneficial to finding the best
design.



Observation 3 When the producer and consumer data rates for a given com-
munication event are not equal, we may decrease the unroll factor of the faster
pipeline stage to the point at which the rates are equal. We assume that reducing
the unroll factor does not cause this pipeline stage to become the bottleneck of
the pipeline.

When comparing two pipeline stages between which communication occurs,
if the rates are not matched, the implementation of the faster stage may be using
an unnecessarily large amount of the chip capacity while not contributing to the
overall performance of the program. This is due to the fact that performance
is limited by the slower pipeline stage. We may choose a smaller unroll factor
for the faster stage such that the rates match. Since the slower stage is the
bottleneck, choosing a smaller unroll factor for the faster stage does not affect
the overall performance of the pipeline until the point at which the faster stage
becomes the slower stage.

Finally, if a pipeline stage is involved in multiple communication events, we
must take care to decrease the unroll factor based on the constraints imposed
by all events. We do not reduce the unroll factor of a stage to the point that it
becomes a bottleneck.
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Fig. 5. MVIS Task Graph

6.1 Optimization Algorithm

At a high-level, the design space exploration algorithm involves selecting param-
eters for a set of transformations for the loop nests in a program. By choosing
specific unroll factors and communication granularities for each loop nest or
pair of loop nests, we partition the chip capacity and ultimately the memory
bandwidth among the pipeline stages. The generated VHDL is input into the
behavioral synthesis compiler to derive a performance and area estimates for each
loop nest. From this information, we can tune the transformation parameters to
obtain the best performance.



The algorithm represents a multiple loop nest computation as an acyclic task
graph to be mapped onto a pipeline with no feedback. To simplify this discussion,
we describe the task graph for a single procedure, although interprocedural task
graphs are supported by our implementation. Each loop nest or computation
between loop nests is represented as a node in the task graph. Each has a set of
associated RDADs. Edges, each described by a CED, represent communication
events between tasks. There is one producer and one consumer pipeline stage
per edge. The task graph for the MVIS kernel is shown in Figure 5. Associated
with each task is the current best hardware implementation, with both area and
performance estimates, and balance and efficiency metrics.

1. We apply the communication and pipelining analyses to 1) define the stages
of the pipeline and thus the nodes of the task graph and 2) identify data
which could be communicated from one stage to another and thus define the
edges of the task graph.

2. In reverse topological order, we visit the nodes in the task graph to identify
communication edges where producer and consumer rates are out of balance.
From Observation 3, if reducing a producer or consumer rate does not cause
a task to become a bottleneck in the pipeline, we may modify it.

3. We compute the area of the resulting design, which we currently assume is the
sum of the areas of the single loop nest designs, including the communication
logic and buffers. If the space utilization exceeds the device capacity, we
employ a greedy strategy to reduce the area of the design. We select the
largest task in terms of area, and reduce its unroll factor.

4. Repeat steps two and three until the design meets the space constraints of
the target device.

Our initial algorithm employs a greedy algorithm to reduce space constraints,
but other heuristics may be considered in future work, such as reducing space
of tasks not on the critical path, or using the balance and efficiency metrics to
suggest which tasks will be less impacted by reducing unroll factors.

7 Experiments

We have implemented the loop unrolling, the communication analysis, scalar re-
placement, data layout, the single loop design space exploration and the trans-
lation from SUIF to behavioral VHDL such that these analyses and transforma-
tions are automated. Individual analysis passes are not fully integrated, requiring
minimal hand intervention.

We examine how the number of memory accesses has changed when compar-
ing the results of the automated local optimization and design space exploration
with and without applying the communication analyses. In Table 1 we show
the number of memory accesses in each pipeline stage before and after apply-
ing communication analysis. The rows entitled Accesses Before and After are
the results without and with communication analysis respectively. As a result
of the communication analysis, the number of memory accesses greatly declines



for all pipeline stages. In particular, for pipeline stage S2, the number of mem-
ory accesses goes to zero because all consumed data is communicated on-chip
from stage S1 and all produced data is communicated on-chip to stage S3. This
should have a large impact on the performance of the pipeline stage. For pipe-
line stages S1 and S3, the reduction in the number of memory accesses may
be sufficient to transform the pipeline stage from a memory bound stage into
a compute bound stage. This should also improve performance of each pipeline
stage and ultimately the performance of the total program.

Table 1. Memory Access Reduction.
Pipeline Stage 1 2 3

Accesses Before 49 117 45
Accesses After 2 0 6

From the design space exploration for each single loop, we would choose un-
roll factors of 4, 4, and 2 for pipeline stages S1, S2, and S3. This is based on
both the best balance numbers and area as explained in [27].

We then apply the design space exploration with global optimizations. Since
the sum of the areas, 306K Monet space units, for the implementation for all
three pipeline stages with the previously mentioned unroll factors is larger than
the total area of the chip (150K), we must identify one or more pipeline stages for
which to decrease the unroll factors. We apply the second step of our algorithm,
which matches producer and consumer rates throughout the pipeline. Since S3
is the bottleneck when comparing the rates between stages S2 and S3, we know
that we may reduce the unroll factor of stage S2 to 2 without affecting the
pipeline performance. Then, our algorithm will detect a mismatch between stages
S1 and S2. Again, we may decrease the unroll factor of stage S1 from 4 to 2
without affecting performance. Then we perform the analyses once again on each
pipeline stage, using the new unroll factor of 2 for all pipeline stages. The size
of the resulting solution is 103K Monet units. We are now within our space
constraint.

In summary, by eliminating memory accesses through scalar replacement and
communication analysis, and by then matching producer and consumer data
rates for each pipeline stage, we were able to achieve a good mapping while
eliminating large parts of the search space.

8 Related Work
In this section we discuss related work in the areas of automatic synthesis of
hardware circuits from high-level language constructs, array data-flow analysis,
pipelining and design space exploration using high-level loop transformations.

8.1 Synthesizing High-Level Constructs
Languages such as VHDL and Verilog allow programmers to migrate to con-
figurable architectures without having to learn a radically new programming
paradigm. Efforts in the area of new languages include Handel-C [18]. Several re-
searchers have developed tools that map computations to reconfigurable custom
computing architectures [23], while others have developed approaches to map-
ping applications to their own reconfigurable architectures that are not FPGAs,



e.g., RaPiD [10] and PipeRench [14]. The two projects most closely related to
ours, the Nimble compiler and work by Babb et al. [6], map applications in C
to FPGAs, but do not perform design space exploration.

8.2 Design Space Exploration
In this discussion, we focus only on related work that has attempted to use loop
transformations to explore a wide design space. Other work has addressed more
general issues such as finding a suitable architecture (either reconfigurable or not)
for a particular set of applications (e.g., [1]). Derrien/Rajopadhye [11] describe
a tiling strategy for doubly nested loops. They model performance analytically
and select a tile size that minimizes the iteration’s execution time. Cameron’s
estimation approach builds on their own internal data-flow representation using
curve fitting techniques [17].

8.3 Array Data-Flow Analysis
Previous work on array data flow analysis [7, 22, 3] focused on data dependence
analysis but not at the level of precision required to derive communication re-
quirements for our platform. Parallelizing compiler communication analysis tech-
niques [4, 16] exploited data parallelism.

8.4 Pipelining
In [5] Arnold created a software environment to program a set of FPGAs con-
nected to a workstation; Callahan and Wawrzynek [8] used a VLIW-like com-
pilation scheme for the GARP project; both works exploit intra-loop pipelined
execution techniques. Goldstein et al. [14] describes a custom device that imple-
ments an execution-time reconfigurable fabric. Weinhardt and Luk [23] describes
a set of program transformations to map the pipelined execution of loops with
loop-carried dependences onto custom machines. Du et al. [13] provide com-
piler support for exploiting coarse-grained pipelined parallelism in distributed
systems.

8.5 Discussion
The research presented in this paper differs from the efforts mentioned above in
several respects. First the focus of this research is in developing an algorithm
that can explore a wide number of design points, rather than selecting a sin-
gle implementation. Second, the proposed algorithm takes as input a sequential
application description and does not require the programmer to control the com-
piler’s transformations. Third, the proposed algorithm uses high-level compiler
analysis and estimation techniques to guide the application of the transforma-
tions as well as evaluate the various design points. Our algorithm supports multi-
dimensional array variables absent in previous analyses for the mapping of loop
computations to FPGAs. Fourth, instead of focusing on intra-loop pipelining
techniques that optimize resource utilization, we focus on increased throughput
through task parallelism coupled with pipelining, which we believe is a natural
match for image processing data intensive and streaming applications. Finally,
we use a commercially available behavioral synthesis tool to complement the
parallelizing compiler techniques rather than creating an architecture-specific



synthesis flow that partially replicates the functionality of existing commercial
tools. Behavioral synthesis allows the design space exploration to extract more
accurate performance metrics (time and area used) rather than relying on a
compiler-derived performance model. Our approach greatly expands the capa-
bility of behavioral synthesis tools through more precise program analysis.

9 Conclusion

In this paper, we describe how parallelizing compiler technology can be adapted
and integrated with hardware synthesis tools, to automatically derive, from
sequential C programs, pipelined implementations for systems with multiple
FPGAs and memories. We describe our implementation of these analyses in
the DEFACTO system, and demonstrate this approach with a case study. We
presented experimental results, derived, in part, automatically by our system.
We show that we are able to reduce the size of the search space by reasoning
about the maximum unroll factors and matching producer and consumer rates.
While we employ a greedy search algorithm here, we plan to investigate trade-
offs between and effects of adjusting unroll factors for pipeline stages both on
and off the critical path. Once our design is within the space constraints of the
chip capacity, we will continue to search for the best allocation of memory band-
width. Finally, we may find that we are able to reduce the number of memory
accesses to the point that we may want to unroll a loop further than the original
single loop solution to meet our optimization criteria.
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