
Slice-hoisting for Array-size Inference in

MATLAB

Arun Chauhan and Ken Kennedy

achauhan@cs.rice.edu ken@cs.rice.edu

Department of Computer Science, Rice University, Houston, TX 77005

Abstract. Inferring variable types precisely is very important to be
able to compile MATLAB libraries effectively in the context of the tele-
scoping languages framework being developed at Rice. Past studies have
demonstrated the value of type information in optimizing MATLAB [4].
The variable types are inferred through a static approach based on writ-
ing propositional constraints on program statements [11]. The static
approach has certain limitations with respect to inferring array-sizes.
Imprecise inference of array-sizes can have a drastic effect on the per-
formance of the generated code, especially in those cases where arrays
are resized dynamically. The impact of appropriate array allocation is
also borne out of earlier studies [3]. This paper presents a new approach
to inferring array-sizes, called slice-hoisting. The approach is based on
simple code transformations and is easy to implement in a practical com-
piler. Experimental evaluation shows that slice-hoisting, along with the
constraints-based static algorithm, can result in a very high level of pre-
cision in inferring MATLAB array sizes.

1 Introduction

There is a growing trend among the scientific and engineering community of
computer users to use high-level domain-specific languages, such as MATLAB,
R, Python, Perl, etc. Unfortunately, these languages continue to be used primar-
ily for prototyping. The final code is still written in lower-level languages, such
as, C or Fortran. This has profound implications for programmers’ productivity.

The reason behind the huge popularity of domain-specific languages is the
ease of programming afforded by these languages. We refer to these languages as
high-level scripting languages. The users programming in scripting languages are
usually analytically oriented and have no trouble in writing high-level algorithms
to solve their computational problems. These languages provide direct mappings
of high-level operations onto primitive operations or domain-specific libraries.
Unfortunately, the compilation and the runtime systems of high-level scripting
languages often fall far short of users’ requirements. As a result, the users are
forced to rewrite their applications in lower-level languages.

We and our colleagues at Rice have been developing a strategy, called tele-

scoping languages, to address the issue of compiling high-level scripting languages

 MATLAB is a registered trademark of MathWorks Inc.



domain
library

language
building
compiler

script
script

translator

enhanced
language
compiler

optimized
object

program

Fig. 1. The telescoping languages strategy

efficiently and effectively [9]. The idea is to perform extensive offline processing
of libraries that constitute the primary computation sites in high-level scripting
languages. The end-user programs, called the scripts, are passed through an ef-
ficient script compiler that has access to the knowledge-base built by the library
compiler. The script compiler utilizes this knowledge-base to rapidly compile
end-user scripts into effective object code. The strategy is outlined in Fig. 1. This
strategy enables extending the language in a hierarchical manner by repeating
the process of library building, which is the origin of the term “telescoping”.

A part of the current effort in telescoping languages is towards compiling
MATLAB. The telescoping languages strategy envisions generating the output
code in an intermediate language, such as C or Fortran. Emitting code in an
intermediate low-level language, rather than the binary, has the advantage of
leveraging the excellent C or Fortran compilers that are often available from
vendors for specific platforms.

One performance related problem that arises in compiling high-level script-
ing languages is that of inferring variable types. MATLAB is a weakly typed
language, treating every variable as an array and performing runtime resolu-
tion of the actual type of the variable. This imposes an enormous performance
overhead. It is possible to infer variable types statically, thereby eliminating this
overhead [11]. Knowing precise variable types can improve code generation by
emitting code that uses the primitive operations in the target language, when-
ever possible—primitive operations in lower-level languages can be orders of
magnitude faster than calling library functions that operate on a generic user-
defined type. Earlier studies have found type-based optimizations to be highly
rewarding [4].

In order to demonstrate the effect that type inference can have on code gener-
ation, consider the Fig. 2 that shows the performance improvements in a Digital
Signal Processing procedure, called jakes, after it has been translated into For-
tran based on the inferred types from the original MATLAB code. No other
optimization was performed on this code. There are no results for MATLAB 5.3



Sun SPARC 336MHz SGI Origin 300MHz Apple PowerBook G4 667MHz

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

tim
e 

(s
ec

on
ds

)

jakes: Type−specialized FORTRAN vs MATLAB
MATLAB 6.x
MATLAB 5.3
FORTRAN

Fig. 2. Value of type inference

on Apple PowerBook because the version 5.3 is not available on the PowerBook.
The MATLAB times have been obtained under the MATLAB interpreter. The
running times for the stand-alone version that is obtained by converting the
MATLAB code into equivalent C using the MathWorks mcc compiler are even
higher than the interpreted version (possibly because of startup overheads). The
“compilation” performed by mcc is a very straightforward one in which each
variable has the most general possible type and all operations translate to calls
to library procedures that can handle any arbitrary argument types. The speed
improvements directly show the value of knowing precise variable types.

It is not always possible to do a complete static resolution of variable types,
especially, the size of an array that is a component of a variable’s type. In such
a case the compiler may need to generate code to perform expensive operations
such as resizing an array dynamically. We present a new strategy to compute the
array-sizes based on slicing the code and hoisting it to before the first use of the
array. This strategy can enable resolution of several cases that the static analysis
fails to handle. Moreover, slice-hoisting becomes more precise in the presence of
advanced dependence analysis while still being useful without it. Experimental
results show that slice-hoisting results in substantial gains in the precision of
type inference of MATLAB variables for code taken from the domain of Digital
Signal Processing (DSP).



2 Types and Array-sizes

MATLAB is an array-processing language. Most numerical programs written in
MATLAB rely heavily on array manipulations. Therefore, it is useful to define
the type of a MATLAB variable such that the type can describe the relevant
properties of an array. A variable’s type is defined to be a four-tuple, <τ, δ, σ, ψ>,
such that:

τ denotes the intrinsic type of a variable (integer, real, complex, etc.)
δ is the dimensionality, which is 0 for scalar variables
σ is a δ-sized tuple that denotes the size of an array along each dimension
ψ denotes the structure of an array (e.g., whether an array is dense, triangular,

diagonal, etc.)

This definition is motivated by de Rose’s work [6].
McCosh uses a framework based on propositional logic to write “constraints”

for the operands of each operation in a MATLAB procedure being compiled [11].
The constraints are then “solved” to compute valid combinations of types, called
type-configurations that preserve the meaning of the original program. This pro-
cess is carried out for each component of the type-tuple defined above. For size
(σ), solving the constraints results in a set of linear equations that are solved to
obtain array sizes, i.e., the σ values for each type-configuration.

The constraints-based static analysis technique does a good job of computing
all possible configurations and taking care of forward and backward propagation
of types. However, it has certain limitations.

1. Constraints-based static analysis does not handle array-sizes that are de-
fined by indexed array expressions, e.g., by changing the size of an array by
indexing past its current extent along any dimension.

2. The control join-points are ignored for determining array-sizes, which can
lead to a failure in determining some array-sizes.

3. Some constraints may contain symbolic expressions involving program vari-
ables whose values are not known at compile time. These values cannot be
resolved statically.

As a result of these limitations, if a purely constraints-based approach is used
to infer array-sizes some of them may not be inferred at all. This can result in
generated code that might have to perform expensive array resizing operations
at runtime.

Consider the Fig. 3 that shows a code snippet from a DSP procedure. The
array vcos is initialized to be an empty matrix in the outer loop and then
extended by one element in each iteration of the inner loop. At the end of the
inner loop vcos is a vector of size sin num. The variable mcos is initialized
to be an empty matrix once outside the outer loop. In every iteration of the
outer loop it is extended by the vector vcos. At the end of the outer loop mcos

is a sin num by sin num two-dimensional array. This is a frequently occurring
pattern of code in DSP applications and the constraints-based static analysis



fails to infer the correct sizes for vcos and mcos. There is no straightforward
way to write constraints that would accurately capture the sizes of vcos and
mcos. The problem here is that the static analysis ignores φ-functions, while
those are crucial in this case to determine the sizes.

Past studies have shown that array-
for n=1:sin num

vcos = [];

for i = 1:sin num

vcos = [vcos cos(n*w est(i))];

end

mcos = [mcos; vcos];

end

Fig. 3. Implicit array resizing in a DSP
procedure

resizing is an extremely expensive op-
eration and pre-allocating arrays can
lead to substantial performance gains
[3, 12]. Therefore, even if the array
size has to be computed at runtime,
computing it once at the beginning of
the scope where the array is live and
allocating the entire array once will
be profitable.

3 Slice-hoisting

Slice hoisting is a novel technique that enables size inference for the three cases
that are not handled by the static analysis:

– array sizes changing due to index expressions,
– array sizes determined by control join-points, and
– array sizes involving symbolic values not known at compile time.

An example DSP code that resized array in a loop was shown in the pre-
vious section. Another way to resize an array in MATLAB is to index past its
current maximum index. The keyword end refers to the last element of an array
and indexing past it automatically increases the array size. A hypothetical code
sequence shown below resizes the array A several times using this method.

A = zeros(1,N);

A(end+1) = x;

for i = 1:2*N

A(i) = sqrt(i);

end

...

A(3, :) = [1:2*N];

...

A(:,:,2) = zeros(3, 2*N);

...

This type of code occurs very often in DSP programs. Notice that the array
dimensionality can also be increased by this method, but it is still easily inferred.
However, the propositional constraint language used for the static analysis does
not allow writing array sizes that change. The only way to handle this within
that framework is to rename the array every time there is an assignment to any



of its elements, and then later perform a merge before emitting code, to minimize
array copying. If an array cannot be merged, then a copy must be inserted. This
is the traditional approach to handling arrays in doing SSA renaming [5]. Array
SSA could be useful in this approach [10].

Finally, if the value of N is not known until run time, such as when it is
computed from other unknown symbolic values, then the final expression for the
size of A will have symbolic values. Further processing would be needed before
this symbolic value could be used to declare A.

Slice-hoisting handles these cases very simply through code transformations.
It can be easily used in conjunction with the static analysis to handle only those
arrays whose sizes the static analysis fails to infer.

The basic idea behind slice hoisting is to identify the slice of computation
that participates in computing the size of an array and hoist the slice to before
the first use of the array. It suffices to know the size of an array before its first
use even if the size cannot be completely computed statically. Once the size is
known the array can be allocated either statically, if the size can be computed
at compile time, or dynamically. The size of an array is affected by one of the
following three types of statements:

– A direct definition defines a new array in terms of the right hand side. Since
everything about the right hand side must be known at this statement, the
size of the array can be computed in terms of the sizes of the right hand side
in most cases.

– For an indexed expression on the left hand side, the new size is the maximum
of the current size and that implied by the indices.

– For a concatenation operation the new size of the array is the sum of the
current size and that of the concatenated portion.

The size of a variable v is denoted by σv. A σ value is a tuple <t1, t2, . . . tδ>,
where δ is the dimensionality of the variable and ti denotes the size of v along
the dimension i. The goal of the exercise is to compute the σ value for each
variable and hoist the computation involved in doing that to before the first use
of the variable. The final value of σv is the size of the array v. This process
involves the following four steps:

1. transform the given code into SSA form,
2. insert σ statements and transform these into SSA as well,
3. identify the slice involved in computing the σ values, and
4. hoist the slice.

These steps are illustrated with three examples in Fig. 4. Steps 1, 2 and 3 have
been combined in the figure for clarity. The top row in the figure demonstrates
the idea with a simple straight line code. The next row shows how a branch can
be handled. Notice that some of the code inside the branch is part of the slice
that computes the size of A. Therefore, the branch must be split into two while
making sure that the conditional c is not recomputed, especially if it can have
side-effects. Finally, the bottom row of Fig. 4 illustrates the application of slice



(a)

A = zeros(1,N);

y = ...

A(y) = ...

x = ...

A(x) = ...

A1 = zeros(1, N);

. σ
A1

1
= <N>

. y1 = ...

A1(y) = ...

. σ
A1

2
= max(σ

A1

1
,<y>)

. x1 = ...

A1(x1) = ...

. σ
A1

3
= max(σ

A1

2
,<x>)

. σ
A1

1
= <N>

. y1 = ...

. σ
A1

2
= max(σ

A1

1
,<y>)

. x1 = ...

. σ
A1

3
= max(σ

A1

2
,<x>)

allocate(A, σ
A1

3
);

A1 = zeros(1, N);

A1(y) = ...

A1(x1) = ...

(b)

y = ...

A(y) = ...

c = ...

if (c)

...

B = [ ... ];

x = min(B);

else

...

x = 10;

end

A(x) = ...

. y1 = ...

A1(y1) = ...

. σ
A1

1
= <y1>

. c1 = ...

. if (c1)

...

. B1 = [ ... ];

. x1 = min(B1);

. else

...

. x2 = 10;

. end

. x3 = φ(x1, x2)

A1(x3) = ...

. σ
A1

2
= max(σ

A1

1
,<x3>)

. y1 = ...

. σ
A1

1
= <y1>

. c1 = ...

. if (c1)

. B1 = [ ... ];

. x1 = min(B1);

. else

. x2 = 10;

. end

. x3 = φ(x1, x2)

. σ
A1

2
= max(σ

A1

1
,<x3>)

allocate(A1, σ
A1

2
);

A1(y1) = ...

if (c1)

...

else

...

end

A1(x3) = ...

(c)

x = ...

A(x) = ...

for i = 1:N

...

A = [A f(i)];

end

. x1 = ...

A1(x1) = ...

. σ
A1

1
= <x1>

. for i1 = 1:N

...

. σ
A1

2
= φ(σ

A1

1
,σ

A1

3
)

A1 = [A1 f(i1)];

. σ
A1

3
= σ

A1

2
+<1>

. end

. x1 = ...

. σ
A1

1
= <x1>

. for i1 = 1:N

. σ
A1

2
= φ(σ

A1

1
,σ

A1

3
)

. σ
A1

3
= σ

A1

2
+<1>

. end

allocate(A1, σ
A1

3
)

A1(x1) = ...

for i1 = 1:N

...

A1 = [A1 f(i1)];

end

Initial code Identifying the slice Hoisting the slice

Fig. 4. Three examples of slice-hoisting



hoisting to a loop. In this case, again, the loop needs to be split. The loop that
is hoisted is very simple and induction variable analysis would be able to detect
σA to be an auxiliary loop induction variable, thereby eliminating the loop. If
eliminating the loop is not possible then the split loop reduces to the inspector-
executor strategy. Notice that in slice-hoisting concatenation to an array, or
assignment to an element of the array, does not create a new SSA name.

This approach has several advantages:

– It is very simple and fast, requiring only basic SSA analysis in its simplest
form.

– It can leverage more advanced analyses, if available. For example, advanced
dependence analysis can enable slice hoisting in the cases where simple SSA
based analysis might fail. Similarly, symbolic analysis can complement the
approach by simplifying the hoisted slice.

– Other compiler optimization phases—constant propagation, auxiliary in-
duction variable analysis, invariant code motion, common subexpression
elimination—all benefit slice hoisting without having to modify them in any
way.

– It subsumes the inspector-executor style.
– The approach works very well with, and benefits from, the telescoping lan-

guages framework. In particular, transformations such as procedure strength
reduction and procedure vectorization can remove certain dependencies mak-
ing it easier to hoist slices [2].

– Most common cases can be handled without any complicated analysis.

A(1) = ...

...

x = f(A);

A(x) = ...

...

A1(1) = ...

. σ
A1

1
= <1>

...

. x1 = f(A1);

A1(x1) = ...

. σ
A1

2
= max(σ

A1

1
, <1>)

...

A1(1) = ...

. σ
A1

1
= <1>

...

. x1 = f(A1);

A1(x1) = ...

. σ
A1

2
= max(σ

A1

1
, <1>)

...

Initial code Identifying the slice Dependence blocks hoisting

Fig. 5. Dependencies can cause slice hoisting to fail

In some cases it may not be possible to hoist the slice before the first use of
the array. Figure 5 shows an example where a dependence prevents the identified
slice from being hoisted before the array’s first use. Such cases are likely to occur
infrequently. Moreover, a more refined dependence analysis, or procedure spe-
cialization (such as procedure strength reduction) can cause such dependencies



to disappear. When the slice cannot be hoisted the compiler must emit code to
resize the array dynamically.

When slice-hoisting is applied to compute an array size it may be necessary
to insert code to keep track of the actual current size of the array, which would
be used in order to preserve the semantics of any operations on the array in the
original program.

4 Experimental Evaluation

To evaluate the effect of slice-hoisting we conducted experiments on a set of
Digital Signal Processing (DSP) procedures that are a part of a larger collection
of procedures written in MATLAB. The collection of procedures constitutes an
informal library. Some of these procedures have been developed at the Electrical
and Computer Engineering department at Rice for DSP related research work.
Others have been selected from the contributed DSP code that is available for
download at the MathWorks web-site.

4.1 Precision of Constraints-based Inference

acf art. Q ffth fourier by jump huffcode
0

20

40

60

80

100

120

140

160

180

200

220

240

nu
m

be
r 

of
 c

on
fig

s

without annotations
with annotations

Fig. 6. Precision of the constraints-based type inference

We first evaluated the precision of the static constraints-based type inference
algorithm. Due to the heavy overloading of operators, MATLAB code is often



valid for more than one combination of variable types. For example, a MATLAB
function written to perform FFT might be completely valid even if a scalar value
is passed as an argument that is expected to be a one-dimensional vector. The
results might not be mathematically correct, but the MATLAB operations per-
formed inside the function may make sense individually. As a result, the static
type inference algorithm can come up with multiple valid type-configurations.
Additionally, the limitations enumerated earlier in section 2 can cause the num-
ber of configurations to be greater than what would be valid for the given code.
This does not affect the correctness since only the generated code correspond-
ing to the right configurations will get used—the extra configurations simply
represent wasted compiler effort. In the case of the DSP procedures studied it
turns out that if argument types are pinned down through annotations on the
argument variables then exactly one type-configuration is valid.

Figure 6 shows the number of type-configurations generated for five different
DSP procedures by the constraints-based inference algorithm. The left darker
bars indicate the number of configurations generated without any annotations
on the arguments. The lighter bars indicate the number of type-configurations
generated when the arguments have been annotated with their precise types that
are expected by the library writer.

The fact that the lighter bars are not all one (only the leftmost, for acf,
is one) shows that the static constraints-based algorithm does have limitations
that get translated to more than the necessary number of type-configurations.
However, these numbers are not very large—all, except fourier by jump, are
smaller than 10—showing that the static analysis performs reasonably well in
most cases.

Another important observation here is that annotations on the libraries serve
as a very important aid to the compiler. The substantial difference in the pre-
cision of the algorithm with and without annotations indicates that the hints
from the library writer can go a long way in nudging the compiler in the right
direction. This conclusion also validates the strategy of making library writers’
annotations an important part of the library compilation process in the telescop-
ing languages approach.

4.2 Effectiveness of Slice-hoisting

Having verified that there is a need to plug the hole left by the limitations in the
constraints-based inference algorithm, we conducted another set of experiments
on the same procedures to evaluate the effectiveness of slice-hoisting. Figure 7
shows the percentages of the total number of variables that are inferred by
various mechanisms. In each case, exactly one type-configuration is produced,
which is the only valid configuration once argument types have been determined
through library-writer’s annotations. In one case, of acf, all the arguments can
be inferred without the need for any annotations. The results clearly show that
for the evaluated procedures slice-hoisting successfully inferred all the array-sizes
that were not handled by the static analysis.



acf art. Q ffth fourier by jump huffcode
0

10

20

30

40

50

60

70

80

90

100

110

120

pe
rc

en
t o

f t
ot

al
 v

ar
ia

bl
es

statically inferred
inferred by slice−hoisting
externally specified args

Fig. 7. Value of slice-hoisting

4.3 Implementation

The constraints-based static type inference has been implemented as a type-
inference engine in the library compiler for MATLAB that is being developed
at Rice as a part of a telescoping languages compiler. The various number of
configurations shown in Fig. 6 are based on this engine. Slice-hoisting is under
implementation and the number of variables shown to be inferred through slice-
hoisting in Fig. 7 are based on a hand-simulation of the slice-hoisting algorithm.
The implementation is expected to be ready by the time of the workshop.

5 Related Work

Conceptually, slice-hoisting is closely related to the idea of inspector-executor
style pioneered in the Chaos project at the University of Maryland, College
Park by Saltz [13]. That style was used to replicate loops to perform array index
calculations for irregular applications in order to improve the performance of the
computation loops. In certain cases, hoisted slices can reduce to an inspector-
executor style computation of array sizes to avoid the cost of array resizing in
loops. However, the idea of slice-hoisting applies in a very different context and
is used to handle a much wider set of situations.

Type inference for MATLAB was carried out in the FALCON project at
the University of Illinois, Urbana-Champaign [7, 6]. A simplified version of FAL-
CON’s type inference was later used in the MaJIC compiler [1]. The FALCON



compiler uses a strategy based on dataflow analysis to infer MATLAB variable
types. To perform array-size inference that strategy relies on shadow variables
to track array sizes dynamically. In order to minimize the dynamic reallocation
overheads it uses a complicated symbolic analysis algorithm to propagate sym-
bolic values of array-sizes [14]. Slice-hoisting, on the other hand, can achieve
similar goals through a much simpler use-def analysis. Moreover, if an advanced
symbolic or dependence analysis is available in the compiler then it can be used
to make slice-hoisting more effective. Finally, even very advanced symbolic anal-
ysis might not be able to determine sizes that depend on complicated loops while
slice-hoisting can handle such cases by converting them to the inspector-executor
style.

An issue related to inferring array-sizes is that of storage management. Joisha
and Banerjee developed a static algorithm, based on the classic register alloca-
tion algorithm, to minimize the footprint of a MATLAB application by reusing
memory [8]. Reducing an application’s footprint can improve the performance
by making better use of the cache. If a hoisted slice must be executed at runtime
to compute the size of an array then the array will be allocated on the heap
by Joisha and Banerjee’s algorithm. Their algorithm can work independently
of—and even complement—slice-hoisting.

Type inference, in general, is a topic that has been researched well in the
programming languages community, especially in the context of functional pro-
gramming languages. However, inferring array sizes in weakly typed or untyped
languages is undecidable in general and difficult to solve in practice. Some at-
tempts have been made at inferring array sizes by utilizing dependent types in
the language theory community. One such example is eliminating array-bound
checking [15].

6 Conclusion

Type-inference is an important step in compiling MATLAB. Precise type infor-
mation can greatly improve the generated code resulting in substantial perfor-
mance improvement. Inferring array-sizes turns out to be a difficult problem,
while not having precise array-size information can lead to very expensive array-
copy operations at runtime.

This paper has presented a new technique to perform array-size inference that
complements the constraints-based static type-inference approach. The tech-
nique, called slice-hoisting, relies on very simple code transformations without
requiring advanced analyses. At the same time, availability of advanced analyses
can improve slice-hoisting either by making it possible to hoist slices where it
might have been deemed undoable due to imprecise dependence information, or
by improving the static evaluation of the hoisted slice.

Evaluation of the technique on a selection of DSP procedures has demon-
strated its effectiveness in plugging the holes that are left by a purely static
constraints-based approach to infer array-sizes.



7 Acknowledgments

We thank Randy Allen for making some of the MATLAB procedures avail-
able from the MathWorks web-site in a ready-to-use form. Thanks to Vinay
Ribeiro, Justin Romberg, and Ramesh Neelamani for making their MATLAB
code available for our study and to Behnaam Aazhang who heads the Center for
Multimedia Applications that has an ongoing collaboration with the telescoping
languages effort.

References

1. George Almási and David Padua. MaJIC: Compiling MATLAB for speed and
responsiveness. In Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 294–303, June 2002.

2. Arun Chauhan and Ken Kennedy. Procedure strength reduction and procedure
vectorization: Optimization strategies for telescoping languages. In Proceedings of
ACM-SIGARCH International Conference on Supercomputing, June 2001.

3. Arun Chauhan and Ken Kennedy. Reducing and vectorizing procedures for tele-
scoping languages. International Journal of Parallel Programming, 30(4):289–313,
August 2002.

4. Arun Chauhan, Cheryl McCosh, Ken Kennedy, and Richard Hanson. Automatic
type-driven library generation for telescoping languages. To appear in the Pro-
ceedings of SC: High Performance Networking and Computing Conference, 2003.

5. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and Systems,
13(4):451–490, October 1991.

6. Luiz DeRose and David Padua. Techniques for the translation of MATLAB pro-
grams into Fortran 90. ACM Transactions on Programming Languages and Sys-
tems, 21(2):286–323, March 1999.

7. Luiz Antônio DeRose. Compiler Techniques for Matlab Programs. PhD thesis,
University of Illinois at Urbana-Champaign, 1996.

8. Pramod G. Joisha and Prithviraj Banerjee. Static array storage optimization in
MATLAB. In Proceedings of ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, June 2003.

9. Ken Kennedy, Bradley Broom, Keith Cooper, Jack Dongarra, Rob Fowler, Dennis
Gannon, Lennart Johnson, John Mellor-Crummey, and Linda Torczon. Telescop-
ing Languages: A strategy for automatic generation of scientific problem-solving
systems from annotated libraries. Journal of Parallel and Distributed Computing,
61(12):1803–1826, December 2001.

10. Kathleen Knobe and Vivek Sarkar. Array SSA form and its use in parallelization.
In 25th Proceedings of ACM SIGACT-SIGPLAN Symposium on the Principles of
Programming Languages, January 1998.

11. Cheryl McCosh. Type-based specialization in a telescoping compiler for MATLAB.
Master’s thesis, Rice University, Houston, Texas, 2002.

12. Vijay Menon and Keshav Pingali. A case for source level transformations in MAT-
LAB. In Proceedings of the ACM SIGPLAN / USENIX Conference on Domain
Specific Languages, 1999.



13. Shamik Sharma, Ravi Ponnusamy, Bongki Moon, Yuan-Shin Hwang, Raja Das, and
Joel Saltz. Run-time and compile-time support for adaptive irregular problems.
In Proceedings of SC: High Performance Networking and Computing Conference,
November 1994.

14. Peng Tu and David A. Padua. Gated SSA-based demand-driven symbolic anal-
ysis for parallelizing compilers. In Proceedings of ACM-SIGARCH International
Conference on Supercomputing, pages 414–423, 1995.

15. Hongwei Xi and Frank Pfenning. Eliminating array bound checking through de-
pendent types. In Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 249–257, June 1998.


