
Increasing the Accuracy of Shape and Safety
Analysis of Pointer-based Codes

Pedro C. Diniz

University of Southern California / Information Sciences Institute
4676 Admiralty Way, Suite 1001
Marina del Rey, California, 90292

{pedro}@isi.edu

Abstract. Analyses and transformations of programs that manipulate
pointer-based data structures rely on understanding the topological rela-
tionships between the nodes ı.e., the overall shape of the data structures.
Current static shape analyses either assume correctness of the code or
trade-off accuracy for analysis performance, leading in most cases to
shape information that is of little use for practical purposes.
This paper introduces four novel analysis techniques, namely structural
fields, scan loops, assumed/verified shape properties and context tracing.
Analysis of structural fields allows compilers to uncover node configu-
rations that play key roles in the data structure. Analysis of scan loops
allows compilers to establish accurate relationship between variables that
traverse the data structure. Assumed/verified property analysis derives
sufficient shape properties that guarantee termination of loops. These
properties must be verified during shape analysis for consistency. Context
tracing allows the compiler to isolate data structure nodes by evaluation
of conditional statements and hence preserve shape accuracy.
We believe that future static shape and safety analysis algorithms will
have to include some if not all of these techniques to attain a high level
accuracy. In this paper we illustrate the application of the proposed tech-
niques to codes that build (correctly as well as incorrectly) sophisticated
data structures that are beyond the reach of current approaches.

1 Introduction
Codes that directly manipulate pointers can construct arbitrarily sophisticated
data structures. To analyze and transform such codes, compilers must under-
stand the topological relationships between the nodes of these structures. For
example, nodes might be organized as trees, acyclic graphs or cyclic graphs. Even
when the overall structure has cycles, it might be important to understand that
the induced topology traversing only specific fields is a tree.

Statically uncovering the shape of pointer-based data structures is an ex-
tremely difficult problem. Current approaches interpret the statements in the
program (ignoring safety issues) against an abstract representation of the data
structure. In this process the algorithm tries to uncover important topological
properties by looking at the relationships between the nodes the code manipu-
lates. As pointer-based data structures have no predefined dimensions, compilers



2

must resort to summarize (or abstract) many nodes into a finite set of summary
nodes in their internal representation of the data structure. The need to sum-
marize nodes and symbolic relationships between pointers that manipulate the
data structures leads to the conservative, and often incorrect, determination of
cyclic data structures.

We believe the key to address many of the shortcomings of current shape
analysis algorithms is to exploit the information that can be derived from both
the predicates of conditional statements and from looping constructs to derive ac-
curate symbolic relationships between pointer variables. For example the while
loop code below (left) scans a data structure along the next field. If the body
of the loop executes, on exit we are guaranteed that t != NULL holds, but more
importantly that p = t->next. This fact is critical to verifiy the correct inser-
tion of an element in a linked-list. The code below on the right corresponds to an
insertion in a doubly-linked list where the predicate clearly identifies the node
denoted by p as the last node in the list by testing its next field. The node with
the configuration next = NULL, therefore plays the important role of signaling
the list’s end.

The loop code also reveals that a sufficient 1 condition for its termination is
that the data structure be acyclic along next. An analysis algorithm can operate
under the assumption that the data structure is acyclic along next to ascertain
termination properties of other constructs and later verify the original acyclicity
assumption.

t = NULL;
while(p != NULL){

if(p->data < item) break;
t = p;
p = p->next;

}

if(p->next != NULL){
p->next->prev = temp;
temp->next = p->next ;
p->next = temp;
temp->prev = p;

}

These examples illustrate that programmers fundamentally encode ”state” in
their programs via conditionals and loop constructs. Loop constructs are used to
scan the structures to position pointer variables at nodes that should be modified.
Conditional statements define which operations should be performed. The fact
that programmers used them to encode ”state” and reason about the relative
position of pointer variables and consequently nodes in the data structure is a
clear indication that a shape analysis and safety algorithms should exploit the
information conveyed in these statements.

1 Although not a necessary condition as the programmer might have inserted a sentinel
value that prevents the code from ever reaching a section of the data structure where
there is a cycle.



3

This paper presents a set of symbolic analysis techniques that we believe will
extend the reach of current static shape and safety analysis algorithms for codes
that manipulate pointer-based data structures, namely:

– Structural Fields: Uncovering value configurations or ”states” of nodes
that potentially play key roles.

– Scan Loops: Symbolic execution of loops that only traverse (but do not
modify) the structure and extraction of all possible bindings of pointers to
nodes in the abstract shape representation using the relationships imposed
by the loop statements.

– Assumed/verified Properties: Derivation of sufficient shape properties
that guarantee termination of scan loops. These properties must be verified
during shape analysis.

– Context Tracing: The compiler propagates contexts, i.e., the set of bind-
ings of variables to nodes in the data structure throughout the program and
uses conditionals to prune the sets of nodes pointer variables can point to at
particular program points.

Part of the contribution of this paper is in presenting techniques that can en-
hance existing shape/safety analysis approaches. For example, identifying nodes
with distinct configurations can help current summarization and materialization
algorithms to retain particular nodes of the data structure. Retaining precise
symbolic relationships between pointer variables can also allow materialization
algorithm to preserve structural invariants.

The integration and effective exploitation of the knowledge gained by the
techniques presented in this paper with actual shape and safety analysis al-
gorithms are beyond the scope of this paper. A fundamental contribution of
this paper is to show that in order to increase the accuracy of shape and safety
analysis algorithms, compilers must exploit the knowledge encoded in conditional
statements.

This paper is organized as follows. The next section describes a specific ex-
ample that illustrates potential of the proposed approach. Section 3 describe the
set of basic symbolic analysis our algorithm relies on. We present experimental
evidence of the success of this approach for both correct and incorrect codes in
section 4. We survey related work in section 5 and then conclude.

2 Example
We now illustrate how a compiler can use the techniques presented in this pa-
per to increase the accuracy of shape analysis and safety information for codes
that manipulate sophisticated pointer-based data structures. This code, depicted
in figure1, builds a data structure by the successive invocation of the func-
tion insert. In this code the function call new node(int) allocates indirectly
through the malloc function a node that is unaliased with any of the nodes in
the data structure. For the sake of this example we assume an initial binding
of the node argument to a single node with both link and next pointer fields
equal to NULL.



4

typedef struct node {
int data;
int nchild;
struct node *link, *next;

}

01:void insert(node* n, int d){
02: node *b, *t;
03: b = n;
04: while(b->link != NULL){
05: if(b->link->data > d)
06: break;
07: b = b->link;
08: }

09: t = new node(d);
10: t->next = b->next;
11: b->next = t;
12: b->nchild++;
13: if(b->nchild == 2){
14: b->next->next->link = b->link;
15: b->link = b->next->next;
16: b->nchild = 0;
17: }
18:}

Fig. 1. Pointer-Based Data Structure Insertion C Code.

The code starts by scanning (via what we call a scan loop) the data structure
along the link field searching for the appropriate insertion point. Next it allo-
cates the storage for a new node and inserts it ”forward of” the node pointed to
by b along the next field. It then conditionally links the node pointed to by b to
the node denoted by b->next->next along the link field. This relinking step
effectively splits a long string of nodes into two shorter strings along the link
field and resets the value of nchild field to 0. Figure 2 illustrates an instance
with 8 nodes of a list the code builds.

Key

000000 1 0

n0n1n3n4n5n6n7 n2

X

next
link
nchild
data

Fig. 2. Skip-List Pointer-Based Data Structure Example.

To understand the topology of the created data structure a compiler must
be able to deduce the following:

1. The nodes are linked linearly along the next field. At each insertion, the
code increments the value of the nchild field starting with a 0 value.

2. Nodes with nchild = 1 and link == NULL have one child node along next.
3. Nodes with nchild = 1 and link != NULL have 2 child nodes along next.

The nodes satisfy the structural identity link = next.next.next.
4. When the field nchild transitions from 1 to 2 the node has 3 child nodes

along next all of which have nchild set to 0.
5. When the conditional statement in line 13 evaluates to true the code resets

nchild to 0 while relinking the node along link. This link field jumps over
2 nodes along next and the node satisfies the structural identity link =
next.next.

Using these facts, and more importantly retaining them in the internal ab-
stract representation for the shape analysis, the compiler can recognize that the
data structure is both acyclic along next and link but following both fields leads



5

to non-disjoint sets of nodes. Based on the structural properties the compiler can
prove the while loop always terminates and that the statements in lines 14 and
15 are always safe.

The key to allow an analysis to deduce the facts enumerated above, lies in
its ability to track the various ”configurations” or combinations of values for
nchid, link and next, in effect building a FSM transitions for the var-
ious configurations and their properties. To accomplish this the analysis
must be able to trace all possible mappings context of b to nodes of the
data structure and record, after the data structure has been manipulated, the
configuration and identities the newly modified nodes meet.

In this process the compiler uses scan loop analysis to recognize which sets of
nodes in the internal shape analysis abstraction the various variables can point
to. For this example the compiler determines that the contexts reaching line
10 b must point to nodes in the abstraction following only the link fields and
starting from the binding of the variables n. The compiler then uses the bindings
to isolate and capture the modifications to the data structure. These updates to
the internal shape representation generate other possible contexts the compiler
needs to examine in subsequent iterations. For this example the compiler can
exhaustively prove that for nodes pointed to by b, that satisfy the b->link !=
NULL only two contexts can reach 10 as shown below. In this illustration the field
values denote node ids in the internal shape analysis abstract representation and
structural identities are denoted by path expressions.

context1 = { id = s0,
config = {nchild = 0, link = {s1}, next = {s2}
prop: {link = next.next} acyclic(next), acyclic(link) }

context2 = { id = s3,
config = {nchild = 1, link = {s4}, next = {s1}

prop: {link = next.next.next} acyclic(next),acyclic(link)}

Using this data the compiler can propagate only the context2 through the
conditional section of the code in lines 14 through 16 leading to the creation of
a new context1. The compiler reaches a point where the bindings of contexts to
the variables in the program is fixed. Since in any case the symbolic execution of
these contexts preserves both acyclicity along next and link the compiler can
therefore ensure termination of the while and preserve the abstract information
regarding the data structure topology.

For the example in figure 1 a possible abstract representation using a stor-
age graph approach is depicted in figure 3. This representation is complemented
with several boolean function per node indicating acyclicity and field interdepen-
dences. For example for node s1 the predicate link = next.next.next holds.

This example suggest the inclusion of the knowledge derived from the basic
techniques described in this paper into a shape and safety analysis algorithm.
First, the analysis identifies which fields of the nodes of the data structure have
a potential for affecting the topology. Next the analysis tracks the values of the
various fields exhaustively across all possible execution paths using symbolic
contexts. These symbolic contexts make references to the internal shape rep-



6

0

1

0

0

0

1
n0

n1

n2

n3

n4

n5

Identities: {link = next.next.next} : n5
{link = next.next}: n3

Properties {Acyclic(link),Acyclic(next),Acyclic(link,next),
Shared(link,next) = T}

Fig. 3. Shape Graph Representation for Code in Figure 1.

resentation to capture acyclic and structural identities. Finally, the algorithm
assumes properties about its data structure that guarantee termination of loop
constructs. The compiler must later feedback the properties uncovered dur-
ing shape analysis to ensure they logically imply the properties assumed to
derive them in the first place.

3 Basic Analyses

3.1 Structural Fields and Value Analysis

Certain fields of nodes of the data structure contains data that is intimately
related to its structural identities. This case reveals itself when predicates that
guard code that modifies the data structures test specific values for these fields.

As such we define a field of a type declaration as structural if there exists
at least one conditional statement in which the value of the field is used, and
the corresponding conditional statement guards the execution of a straight line
code segment that possibly modifies the data structure. For non-pointer fields we
further require that a structural field must have all of the predicates of the form
ptr->field == <value> where <value> is an integer value. For the example in
figure 1 this algorithm finds the structural fields to be {nchild, link, next}.

Figure 4 depicts the algorithm that tracks the set of values a given structural
field can assume. We focus on integer values only. The algorithm performs a
simple fixed point computation over the control-flow graph determining for each
statement the set of possible values for each field. Whenever possible the algo-
rithm also evaluates conditional to rule out transitions between values of nodes,
in essence attempting to find the underlying FSM for the values of each field.
The algorithm also labels each value as persistence if across invocations of the
code the field can retain that specific value.

For the example in section 2 the algorithm uncovers for the nchild field
a FSM with 3 states corresponding the the values {0, 1, 2} of which {0, 1} are
persistent and with transitions 0→ 1; 1→ 2; 2→ 0.



7

for all fi ∈ structF ields(typeti) do {
init FSM(fi) with value from allocation sites;
for every value vi ∈ V do
for all CFG path pi ∈ Prog do
for every value vi ∈ V do {

for every statement si along pi do
if(si = var-> fi += <int const>)

update FSM(fi) with vi → vi + const;
if(si = var-> fi += <unknownt>)

update FSM(fi) with vi → unknown;
}

}
mark values in V as persistent;

}
Fig. 4. Structural Field Values Analysis Algorithm.

3.2 Node Configurations
It is often the case that nodes with different configurations in terms of nil and
non-nil values for pointer fields or simple key numerical values occupy key places
in the data structure. For this reason we define the configuration of a node as
a specific combination of values of pointer and structural fields. The number of
configurations dictates the maximum number of nodes in the abstract represen-
tation of the data structure. We rely on the analysis in section 3.1 to define the
set of persistent values for each field and hence define the maximum number of
configurations. If the value analysis algorithm is incapable of uncovering a small
number of values for a given field the shape analysis algorithm ignores the cor-
responding field. This leads to a reduced number of configuration but possibly
to inaccurate shape information.

3.3 Scan Loop Analysis
The body of a scan loop can only contain simple assignment statements of scalar
variables (i.e., non-pointer variables) or pointer assignment of the form var =
var->field. A scan loop can have nested conditional statements and/or break
or continue statements as illustrated below.

while(p->next != NULL){
if(p->data < 0)
break;

t = p;
p = p->next;

}

Scan loops are pervasive in programs that construct sophisticated pointer-
based data structures. Programmers typically use scan loops to position a small
number of pointer handles into the data structures before performing updates.



8

For example the sparse pointer-based code available from McGill McCat Com-
piler Group has 64 scan loops with a maximum of 2 pointer variables. Of these
58 can be statically analyzed for safety as described in the next section.

The fundamental property of scan loops, is that they do not modify the
data structure. This property allows the compiler to summarize their effects
and ”execute” them by simply matching the path expressions extracted from
this symbolic analysis against the abstract representation of the data structure.
From the view point of abstract interpretation scan loops behave as multi–value
traversal operation.

We use symbolic composition techniques to derive path expressions that re-
flect the symbolic bindings of pointer variables. The scan loop analysis algorithm
derives symbolic path expressions for all possible entry and exit paths of the loop
for the cases on zero-iterations and compute a symbolic closure for one or more
iterations. The number of these expressions is exponential in the nesting depth
of the loop body and linear on the number of loop exit points.

For the example above our path expression extraction algorithm derives the
binding p→ pin.(next)+ where pin represents the value of p on entry of the loop
and derives the binding p→ pin for the zero-iteration case. More importantly,
the symbolic analysis can uncover the precise relationship p = t->next for the
non-zero-iteration case. This ability to uncover precise relationships between
pointer handles greatly increases the a compiler materialization algorithm to
maintain accuracy and address abnormal program behavior.

The reader should not dismiss the lack of generality of scan loops. As our
empirical experimental results show, scan loops are pervasive in programs that
manipulated sophisticated pointer-based data structures. Scan loops and the
predicates we can extract from them are instrumental in discriminating the in-
sertion/deletion points in the data structures. The fact that programmers use
them abundantly is a clear indication of their importance for compiler to be able
to reason accurately about their behavior.

3.4 Assumed Properties for Termination
Using the symbolic analysis of scan loops we developed an algorithm that ex-
tracts conditions that guarantee the termination and safety of scan loops.

We examine all the zero-iteration execution paths for initial safety conditions.
Next we use an inductive reasoning to validate the safety of a generic iteration
based on the assumptions for the previous iteration. To reason about the safety
requirements of an iteration we extract the set of non-nil predicates each state-
ment requires. In the case of conditional we can also use the results of the test
to generate new predicates that can ensure the safety of otehr statements. To
trace symbolically the expression in a given loop iteration the algorithm builds
the control flow of the loop body and examines the required predicates for safe
execution of the dereferencing operations.

For he code sample above the algorithm derives that for the safe execution
of the entire loop only the predicate pin!= NULL needs to hold at the loop entry.
The algorithm also determines that only the dereferencing of the predicate in



9

the loop p->next != NULL header in the first iteration is potentially unsafe.
Subsequent iterations use a new value of p assigned to the previous p->next
expression, which by control flow has to be non-null!. Finally the algorithm
derives, whenever possible, shape properties that is guaranteed to imply the
termination of the loop for all possible control flow paths. For the example above
the property Acyclic(next) would guarantee termination of the loop. To extract
this information the algorithm computes a symbolic transfer function (which
takes into account copies through temporaries) and determines which fields does
the loop use for advancing through the data structures. On a typical null checking
termination the algorithm derives conservative acyclicity properties along all of
the traversed fields. For other termination conditions such as p->next != p
(which indicates a self-loop terminated structure, the compiler could possibly
hint the shape analysis algorithm that a node in the abstraction with a self-loop
should be prevented from being summarized with other non-similar nodes. It is
up to the shape analysis algorithm to verify that indeed these properties hold
at the point where they were assumed.

3.5 Segmented Codes
We gear our analysis to codes that are segmented. A segmented code consists of
a sequence of assignment or conditional statements and scan loops. Segmented
codes allow our implementation to handle the code as if it were a sequence of
conditional codes with straight-line sequences of statements.

Fortunately codes that manipulate pointer-based data structures tend to
be segmented. This is not surprising as programmers naturally structure their
codes in phases that correspond to logic steps of the insertion/removal of nodes.
In addition both procedural abstractions and object-oriented paradigm promote
and facilitate this model.

4 Application Examples

We now describe the application of the base techniques and shape analysis al-
gorithm for the jump-list code presented in section 2 for both correct and
incorrect constructions. We use the source C code presented in section 2. We
have assumed the code repeatedly invokes the function insert and the initial
value for its argument n points to a node with both nil link and next fields.

For the correct construction code the various techniques presented here would
uncover the information presented in figure 5. We manually performed a shape
analysis algorithm (not presented here) that exploits this information for the
materialization and abstraction steps and were able to capture the abstract
shape graph presented in Section 2 (figure 3). Because of the need to trace
all of the execution context the algorithmic complexity of this ”algorithm” is
expected to be high. In this experiment we have generated and traced 53 contexts
and required 8 as indicated below suggesting a number of iterations that is
exponential in the depth of the abstract representation.



10

Structural fields: {nchild, link, next }
Value Analysis:{nchild→{0,1},link→{nil,#=nil},next→{nil,#=nil}}

Configurations:
c0 = {child = 0,link = nil,next = nil}
c1 = {child = 0,link = nil,next #= nil}
c2 = {child = 0,link #= nil,next = nil}
c3 = {child = 0,link #= nil,next #= nil}
c4 = {child = 1,link = nil,next = nil}
c5 = {child = 1,link = nil,next #= nil}
c6 = {child = 1,link #= nil,next = nil}
c7 = {child = 1,link #= nil,next #= nil}

Scan Loops Safety and Termination:
Body Transfer Function = { bi → bi−1.link }
Closed Form Symbolic Expressions = { b→ n0.(link)∗ }
Safety Requires (Zero-Trip): { {b0 #= nil}, { n0 #= nil } }
Assumed Properties = { Acyclic(link, next)}

Shape Analysis Results:
Number of Contexts: 53
Number of Iterations: 8
Stats.: Materializations: 86

Summarizations: 13
Nodes,Edges: {6, 13}

Fig. 5. Validation Analysis for Skip-List Example.

1

0

0

0

0

1

n0

n1

n2

n4
Identities: {link = next.next.next} : n5

{link = next.next}: n3

Shared(link,next) = T}

n3

n5

Properties {Acyclic(link) for all but n4 ,Acyclic(next),

Fig. 6. Unintended Skip-List Construction Example.



11

We now examine the algorithm’s behavior for the trivial case where the
programmer would simply remove the conditional statement in line 13. In this
case a shape analysis algorithm would immediately recognize that for the first
analysis context #1 = {b→ n1; n→ n1; t→ n0; id : {b = n}, {t = b.next}, {t =
n.next}} the dereferencing of the statement in line 14 would definitely generate
an execution error.

We now examine the case where the programmer has swapped link with
next in line 14 and instead used the sequence of instructions below.
13: if(b->nchild == 2){
14: b->next->link = b->next;
15: b->link = b->next->next;
16: b->nchild = 0;
17: }

With this code a compiler can recognize that on the 2nd invocation the pro-
gram creates a cycle in the data structure along the link field. More surprising
is that this true cycle along link in n4 would not cause the program to go into
an infinite loop!. Rather, the program would construct the ASG as outlined in
figure 6 and with the properties shown. The analysis described in this would
allow a shape analysis algorithm to realize this fact as while tracing the set of
valid contexts it would verify that b = n.(link)+ never visits nodes n4 but
only the set {n1, n3, n5}. As such the compiler could verify that the scan loop
assumption is still valid.

5 Related Work

We focus on related work for shape analysis of C programs both automated and
with programmer assistance. We do not address work in pointer aliasing analysis
(see e.g., [3, 14]) or semi-automated program verification (see e.g., [10, 1]).

5.1 Shape Analysis
The methods described by other researchers differ in terms of the precision in
which nodes and their relationships are represented in abstract-storage-graphs
Larus and Hilfinger [9] possibly describe the first automated shape analysis al-
gorithm. This approach was refined Zadeck et al. [2] to aggregate only nodes
generated from the same allocation site. Plevyak et al. [11] addresses the issue of
cycles by representing simple invariants between fields of nodes. Sagiv et al., [13,
12] describe a series of refinement to the naming scheme for nodes in the ab-
stract storage and materialization and summarization of nodes which increases
the precision. This refinement allows their approach to handle list-reversal type
of operations and doubly-linked lists. Ghyia and Hendren [5] describe an ap-
proach that sacrifices precision for time and space complexity. They describe
an interprocedural dataflow analysis in which for every pair of pointer variables
handles the analysis keeps track of connectivity, direction and acyclicity. Even in
cases where the analysis yields incorrect shape, the information is still useful for
application of transformations other than parallelism. Corbera et al. [4] have ex-
panded the storage representation by allowing each statement in the program to



12

be associated with more than a one ASG using invariant and property predicates
at each program point to retain connectivity, direction and cycle information.

5.2 Shape Specification and Verification
Hummel et al. [7, 6] describe an approach in which the programmer specifies, in
the ADDS and ASAP languages, a set of data structures properties using direc-
tion and orthogonality attributes as well as structure invariants. The compiler
is left with the task of checking if any of the statement in the program violate
the axioms and reports if so. The expressiveness power of these languages does
not allow for instance to select nodes with particular properties (e.g., as is the
case of a cycle-terminated linked list) we all of the properties need to apply to
all nodes of the same data structure. The implicit assumption is that properties
are applicable only to non-nil fields of the objects. This restriction is due to de-
cidability limitations of theorem proving. Kuncak et al., [8] describe a language
that allows programmer to describe the referencing relationships of heap objects.
The relationships determine the role of the various nodes of the data structures
and allow a analysis tool to verify if the nodes comply with the legal alias re-
lationships. Programmers augment the original code with role specification at
particular point in the code, in effect indicating to the analysis tool precisely
where should the role specification be tested. This points-specific insertion is
equivalent to choosing where to perform abstraction of the shape analysis and
has traditionally been a hard problem.

6 Conclusion
In this paper we described four novel analysis techniques, namely, structural
fields, scan loops, assumed/verified shape properties and context tracing to attain
a high level of accuracy. We have illustrated the application of the proposed
analysis techniques to codes that build (correctly as well as incorrectly) sophis-
ticated data structures that are beyond the reach of current approaches. This
paper supports the thesis that compiler analysis algorithms must uncover and
exploit information derived from conditional statements in the form of the tech-
niques presented here if they are to substantially increase their accuracy.

References

1. T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic predicate ab-
straction of c programs. In SIGPLAN ’01 Conference on Programming Language
Design and Implementation, SIGPLAN Notices 36(6), pages 203–213, New York,
NY, June 2001. ACM Press.

2. D. Chase, M. Wegman, and F. Zadek. Analysis of pointers and structures. In
Proceedings of the ACM SIGPLAN ’90 Conference on Program Language Design
and Implementation, pages 296–310, New York, NY, June 1990. ACM Press.

3. J. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural compu-
tation of pointer-induced aliases and side effects. In Proceedings of the Twentieth
Annual ACM Symposium on the Principles of Programming Languages, pages 232–
245, New York, NY, January 1993. ACM, ACM Press.



13

4. F. Corbera, R. Asenjo, and E.L. Zapata. Accurate shape analysis for recursive
data structures. In Proc. of the Thirteenth Workshop on Languages and Compilers
for Parallel Computing, August 2000.

5. R. Ghiya and L. Hendren. Is it a Tree, a DAG, or a Cyclic Graph? a shape analysis
for heap-directed pointers in C. In Proceedings of the Twenty-third Annual ACM
Symposium on the Principles of Programming Languages, pages 1–15, New York,
NY, January 1996. ACM Press.

6. L. Hendren, J. Hummel, and A. Nicolau. A general data dependence test for
dynamic, pointer-based data structures. In Proceedings of the ACM SIGPLAN
’94 Conference on Program Language Design and Implementation, pages 218–229,
New York, NY, June 1994. ACM Press.

7. J.Hummel, L. Hendren, and A. Nicolau. A language for conveying the aliasing
properties of pointer-based data structures. In Proceedings of the 8th International
Parallel Processing Symposium, pages 218–229, Los Alamitos, CA, April 1994.
IEEE Computer Society Press.

8. V. Kuncak, P. Lam, and M. Rinard. Role analysis. In Proceedings of the Twenty-
nineth Annual ACM Symposium on the Principles of Programming Languages,
pages 17–32, New York, NY, 2002. ACM Press.

9. J. Larus and P. Hilfinger. Detecting conflicts between structure accesses. In Pro-
ceedings of the ACM SIGPLAN ’88 Conference on Program Language Design and
Implementation, pages 21–34, New York, NY, June 1988. ACM Press.

10. G. Necula and P. Lee. The designa nd implementation of a certifying compiler. In
SIGPLAN ’98 Conference on Programming Language Design and Implementation,
SIGPLAN Notices 33(6), pages 333–344, New York, NY, 1998. ACM Press.

11. J. Plevyak, V. Karamcheti, and A. Chien. Analysis of dynamic structures for
efficient parallel execution. In Proc. of the Sixth Workshop on Languages and
Compilers for Parallel Computing, volume 768, pages 37–57. Springer-Verlag, 1993.

12. M. Sagiv Mand T. Reps and R. Wilhelm. Parametric shape analysis via 3-valued
logic. In Proceedings of the Twenty-sixth Annual ACM Symposium on the Princi-
ples of Programming Languages, New York, NY, January 1999. ACM Press.

13. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. ACM Transactions on Programming Languages and
Systems, 20(1):1–50, January 1998.

14. R. Wilson and M. Lam. Efficient context-sensitive pointer analysis for C programs.
In SIGPLAN ’95 Conference on Programming Language Design and Implementa-
tion, SIGPLAN Notices 30(6), pages 1–12, New York, NY, June 1995. ACM Press.


