
Applications of HPJava

Bryan Carpenter, Geoffrey Fox
Han-Ku Lee and Sang Boem Lim

Pervasive Technology Labs at Indiana University
Bloomington, IN 47404-3730

{dbcarpen,gcf,hanklee,slim}@indiana.edu

Abstract. We describe two applications of our HPJava language for
parallel computing. The first is a multigrid solver for a Poisson equation,
and the second is a CFD application that solves the Euler equations for
inviscid flow. We illustrate how the features of the HPJava language allow
these algorithms to be expressed in a straightforward and convenient way.
Performance results on an IBM SP3 are presented.

1 Introduction

The HPJava project [10] has developed translator and libraries for a version of
the Java language extended to support parallel and scientific computing. Version
1.0 of the HPJava software was released earlier this year as open source software.
This paper reports experiences using HPJava for applications, with some bench-
mark results. A particular goal here is to argue the case that our programming
model is flexible and convenient for writing non-trivial scientific applications.
HPJava extends the standard Java language with support for “scientific”

multidimensional arrays (multiarrays), and support for distributed arrays, famil-
iar from High Performance Fortran (HPF) and related languages. Considerable
work has been done on adding features like these to Java and C++ through class
libraries (see for example [16], [8], [15]). This seems like a natural approach in
an object oriented language, but the approach has some limits: most obviously
the syntax tends to be inconvenient. Lately there has been widening interest in
adding extra syntax to Java for multiarrays, often through preprocessors1.
From a parallel computing point view of an interesting feature of HPJava

is its spartan programming model. Although HPJava introduces special syntax
for HPF-like distributed arrays, the language deliberately minimizes compiler
intervention in manipulating distributed data structures. In HPF and similar
languages, elements of distributed arrays can be accessed on essentially the
same footing as elements of ordinary (sequential) arrays—if the element be-
ing accessed resides on a different processor, some run-time system is probably
invoked transparently to “get” or “put” the remote element. HPJava does not
have this feature. It was designed as a framework for development of explicit li-
braries operating on distributed data. In this mindset, the right way of accessing

1 See, for example, the minutes of recent meetings at [12].



remote data is to explicitly invoke a communication library method to get or put
the data.
So HPJava provides some special syntax for accessing locally held elements

of (multiarrays and) distributed arrays, but stops short of adding special syn-
tax for accessing non-local elements. Non-local elements can only be accessed
by making explicit library calls. In this sense we are attempting to capture the
successful library-based approach approach to SPMD parallel computing—it is
in very much in the spirit of MPI, with its explicit point-to-point and collective
communications. HPJava raises the level of abstraction a notch, and adds ex-
cellent support for development of libraries that manipulate distributed arrays.
But it still exposes a multi-threaded, non-shared-memory, execution model to
to programmer. Advantages of this approach include flexibility for the program-
mer, and ease of compilation, because the compiler does not have to analyse and
optimize communication patterns.
The basic features of HPJava have been described in several earlier publica-

tions. In this paper we will jump straight into a discussion of the implementa-
tion of some representative applications in HPJava. After briefly reviewing the
compilation strategy in section 2, we illustrate a typical patterns of HPJava pro-
gramming through a multigrid algorithm in section 3. This section also serves
to review basic features of the langauge. Section 4 describes another substantial
HPJava application—a CFD code—and highlights additional common coding
patterns. Section 5 collects together benchmark results from these applications.

1.1 Related Work

Other ongoing projects that extend the Java language to directly support scien-
tific parallel computation include Titanium [3] from UC Berkeley, Timber/Spar
[2] from Delft University of Technology, and Jade [6] from University of Illinois
at Urbana-Champaign.
Titanium adds a comprehensive set of parallel extensions to the Java lan-

guage. For example it includes support for a shared address space, and does
compile-time analysis of patterns of synchronization. This contrasts with our
HPJava, which only adds new data types that can be implemented “locally”, and
leaves all interprocess communication issues to the programmer and libraries.
The Timber project extends Java with the Spar primitives for scientific pro-

gramming, which include multidimensional arrays and tuples. It also adds task
parallel constructs like a foreach construct.
Jade focuses on message-driven parallelism extracted from interactions be-

tween a special kind of distributed object called Chare. It introduces a kind of
parallel array called a ChareArray. Jade also supports code migration.
HPJava differs from these projects in emphasizing a lower-level (MPI-like)

approach to parallelism and communication, and by importing HPF-like distri-
bution formats for arrays. Another significant difference between HPJava and
the other systems mentioned above is that HPJava translates to Java byte codes,
relying on clusters of conventional JVMs for execution. The systems mentioned
above typically translate to C or C++. While HPJava may pay some price in



performance for this approach, it tends to be more fully compliant with the
standard Java platform (e.g. it allows local use of Java threads, and APIs that
require Java threads).

2 Features of the HPJava System

HPJava adds to Java a concept of multi-dimensional arrays called “multiarrays”
(consistent with proposals of the Java Grande Forum). To support parallel pro-
gramming, these multiarrays are extended to “distributed arrays”, very closely
modelled on the arrays of High Performance Fortran. The new distributed data
structures are cleanly integrated into the syntax of the language (in a way that
doesn’t interfere with the existing syntax and semantics of Java—for example
ordinary Java arrays are left unaffected).

In the current implementation, the source HPJava program is translated to
an intermediate standard Java file. The preprocessor that performs this task is
reasonably sophisticated. For example it performs a complete static semantic
check of the source program, following rules that include all the static rules
of the Java Language Specification [9]. So it shouldn’t normally happen that a
program accepted by the HPJava preprocessor would be rejected by the backend
Java compiler. The translation scheme depends on type information, so we were
essentially forced to do a complete type analysis for HPJava (which is a superset
of standard Java). Moreover we wanted to produce a practical tool, and we felt
users would not accept a simpler preprocessor that did not do full checking.

The current version of the preprocessor also works hard to preserve line-
numbering in the conversion from HPJava to Java. This means that the line
numbers in run-time exception messages accurately refer back to the HPJava
source. Clearly this is very important for easy debugging.

A translated and compiled HPJava program is a standard Java class file,
ready for execution on a distributed collection of JIT-enabled Java Virtual Ma-
chines. All externally visible attributes of an HPJava class—e.g. existence of
distributed-array-valued fields or method arguments—can be transparently re-
constructed from Java signatures stored in the class file. This makes it possible
to build libraries operating on distributed arrays, while maintaining the usual
portability and compatibility features of Java. The libraries themselves can be
implemented in HPJava, or in standard Java, or as JNI interfaces to other lan-
guages. The HPJava language specification documents the mapping between
distributed arrays and the standard-Java components they translate to.

Currently HPJava is supplied with one library for parallel computing—a Java
version of the Adlib library of collective operations on distributed arrays [17]. A
version of thempiJava [1] binding of MPI can also be called directly from HPJava
programs. Of course we would hope to see other libraries made available in the
future.



3 A Multigrid Application

The multigrid method [5] is a fast algorithm for solution of linear and nonlinear
problems. It uses a hierarchy or stack of grids of different granularity (typically
with a geometric progression of grid-spacings, increasing by a factor of two up
from finest to coarsest grid). Applied to a basic relaxation method, for example,
multigrid hugely accelerates elimination of the residual by restricting a smoothed
version of the error term to a coarser grid, computing a correction term on the
coarse grid, then interpolating this term back to the original fine grid. Because
computation of the correction term on the fine grid is itself a relaxation problem,
the strategy can be (and usually is) applied recursively all the way up the stack
of grids.

In our example, we apply the multigrid scheme to solution of the two-
dimensional Poisson equation. For the basic, unaccelerated, solution scheme we
use red-black relaxation. An HPJava method for red-black relaxation is given
in Figure 1. This looks something like an HPF program with different syntax.
One obvious difference is that the base language is Java instead of Fortran. The
HPJava type signature double [[-,-]] means a two dimensional distributed
array of double numbers2. So the arguments passed to the method relax() will
be distributed arrays

The inquiry rng() on the distributed array f returns the Range objects
x, y. These describe the distribution format of the array index (for the two
dimensions).

The HPJava overall construct operates like a forall construct, with one
important difference. In the HPJava construct one must specify how the iteration
space of the parallel loop is distributed over processors. This is done by specifying
a Range object in the header of the construct.

The variables i, j in the figure are called distributed index symbols. Dis-
tributed indexes are scoped by the overall constructs that use them. They are
not integer variables, and there is no syntax to declare a distributed index ex-
cept through an overall construct (or an at construct—see later). The usual Java
scoping rules for local variables apply: one can’t for example use i as the index
of an overall if there is already a local variable i in scope—the compiler doesn’t
allow it.

An unusual feature of the HPJava programming model is that the subscripts
in a distributed array element reference usually must be distributed index sym-
bols. And these symbols must be distributed with the essentially same format
as the arrays they subscript. As a special case, shifted index expressions like
i+1 are allowed as subscripts, but only if the distributed array was created with
ghost regions. Information on ghost regions, along with other information about

2 The main technical reason for using double brackets here is that it is useful to support
an idea of rank-zero distributed arrays: these are “distributed scalars”, which have a
localization (a distribution group) but no index space. If we used single brackets for
distributed array type signatures, then double [] could be ambiguously interpretted
as either a rank-zero distributed array or an ordinary Java array of doubles.



static void relax(int itmax, int np,

double[[-,-]] u, double[[-,-]] f) {

Range x = f.rng(0), y = f.rng(1);

for(int it = 1; it <= itmax * 2; it++) {

Adlib.writeHalo(u);

overall(i = x for 1 : np - 2)

overall(j = y for 1 + (i‘ + it) % 2 : np - 2 : 2) {

u [i, j] = 0.25 * (f [i, j] +

u [i - 1, j] + u [i + 1, j] +

u [i, j - 1] + u [i, j + 1]);

}

}

}

Fig. 1. Red black relaxation on array u.

distribution format, is captured in the Range object associated with the array
dimension or index.

These requirements ensure that a subscripting operation in an overall con-
struct only accesses locally held elements. They place very stringent limitations
on what kind of expression can appear as a subscript of a distributed array. We
justify this by noting that this restricted kind of data parallel loop is a frequently
recurring pattern in SPMD programs in general, and it is convenient to have it
captured in syntax. A glance at the full source of the applications described in
this paper should make this claim more plausible3.

The method Adlib.writeHalo() is a communication method (from the li-
brary called Adlib). It performs the edge-exchange to fill in the ghost regions. As
emphasized earlier, the compiler is not responsible for inserting communications—
this is the programmer’s responsibility. We assume this should be acceptable to
programmers currently accustomed to using MPI and similar libraries for com-
munication.

Because of the special role of distributed index symbols in array subscripts,
it is best not to think of the expressions i, j, i+1, etc, as having a numeric
value: instead they are treated as a special kind of thing in the language. We use

3 When less regular patterns of access are necessary, the approach depends on the
implied locality of access: if accesses are irregular but local one can extract the
locally-held blocks of the distributed array by suitable inquiries, and operate on the
blocks as in an ordinary SPMD program; if the accesses are non-local one must use
suitable library methods for doing irregular remote accesses.



1 20
0

1

2

0 1
0

1

2

2

3

3

4

4

X X

O

O

O

O

Fig. 2. Illustration of restrict operation

the notation i‘ to extract the numeric global index associated with i, say4 In
particular, use of this expression in the modulo 2 expression in the inner overall
construct in Figure 1 implements the red-black pattern of accesses.
This completes the description of most “non-obvious” features of HPJava

syntax. Remaining examples in the paper either recycle these basic ideas, or just
introduce new library routines; or they import relatively uncontroversial syntax,
like a syntax for array sections.
Figure 2 visualizes the “restrict” operation that is used to transfer the error

term from a fine grid to a coarse grid. The HPJava code is given in Figure 3. The
restrict operation here computes the residual term at sites of the fine grid with
even coordinate values, then sends these values to the coarse grid. In multigrid
the restricted residual from the fine grid becomes the RHS of a new equation
on the coarse grid. The implementation uses a temporary array tf which should
be aligned with the fine grid (only a subset of elements of this array are actu-
ally used). The last line introduces two new features: distributed array sections,
and the library function Adlib.remap(). Sections work in HPJava in much the
same way as in Fortran—one small syntactic difference is that they use double
brackets. The bounds in the fc section ensure that edge values, corresponding
to boundary conditions, are not modified. The stride in the tf section ensures
only values with even subscripts are selected. The Adlib.remap() operation is
needed because in general there is no simple relation between the distribution
format of the fine and coarse grid—this function introduces the communications
necessary to perform an assignment between any two distributed arrays with
unrelated distribution format. As another example, the interpolation code of
Figure 4 performs the complementary transformation from the coarse grid to
the fine grid.
The basic pattern here depends only on the geometry of the problem. More

complex (perhaps non-linear) equations with similar geometry could be tackled

4 Early versions of the language used a more conventional “pseudo-function” syntax
rather than the “primed” notation. The current syntax arguably makes expressions
more readable, and emphasizes the unique status of the distributed index in the
language.



static void restr(int npc, int npf,

double fc [[-,-]], double uf [[-,-]],

double ff [[-,-]], double tf [[-,-]]) {

Range xf = ff.rng(0), ff = ff.rng(1);

int nc = npc - 1, nf = npf - 1;

Adlib.writeHalo(uf);

overall(i = xf for 2 : nf - 2 : 2)

overall(j = yf for 2 : nf - 2 : 2)

tf [i, j] += 2.0 *

(ff [i, j] - 4.0 * uf [i, j] +

uf [i - 1, j] + uf [i + 1, j] +

uf [i, j - 1] + uf [i, j + 1]);

Adlib.remap(fc [[1 : nc - 1, 1 : nc - 1]],

tf [[2 : nf - 2 : 2, 2 : nf - 2 : 2]]);

}

Fig. 3. HPJava code for restrict operation.

by similar code. Problems with more dimensions can also be programmed in a
similar way.

4 A CFD Application

In this section we discuss another significant HPJava application code. This code
solves the Euler equations for inviscid fluid flow by a finite volume approach.
One version of this code, viewable at http://www.hpjava.org/demo.html also
has a novel parallel GUI implemented in HPJava5.
The Euler equations are a family of conservation equations, relating the time

rates of change of various densities to divergences of associated flow fields. In
two dimensions (the case we consider here) there are four densities—the ordinary
matter density, densities of the two components of momentum, and the energy
density. The Euler equations can be summarized as a conservation equation for
four-component vectors U , f and g:

∂U

∂t
+

∂f

∂x
+

∂g

∂y
= 0 (1)

5 The code is adapted from a version of an original Java code by David Oh of MIT,
modified by Saleh Elmohamed and Mike McMahon of Syracuse University. By ac-
cident more than design, it is almost identical to the CFD benchmark in the Java
Grande Benchmark suite, which had a related provenance.



static void interp(int npf, double[[-,-]] uc,

double[[-,-]] uf, double [[-,-]] tf) {

Range xf = uf.rng(0), yf = uf.rng(1);

int nf = npf - 1;

Adlib.remap(tf [[0 : nf : 2, 0 : nf : 2]], uc);

Adlib.writeHalo(tf);

overall(i = xf for 1 : nf - 1 : 2)

overall(j = yf for 2 : nf - 2 : 2)

uf [i, j] += 0.5 * (tf [i - 1, j] + tf [i + 1, j]);

overall(i = xf for 2 : nf - 2 : 2)

overall(j = yf for 1 : nf - 1 : 2)

uf [i, j] += 0.5 * (tf [i, j - 1] + tf [i, j + 1]);

}

Fig. 4. HPJava code for interpolate operation.

The flow variables (f, g) are related to the dependent variables U by simple (but
non-linear) algebraic equations. So the set of differential equations is closed.
Two important quantities that figure in the equations are the pressure, p, and
the enthalpy per unit mass, H, which can be computed from the components of
U by the equations of state for the fluid.

4.1 Discretization and numerical integration

The system of partial differential is discretized by a finite volume approach—
see for example [7] or [11]. Space is divided into a series of quadrilateral (but
not necessarily rectangular) cells labelled (i, j). This reduces the PDEs to a
large coupled system of ordinary differential equations. These are integrated
by a variant of the well-known 4th order Runge Kutta scheme. A single single
time-step involves four stages like:

U ′

i,j = Ui,j − α
δt

Ωi,j

Ri,j(U) (2)

where α is a fractional value characteristic of the scheme, and

Ri,j(U) =
∑

faces of cell

(f δy − g δx) (3)

Here Ωi,j is the volume a cell and δx, δy are coordinate differences between
end-points of the face. Since the dependent variables and fluxes are defined at



cell centers, their values at a cell face in equation 3 is are approximated as the
average of the values from the two cells meeting at the face.

So at its most basic level, the program for integrating the Euler equations
consists of a series of steps like:

1. Calculate p, H from current U (via equations of state).

2. Calculate f from U , p, H.

3. Calculate g from U , p, H.

4. Calculate R from f , g.

5. Update U .

To parallelize in HPJava, the discretized field variables are naturally stored in
distributed arrays. All the steps above become overall nests. As a relatively
simple case, the operation to calculate f (step 2) looks like:

Statevector [[-,-]] U, f, ... ;

double [[-,-]] p, H, ... ;

...

overall(i = x for 0 : imax)

overall(j = x for 0 : imax) {

double u = U [i, j].b / U [i, j].a ; // velocity component

f [i, j].a = U [i, j].b ;

f [i, j].b = U [i, j].b * u + p [i, j] ;

f [i, j].c = U [i, j].c * u ;

f [i, j].d = H [i, j] * u ;

}

The four fields a, b, c, d of Statevector correspond to the four conserved
densities. A general observation is that the bodies of overall statements are now
more complex than those in the (perhaps artificially simple) Poisson equation
example of the previous section. We expect this will often happen in “real”
applications. It is good for HPJava, because it means that various overheads
associated with starting up a distributed loop are amortized better.

Another noteworthy thing is that these overall statements work naturally
with aligned data—no communication is needed here. Out of the five stages
enumerated above, only computation of R involves non-local terms (formally
because of the use of averages across adjacent cells for the flow values at the
faces). The code can be written easily using ghost regions, shifted indices, and
the writeHalo() operation. Again it involves a single overall nest with a long
body. A much-ellided outline is given in Figure 5. The optional arguments wlo,
whi to Adlib.writeHalo() define the widths of the parts ghost regions that
need updating (the default is to update the whole of the ghost regions of the
array, whatever their width). In the current case these vectors both have value
[1, 1]—because shifted indices displace one site in positive and negative x and
y directions.



Adlib.writeHalo(f, wlo, whi) ;

Adlib.writeHalo(g, wlo, whi) ;

overall(i = x for 1 : imax - 1)

overall(j = y for 1 : jmax - 1) {

... Set fields of r [i, j] to zero ...

// East face

hy = 0.5 * (ynode [i, j] - ynode [i, j - 1]) ;

r [i, j].a += hy * (f [i, j].a + f [i + 1, j].a) ;

r [i, j].b += hy * (f [i, j].b + f [i + 1, j].b) ;

r [i, j].c += hy * (f [i, j].c + f [i + 1, j].c) ;

r [i, j].d += hy * (f [i, j].d + f [i + 1, j].d) ;

hx = 0.5 * (xnode [i, j] - ynode [i, j - 1]) ;

r [i, j].a += hx * (g [i, j].a + f [g + 1, j].a) ;

r [i, j].b += hx * (g [i, j].b + f [g + 1, j].b) ;

r [i, j].c += hx * (g [i, j].c + f [g + 1, j].c) ;

r [i, j].d += hx * (g [i, j].d + f [g + 1, j].d) ;

... Add similar contributions for S, W, N faces ...

}

Fig. 5. Outline of computation of R.

The arrays xnode and ynode hold coordinates of the cell vertices. Because
these arrays are constant through the computation, the ghost regions of these
arrays are initialized once during startup.

We will briefly discuss two other interesting complications: handling of so-
called artifical viscosity, and the imposition of boundary conditions.

Artificial viscosity (or artifical smoothing) is added to damp out a numerical
instability in the Runge Kutta time-stepping scheme, which otherwise causes
unphysical oscillatory modes associated with the discretization to grow. An ac-
cepted scheme adds small terms proportional to 2nd and 4th order finite differ-
ence operators to the update of U . From the point of view of HPJava program-
ming one interesting issue is that 4th order damping implies an update stencil
requiring source elements offset two places from the destination element (unlike
Figure 5, for example, where the maximum offset is one). This is handled by
creating the U array with ghost regions of width 2.

Implementing numerically stable boundary conditions for the Euler equations
is non-trivial. In our implementation the domain of cells is rectangular, though
the grid is distorted into an irregular pipe profile by the choice of physical coor-
dinates attached to grid points (xnode, ynode distributed arrays). HPJava has
an additional control construct called at, which can be used to update edges (it
has other uses). The at statement is a degenerate form of the overall statement.



It only “enumerates” a single location in its specified range. To work along the
line x = 0, for example, one may write code like:

at(i = x [0])

overall(j = y for 1 : jmax - 1) {

... assign U [i, j] in terms of U [i + 1, j], etc ...

}

The actual code in the body is a fairly complicated interpolation based on Rie-
mann invariants. In general access to U [i+1,j] here relies on ghost regions
being up-to-date, exactly as for an index scoped by an overall statement.

5 Benchmark Results

For the two applications described above, we have sequential and parallel pro-
grams to compare performance. The sequential programs were written in Java
and/or Fortran 95. The parallel programs, of course, were written in HPJava.
For multigrid we also compare with an available HPF code (taken from [4]).
The experiments were performed on the SP3 installation at Florida State

University. The system environment for SP3 runs were as follows:

– System: IBM SP3 supercomputing system with AIX 4.3.3 operating system
and 42 nodes.

– CPU: A node has Four processors (Power3 375 MHz) and 2 gigabytes of
shared memory.

– Network MPI Settings: Shared “css0” adapter with User Space(US) commu-
nication mode.

– Java VM: IBM ’s JIT
– Java Compiler: IBM J2RE 1.3.1

For best performance, all sequential and parallel Fortran and Java codes were
compiled using -O5 or -O3 with -qhot or -O (i.e. maximum optimization) flag.

5.1 Multigrid results

First we present some results for the the computational kernel of the multigrid
code, namely unaccelerated red-black relaxation algorithm of Figure 1. Figure
6 gives our results for this kernel on a 512 by 512 matrix. The results are en-
couraging. The HPJava version scales well, and eventually comes quite close to
the HPF code (absolute megaflop performances are modest by present-day stan-
dards, but this feature was observed for all our codes, and seems to be a property
of the hardware)6.
The flat lines at the bottom of the graph give the sequential Java and Fortran

performances, for orientation. We did not use any auto parallelization feature
here (it has been suggested this would provide a better baseline, and we may
try that in future runs).

6 We do not know why the HPJava result on 25 processors appears to be below the
general trend. However the result was repeatable.



1 4 9 16 25 36
Number of Processors

0

250

500

750

1000

1250

1500

M
fl

op
s 

pe
r 

se
co

nd

HPF
HPJava
Fortran
Java

Laplace Equation using Red-black Relaxation
512 x 512

Fig. 6. Red-black relaxation of two dimensional Laplace equation with size of 5122.

Corresponding results for the complete multigrid code are given in Figure
7. The results here are not as good as for simple red-black relaxation—both
HPJava speed relative to HPF, and the parallel speedup of HPF and HPJava
are less satisfactory.
The poor performance of HPJava relative to Fortran in this case can be

attributed largely to the naive nature of the translation scheme used by the
current HPJava system. The overheads are especially significant when there are
many very tight overall constructs (with short bodies). We saw several of these
in section 3. Experiments done elsewhere [13] lead us to believe these overheads
can be reduced by straightforward optimization strategies (which, however, are
not yet incorporated in our source-to-source translator)78.
The modest parallel speedup of both HPJava and HPF is due to communica-

tion overheads. The fact that HPJava and HPF have similar scaling behavior—
while absolute performance of HPJava is lower—suggests the communication
library of HPJava is slower than the communications of the native SP3 HPF
(otherwise the performance gap would close for larger numbers of processors).
This is not too surprising because Adlib is built on top of a portability layer
called mpjdev, which is in turn layered on MPI. We assume the SP3 HPF is
more carefully optimized for the hardware. Of course the lower layers of Adlib

7 There are also likely to be inherent penalties in using a JVM vs an optimizing
Fortran compiler, but other experiments suggest these overheads should be smaller
than what we see here.

8 The communication overheads are probably aggravated by a choice we made in the
data distribution format in these experiments. All levels are distributed blockwise.
A better choice may be to distribute only the finest levels, and keep the coaser levels
sequential. This doesn’t require any change to the main code—only to initialization
of the grid stack. However this wasn’t what was done in these experiments.



could be ported to exploit low-level features of the hardware (we already did
some experiments in this direction, interfacing Java to LAPI [14]).

1 2 3 4 6 9
Number of Processors

0

100

200

300

400

M
fl

op
s 

pe
r 

se
co

nd

HPF
HPJava

Multigrid Solver
512 x 512

Fig. 7. Multigrid solver with size of 5122.

5.2 CFD results

Figure 8 and gives some performance results for a version of the CFD code. The
speedup results are quite reasonable, even for small problem sizes. Presumably
this reflects the intrinsically greater granularity of this problem, compared with
the multigrid case. (In this case unfortunately we don’t have a Fortran version
to compare with.)

6 Discussion

We illustrated, by a detailed discussion of the coding of two non-trivial paral-
lel applications, that the parallel primitives introduced in HPJava are a good
match to the requirements of various applications. The limitations imposed on
distributed control constructs like overall, and especially the strict rules for sub-
scripting distributed arrays, may look strange from a language design perspec-
tive. But these features are motivated by patterns observed in practical parallel
programs.
In particular the language provides a good framework for the development

of SPMD libraries operating on distributed arrays. The collective operations of
high-level libraries like Adlib, operating directly on distributed arrays, abstract
and generalize the popular collective operations of MPI and precursors. They



1 2 4 8 16
Number of Processors

0

100

200

300

400

500

600

700

M
fl

op
s 

pe
r 

se
co

nd

HPJava
Java

CFD
256 x 256

Fig. 8. CFD with size of 2562.

also follow in the spirit of the array intrinsics and libraries of Fortran 90/95 and
HPF. The language resembles HPF in various ways. But the programming model
is closer to the MPI style. MPI programming seems to have been more popular
in practice than HPF, perhaps because (as suggested by one of the reviewers of
this paper) it gives the programmer control over communication, and it allows
the programmer to estimate the cost of his program by looking at the code. We
claim these as advantages for HPJava, too.
In its current stage of development HPJava, like HPF, seems most naturally

suited for problems with some regularity. This is not to say that more irregular
problems cannot be tackled. But doing so will at least need more specialized
communication library support.
We have also shown that the performance of the initial implementation of HP-

Java is quite promising9. The current implementation provides full functionality,
but it has not yet been seriously optimized. There is ample scope for dramatic
improvements in efficiency [13]

7 Acknowledgement

This work was funded in part by National Science Foundation Division of Ad-
vanced Computational Infrastructure and Research, under contract number 987-
2125. We are very grateful to Saleh Elmohamed for donating the original Java
version of the CFD code, and for help with understanding and parallelizing it.

9 Java vs Fortran on the IBM machine is a relatively tough case. The IBM Fortran
compilers tend to be better than on popular commodity platforms. On PCs, for
example, the inherent performance of Java is typically more competitive with C and
Fortran.



All software discussed in this article, including the demonstration codes, is freely
available, with full source, from www.hpjava.org.

References

1. mpiJava Home Page. http://www.hpjava.org/mpiJava.html.
2. Timber Compiler Home Page. http://pds.twi.tudelft.nl/timber.
3. Titanium Project Home Page. http://www.cs.berkeley.edu/projects/titanium.
4. C.A. Addison, V.S. Getov, A.J.G. Hey, R.W. Hockney, and I.C. Wolton. The
Genesis Distributed-Memory Benchmarks. Elsevier Science B.V., North-Holland,
Amsterdam, 1993.

5. William L. Briggs, Van Emden Henson, and Steve F. McCormick. A Multigrid
Tutorial. The Society for Industrial and Applied Mathematics (SIAM), 2000.

6. Jayant DeSouza and L. V. Kale. Jade: A parallel message-driven
java. In Proceedings of the 2003 Workshop on Java in Com-

putational Science, Melbourne, Australia, 2003. Available from
http://charm.cs.uiuc.edu/papers/ParJavaWJCS03.shtml.

7. E. Dick. Introduction to finite volume techniques in computational fluid dynamics.
In John F. Wendt, editor, Computational Fluid Dynamics: An Introduction, pages
261–288. Springer-Verlag, 1992.

8. Jose E.Moreira, Samuel P. Midkiff, and Manish Gupta. A standard java array
package for technical computing. Technical Report RC21313, IBM Research, 1999.
Available from http://www.research.ibm.com/resources/.

9. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-
ification, Second Edition. Addison-Wesley, 2000.

10. HPJava project home page. www.hpjava.org.
11. A. Jameson, W. Schmidt, and E. Turkel. Numerical solutions of the euler equations

by finite volume methods using runge-kutta time-stepping schemes. In AIAA 14th
Fluid and Plasma Dynamics Conference. American Institute of Aeronautics and
Astronautics, June 1981.

12. Java Grande Numerics Working Group home page.
http://math.nist.gov/javanumerics/.

13. Han-Ku Lee. Towards Efficient Compilation of the HPJava Language for High
Performance Computing. PhD thesis, Florida State University, June 2003.

14. Sang Boem Lim. Platforms for HPJava: Runtime Support for Scalable Program-
ming in Java. PhD thesis, Florida State University, June 2003.

15. J. E. Moreira, S. P. Midkiff, M. Gupta, and R. Lawrence. High Performance
Computing with the Array Package for Java: A Case Study using Data Mining. In
Supercomputing 99, November 1999.

16. R. Parsons and D. Quinlan. A++/P++ array classes for architecture independent
finite difference calculations. In Object Oriented Numerics Conference, 1994.

17. Guansong Zhang, Bryan Carpenter, Geoffrey Fox, Xiaoming Li, Xinying Li, and
Yuhong Wen. PCRC-based HPF compilation. In Zhiyuan Li et al, editor,
10th International Workshop on Languages and Compilers for Parallel Com-

puting, volume 1366 of Lecture Notes in Computer Science. Springer, 1997.
http://www.hpjava.org/pcrc/npacWork.html.


