
Evaluating the Impact of Programming

Language Features on the Performance of

Parallel Applications on Cluster Architectures

Konstantin Berlin1, Jun Huan2, Mary Jacob3, Garima Kochhar3, Jan Prins2,
Bill Pugh1, P. Sadayappan3, Jaime Spacco1, and Chau-Wen Tseng1

1 Department of Computer Science,
University of Maryland, College Park, MD 20742

2 Department of Computer Science,
University of North Carolina, Chapel Hill, NC 27599

3 Department of Computer and Information Science,
Ohio State University, Columbus, OH 43210

Abstract. We evaluate the impact of programming language features on
the performance of parallel applications on modern parallel architectures,
particularly for the demanding case of sparse integer codes. We compare
a number of programming languages (Pthreads, OpenMP, MPI, UPC,
Global Arrays) on both shared and distributed-memory architectures.
We find that language features can make parallel programs easier to
write, but cannot hide the underlying communication costs for the target
parallel architecture. Powerful compiler analysis and optimization can
help reduce software overhead, but features such as fine-grain remote
accesses are inherently expensive on clusters. To avoid large reductions
in performance, language features must avoid interfering with compiler
optimizations for local computations.

1 Introduction

Parallel computing can potentially provide huge amounts of computation power
for solving important problems in science and engineering. However, the difficulty
of writing parallel programs poses a major barrier to exploiting the power of
parallel architectures. Programming is especially difficult for applications with
irregular, fine-grain memory access patterns, since current parallel programming
languages, tools, and architectures are evolving in directions less suited for these
codes. Three vital goals are in conflict when choosing a parallel programming
paradigm for clusters of shared-memory multiprocessors:

– Exploitation of maximum machine performance on a particular platform
– Portability of code and performance across various high performance com-
puting platforms

– Programmability: easy creation of correct, reliable and efficient programs



Parallel programming languages are designed by making different tradeoffs, de-
pending on assumptions of the underlying compiler, runtime system, hardware
support, target application characteristics, and acceptable user effort.

For embarrassingly parallel applications with coarse-grain communication,
the choice of a parallel programming language is less important since almost all
languages can achieve good performance with low programmer effort. Unfortu-
nately, no current parallel programming paradigm is satisfactory for more com-
plex applications with fine-grain parallelism and irregular remote accesses. MPI
is the most portable and achieves the best performance on distributed-memory
machines for most codes, but is difficult to program and is inefficient for ap-
plications with many irregular fine-grained accesses. OpenMP and Pthreads are
simple and efficient on shared-memory nodes, but do not work well (if at all) on
clusters. HPF is portable but limited in its flexibility and applicability. Java is
popular but does not yet have widely adopted libraries/APIs for efficient parallel
execution on clusters.

A promising approach for easing the task of writing codes with fine-grain
parallel accesses is to use programming languages that provide flexible remote
accesses and support for a shared address space, such as UPC, Global Arrays,
and Co-Array Fortran. These hybrid languages simplify code development be-
cause programmers can rely on language support for fine-grain remote accesses
to get a working version quickly, before selectively putting effort into modifying
a small subset of the code for enhanced performance. In comparison, program-
ming paradigms such as MPI require explicit communications to be inserted
throughout the code for correctness.

A problem with this hybrid approach is the architectural trend towards
building high-end supercomputers from clusters of PCs or shared-memory mul-
tiprocessors (SMPs) using commodity parts, since this approach yields sys-
tems with expensive, high latency inter-processor communication. As a result
users are gravitating towards parallel programming paradigms such as MPI that
can efficiently support coarse-grain bulk communications. Parallel programming
paradigms such as UPC that rely on fine-grained remote accesses may find it
difficult to achieve good performance on clusters, because the underlying archi-
tecture does not efficiently support such operations.

Our goal in this paper is to evaluate the performance of parallel language
features based on experimental evaluations of a number of challenging parallel
applications, particularly those requiring fine-grain remote accesses. We identify
programming language features that can reduce programmer effort and quantify
the overhead encountered when using such features. We attempt to determine
the feasibility of using a hybrid fine and coarse-grain parallel programming model
on cluster architectures. We pay special attention to the performance of UPC
because it is the first widely available commercially supported high-level parallel
programming language that provides flexible non-local accesses for both shared
and distributed memory paradigms. We also attempt to place our evaluation in
the context of ongoing trends in parallel architectures and applications. More
specifically, the contributions of this paper include:



1. Experimental evaluation of language features for challenging irregular par-
allel applications

2. Observations on programmability and performance for Pthreads, OpenMP,
MPI, UPC, and Global Arrays

3. Suggestions for achieving both programmability and good performance in
the future

4. Predictions on impact of architectural developments on performance of par-
allel language features

While our findings that fine-grained parallel applications perform poorly on clus-
ter architectures is not surprising, our study quantifies the performance penalty
for interesting programming languages using several challenging irregular bench-
marks.

In the remainder of the paper, we explain our choice of evaluation parame-
ters (applications, parallel languages) and present our experimental results. We
present our observations on programming language features and their impact on
performance, followed by a number of suggestions for their usage in developing
parallel applications. We conclude with a discussion of the impact of architecture
trends and comparison with related work.

2 Applications

Many scientific applications have very regular memory access patterns and can
be easily parallelized and implemented efficiently for a large number of parallel
architectures. We chose for our evaluation three application classes that are
more complex and represent challenging test cases for parallel programming
paradigms. The three types of parallel applications are:

Irregular table update Many parallel database operations can be viewed as mak-
ing irregular parallel accesses to a large distributed table of values. If the ac-
cesses perform associative reduction operations (e.g., summation), the applica-
tion is similar to a large histogram and may be implemented using a coarse-
grain bucket algorithm. Accesses may also perform arbitrary read-modify-write
operations, in which case fine-grain algorithms are necessary. The amount of
computation in table updates is static and may be distributed evenly at compile
time. Table update has potentially very high communication requirements.

Irregular dynamic accesses A second class of challenging parallel applications
perform irregular parallel accesses to sparse data structures. The application may
allow a limited amount of coarse-grained accesses. The amount of computation
is static and may be distributed evenly at compile time, and has very high
communication requirements.



Integer sort Large in-memory sorting is a third parallel application class that is
surprisingly difficult to perform efficiently on distributed-memory parallel archi-
tectures. Many parallel implementations are possible, including both coarse and
fine-grained algorithms. Sorting has high communication requirements.

All three types of benchmarks are characterized by irregular memory access
to large data structures. Depending on the benchmark, both coarse and fine-
grained remote accesses may be necessary.

3 Programming Paradigms

Broadly speaking, parallel paradigms can be classified as shared-memory with
explicit threads (Pthreads, Java threads), shared-memory with task/data paral-
lelism (OpenMP, HPF), distributed memory with explicit communication (MPI,
SHMEM), or distributed-memory with special global accesses (Co-Array For-
tran, Global Arrays, UPC). We describe paradigms used in our study in more
detail.

Pthreads (POSIX threads) is a shared-memory programming model where par-
allelism takes the form of parallel function invocations [LB98]. A parallel func-
tion body is executed in parallel by many threads, which can all access shared
global data. Pthreads is the underlying implementation of parallelism for many
programming paradigms. Java is a general purpose programming language that
supports parallelism in the form of threads [OW97]. Parallel Java programs on
SMPs thus resemble Pthreads programs. Pthreads and Java threads are available
only on SMPs.

OpenMP is a shared-memory programming model where parallelism takes the
form of parallel directives for loops and functions [CMD00]. OpenMP directives
specify loops whose iterations should be executed in parallel, as well as functions
that may be invoked in parallel. Additional directives specify data that should
be shared or private to each thread. Compilers translate OpenMP programs into
code that resembles Pthreads programs, where parallel loop bodies are made into
parallel functions. OpenMP is an industry standard and is supported in many
languages and platforms. OpenMP is currently available only on SMPs.

MPI (Message Passing Interface) is a distributed-memory programming model
where threads explicitly communicate using functions in the MPI run-time li-
brary to send and receive messages [GLS94]. It also includes a large selection
of efficient collective communication routines. MPI is widely available (virtually
every parallel platform) and well tuned for performance. Despite the program-
ming effort required, MPI is the current programming paradigm of choice for its
portability and performance.



Global Arrays is a shared-memory programming model designed to provide lim-
ited support for distributed-memory multiprocessors [NHL94]. It uses library
routines to provide an abstraction of global, shared multi-dimensional arrays.
Programmers generally use put/get routines to copy rectangular sections of data
between global arrays and local memory. The intent is to make clear to program-
mers global memory accesses are distinct and more expensive than local memory
accesses. Global Arrays provides efficient direct access of local portions of global
arrays. A run-time library also provides a small collection of scatter, gather, and
accumulate operations on global memory.

UPC (Unified Parallel C) is a shared-memory programming model based on a
version of C extended with global pointers and data distribution declarations
for shared data [CDC99]. Accesses via global pointers are translated into inter-
processor communication by the UPC compiler. A distinguishing feature of UPC
is that global pointers may be cast into local pointers for efficient local access.
Explicit one-way communication similar to SHMEM [BK94] is also supported in
the UPC run-time library via routines such as upc memput() and upc memget().
It is the compiler’s responsibility to translate memory addresses and insert
inter-processor communication. UPC is the first commercially supported parallel
paradigm that supports flexible remote accesses to a shared memory abstraction.

4 Performance Evaluation

We believe performance is a key factor (if not the key factor) determining the
success of parallel programming paradigms. To gain insight into the factors un-
derlying performance, we performed an experimental performance evaluation of
a number of programming paradigms on the following parallel platforms.

Compaq AlphaServer SC. A 64-node cluster located at ORNL. Each node is an
SMP with 2GB of memory, four ES-40 processors, and a single Quadrics network
adapter. The nodes run AlphaServer 2.0 OS, the MPI implementation is built
on the native Quadrics libraries.

Sun SunFire 6800. A 24-processor Sun shared-memory multiprocessor located
at the University of Maryland, with UltraSparc III processors, 24GB memory,
and crossbar interconnect running SunOS 5.8.

4.1 Table Update

TableUpdate performs irregular updates on a large distributed hash table. Up-
dates are commutative and may be reordered. Several different versions of Table-
Update are used:

– MPI. Coarse-grain algorithm uses buckets to store updates to data on other
processors. All buckets are synchronously exchanged between processors once
buckets are filled. Upon receiving buckets, updates in bucket are applied to
the local portion of the table.



– UPC. Fine-grained algorithm uses global pointers to update non-local table
elements.

– UPC (bucket). Coarse-grain algorithm also uses bucketized algorithm as in
MPI code. One-way explicit communication used to transfer buckets between
processors.

– Global Arrays. Declare table as a large global array. Fine-grained algorithm
directly accesses table elements for updates.

– C with Pthreads. Shared-memory code uses parallel function calls to update
table elements. All threads directly access table as shared array.

– C with OpenMP. Shared-memory code parallelizes loops computing table
elements using OpenMP annotations.

– Java. Shared-memory code uses Java threads to update shared global table.

The following figure presents the performance of TableUpdate for a table
of size 222 on a Compaq AlphaServer SC for MPI, UPC, UPC (bucket), and
Global Arrays. Performance is measured in number of table updates per mil-
lisecond per processor, and is presented using log scale. Results show that MPI
greatly outperforms UPC and Global Arrays, though UPC using a coarse-grain
bucket algorithm can approach the performance of MPI. UPC and Global Ar-
rays both suffer significant performance degradations when using fine-grain ac-
cess patterns because of software and hardware overhead in making point-wise
remote accesses.

We next examine TableUpdate performance on a Sun SunFire SMP. Re-
sults show that Java, C with Pthreads, and C with OpenMP implementations
of TableUpdate achieve comparable performance, though Java performance is
slightly higher (possibly because it is better tuned for performance by the ven-
dor). The SUN UPC compiler has significantly poorer performance because of
software overhead in translating point-wise accesses to shared data.



4.2 Conjugate Gradient

The conjugate gradient benchmark (NAS CG benchmark) finds the principal
eigenvalue of a sparse n× n real matrix A with random pattern of kn nonzeros
using the inverse power method [BBB94]. This involves solving a linear system of
the form Ap = z for different vectors z. The solver uses the conjugate gradient
method and repeatedly calculates the sparse matrix-vector product w = Av,
where v, w are dense vectors of length n. This benchmark is widely used and
stresses memory and communication performance. We evaluated the following
versions of CG:

– MPI. This Fortran 77 version was taken from the NAS 2.3 suite, and uses
explicit MPI communication operations. The implementation uses a (block,
block) distribution of A, and replicates the appropriate section of v for the
dot product with the corresponding section of A. The total size of the im-
plementation is 1800 lines.

– OpenMP. This is a shared-memory implementation in C with OpenMP di-
rectives, derived from the NAS 2.3 serial code by the RWC in Japan, and
has total size of 900 lines. This implementation uses a static partition across
processors of the row-loop of the matrix-vector product. A long-lived parallel
region is used to reduce overheads between successive sparse-matrix vector
products. OpenMP work distribution directives are inserted for initializa-
tions, sparse matrix-vector product, and dot products in the algorithm.

– UPC (OpenMP). This UPC implementation was derived from the OpenMP
shared-memory version. About 1/3 was rewritten from OpenMP, and 1/4
was added new. The total size of this version is 1300 lines. It distributes the
matrix A using a block-cyclic distribution with a large block size. This is
the best distribution for this problem that can be expressed directly in UPC
without explicitly partitioning the matrix A. Work is partitioned between



processors in the sparse vector-matrix product according to the portions of A
held by each processor. The vector v is replicated to reduce communication;
the default strategy of distributing the shared vector leads to run times that
are two orders of magnitude larger due to the repeated fine-grain random
accesses to v in the sparse matrix-vector product.

– UPC (MPI). This UPC implementation more closely follows the MPI algo-
rithm. It uses an explicit (blocked,*) distribution of A and replicates the
vector v. Coarse-grain data movement (e.g., upc memget(), upc memput())
is used to replicate the result w. The total size of this version is 1600 lines.

The following figure presents our results for a class B problem size for CG on
the AlphaServer SC. Results are reported in MFLOPS per processor. The total
number of FLOPS required is defined by the problem size. OpenMP results are
only available up to the 4 processors on each node and scale relatively poorly
due to the replication of v into the processor caches through misses on v in
random order. MPI outperforms both versions of UPC, though the UPC (MPI)
implementation is closer in performance.

The sequential performance of the UPC implementations is 50-60% of the sin-
gle processor MPI and OpenMP performance. The MPI implementation achieves
a speedup of 10.4 with 16 processors, and a speedup of 17.6 with 32 processors.
The UPC (OpenMP) speedup is 4.0 with 16 processors, and 5.0 with 32 proces-
sors, hence performs at only 28% of the MPI implementation at 32 processors.
The UPC (MPI) speedup is better at 7.0 with 16 processors, and 9.1 with 32
processors, hence performs at 52% of the MPI implementation at 32 processors.
The performance of CG is heavily dependent on memory system performance.

For comparison, a vectorized implementation of the CG benchmark achieves
about 1,500 MFLOPS on a single processor of an NEC SX-6, and about 1,100
MFLOPS per processor using all eight processors of an SX-6 node.

4.3 Integer Sort

Integer sort (NAS IS benchmark) performs a parallel radix sort of a large collec-
tion of integer data. We timed MPI and UPC implementations on an AlphaServer



SC. Both implementations used coarse-grain parallel algorithms employing bulk
explicit messages, since a fine-grain UPC implementation was found to be in-
tolerably inefficient. A 128K input data size is used. Performance is reported as
efficiency. Results show that MPI outperforms UPC slightly, with the difference
increasing for larger numbers of processors.

4.4 UPC Microbenchmark

Our experimental results for entire applications showed that fine-grain algo-
rithms were exceedingly inefficient for cluster architectures. UPC provides global
shared pointers that can easily access non-local data, providing a convenient
shared-memory abstraction for parallel programming. Though a shared data
element can be accessed in a completely transparent fashion by any process exe-
cuting on any processor, the overhead of direct ”point-wise” access can be quite
significant. To quantify both the hardware and software overheads in greater
detail, we used UPC microbenchmarks to evaluate performance on a wide range
of parallel architectures.

– Compaq Alphaserver SC system (Falcon) at Oak Ridge National Laboratory,
running Version 1.7 of the Compaq UPC compiler.

– Single node Alphaserver Marvel at University of Florida, running Version
2.1 of the Compaq UPC compiler.

– AMD Athlon Cluster (64 dual-processor nodes) with Myrinet interconnect
at the Ohio Supercomputer Center, running the Berkeley UPC compiler.

– SUN SunFire 6800 system (24-nodes) at the University of Maryland, running
the Sun UPC compiler.

– Cray T3E system at Michigan Tech University, running the original UPC
compiler.

– SGI Origin 2000 at University of North Carolina, running the Intrepid UPC
compiler.



We measured the cost of direct point-wise shared data access costs, using
both private and shared pointers. The following figure shows the per-word access
cost using a read-modify-write (increment-by-one) operation on floating-point
doubles, for various modes of access:

– Private: local shared data that is accessed as private data via casting UPC
pointer to private.

– Shared-local: local shared data that accessed directly as using a UPC shared
pointer

– Shared-same-node: non-local shared data that is local to another process on
the same SMP node.

– Shared-remote: non-local shared data that is on a different node.

It can be observed that on all systems, there is a significant difference in
the access time for private data and shared-local data, even though there is no
data movement involved with the latter. The difference represents the overhead
of translating a shared UPC reference into a node-address pair. This overhead
was over 500 times a local memory access cost on the Compaq AlphaServer with
the earlier version (v1.7) of the Compaq UPC compiler. Compiler enhancements
have reduced the overhead in later versions (v2.1) of the compiler to around 100
times the private data access cost.
Another area where compiler optimization can reduce software overhead for

memory access costs was in accessing non-local data located on the same node
(belonging to another thread on the same node). More powerful compiler op-
timizations can use more efficient local memory accesses in this situation, as
demonstrated by the newer Compaq UPC compiler (v2.1). Nonetheless, even



with both optimizations (for local shared data and same-node shared data),
memory access costs are still two orders of magnitude higher than access to pri-
vate memory for UPC on the AlphaServer Marvel system. Fine-grain non-local
accesses must therefore be used sparingly if at all in performance critical sections
of a parallel UPC program.

4.5 Evaluation Summary

Summarizing our results, we find on SMPs threads-based paradigms are clos-
est to the underlying hardware and provide the best performance. On clusters,
paradigms with explicit communication have the lowest overhead and achieve
the best performance. UPC and Global Arrays programs can achieve good per-
formance when written in a similar coarse-grain style using bulk communication
routines, otherwise performance can be extremely poor.

5 Language Features

Based on our experimental evaluation, we present some observations and sug-
gestions with high-level language features. A number of parallel programming
languages provide language features for providing the illusion of shared memory.
Global Arrays allows data to be copied into / out of a shared global array. The
UPC programming model provides access to cyclically distributed shared arrays
through global pointers, though when accessing only local portions of a shared
array, global pointers may be cast back into local pointers for greater efficiency.
In addition, the UPC run-time library also provides one-way, coarse-grained ex-
plicit communication primitives through functions such as upc memget() and
upc memput(). We make the following observations about these language fea-
tures:

A global shared memory programming model is easy to use. At the core of the
UPC programming model is the ability to easily access non-local data in a paral-
lel program simply through global pointers. Programmers need only specify data
that is to be distributed across processors, and reference them through special
global pointers. The fine-grained UPC programming model is very simple and
easy to use. The resulting code is cleaner and more maintainable than paradigms
such as MPI that require explicit communication in the program.

User level shared memory is not a good reflection of clusters. While the pro-
gramming model may allow easy fine-grain access to non-local data, this is not
supported by the underlying hardware architecture. The interconnect between
nodes of a cluster typically provides high bandwidth but also long latencies,
making aggregate coarse-grained communication much more efficient than many
fine-grained remote accesses. This problem will only worsen as future parallel
architectures continue to evolve towards clusters of SMPs. In comparison, the
coarse-grain one-way communication primitives in many languages more accu-
rately reflect the actual communication mechanisms supported by the hardware.



A shared-memory programming model can encourage poor performance on clus-
ters. Because the fine-grained shared-memory programming model is so seduc-
tive, one can argue that it actually leads to poor performance by encouraging
programmers to write fine-grain codes that execute poorly on clusters. Program-
mers can code around this problem, but usually only at the cost of complicating
the programming model or changing their coarse-grain algorithm.

We are dubious that compiler techniques will solve this problem. Given the lack of
hardware support for efficient fine-grain communication on clusters, we believe
programmers will need to develop parallel algorithms with coarse-grain block
data movement to achieve good performance. Compilers can remove some of
the inefficiencies of fine-grain communication, but cannot robustly transform
fine-grain parallel algorithms into efficient block parallel codes for clusters.

The (hybrid) programming model can combine fine-grain and coarse-grain ac-
cesses. One advantage of the UPC programming model is that it allows integra-
tion of fine-grain remote accesses with global pointers and coarse-grain explicit
communication using library routines such as upc memput() and upc memget().
As we stated previously, a hybrid programming paradigm such as UPC can ease
the development and maintenance of parallel codes. Most of the program may be
written cleanly using global pointers, inserting explicit coarse-grain communica-
tion only for performance critical sections. Our experimental evaluation shows
that when done well, the resulting codes can achieve performance close to MPI
on clusters. However, programmers must be extremely careful because the cost
of using global pointers for remote accesses is so high. Developing coarse-grain
parallel algorithms for performance-critical sections of the program may also re-
quire extensive modifications to the algorithms and data structures used in the
code.

Programming language features must avoid degrading local computations. Many
computations in parallel programs can be performed on purely local or previously
prefetched remote data. Parallel programming languages should be designed so
that these local computations can be compiled (and optimized) by the native se-
quential compiler. Otherwise performance can degrade, sometimes significantly.
A great deal of the success of MPI can be attributed to following this rule, since
all computations depend only on local data after calls to MPI communications
functions return. In comparison, both UPC and Global Arrays require user-
inserted explicit copies of remote global data to local buffers to avoid overhead.
Simply accessing global shared data is too expensive, even though the global
data may be completely located locally. For instance, accessing data using a
global pointer in UPC can result in over 100 times slowdown on some systems,
even if the data accessed is actually local.

5.1 Advice on choosing parallel paradigms

We summarize our observations on the parallel language features as follows. Even
though a language like UPC supports a fine-grain programming model, it can



achieve respectable performance on clusters only if fine-grain remote accesses are
used sparingly in infrequently executed sections of the code. Coarse-grain parallel
algorithms and bulk communication are still essential for achieving good perfor-
mance. For fine-grain parallel algorithms, even though language and compiler
support can improve performance compared to naive implementations, absolute
performance on clusters is likely so poor that differences will be insignificant.
Based on our experiences, we believe that the prime factor in choosing par-

allel paradigms is the nature of the algorithm. For coarse-grain parallel algo-
rithms on clusters, many choices are possible. For peak performance, explicit
message passing paradigms such as MPI and SHMEM will likely provide the
best performance. If program development time is an issue, choosing a hybrid
UPC implementation and selectively using bulk and collective communication
such as upc memget() and upc memput() routines in computationally intensive
portions of the program can be useful. Programming effort can also be reduced
by exploiting existing libraries where possible. For fine-grain parallel algorithms,
there are fewer options. Implementations on clusters using only fine-grain lan-
guage features are likely to be extremely slow. If the data size is small, these
codes may be executed on SMPs. Otherwise coarse-grain alternatives should be
developed if possible.
On the Cray T3E (the original platform for UPC), UPC appears to be an

unqualified success and one of the best possible choices for a programming lan-
guage/paradigm. However, the suitability of fine-grain programming languages
for cluster environments, with higher latencies and message overheads, is unclear.
Obtaining good performance from a shared memory in a cluster environment
requires programming in specific and sometimes convoluted styles, discarding
many of the easy of use features of the language. Advancing compiler technol-
ogy can help in some cases, but still results in an environment with a complicated
and opaque performance model. The ability of a programmer to write a compli-
cated fine-grain parallel program and have confidence that it will achieve good
performance across a range of platforms still seems a distant dream.

6 Impact of Trends in Parallel Architectures

We also wish to evaluate parallel language features in the context of ongoing
architectural developments. Here we examine developments and trends in parallel
computer architectures and their impact on parallel programming paradigms.

Faster interconnects. High-speed cluster interconnects continue to improve in
bandwidth and latency. Both proprietary interconnects (e.g., Quadrics Elan used
in Compaq AlphaServer) and systems for connecting commodity processors (e.g.,
SCI, Dolphin, Myrinet, VIA, InfiniBand) are improving in performance. Such
interconnects also offer better support for shared memory, small messages, and
one-sided communication, and thus may improve fine-grain communication per-
formance. On the other hand, while the absolute performance of inter-processor
communication is steadily improving, the cost of communication relative to com-
putation continues to increase due to ever faster nodes and processors. We see



no technological developments that will reduce or even slow this gap in the near
future.

Larger memories. Although memory latency is increasing relative to processor
cycle times, the total memory size is simultaneously increasing due to greater
chip densities. As memory prices continue to drop, it is becoming possible to con-
struct parallel systems with much larger amounts of memory than in the past.
Cluster and MPP systems can now be built with several Terabytes of mem-
ory, and even SMPs can be purchased with 256 Gigabytes or more of memory.
Continuing increases in SMP memory size may allow them to run (commercial)
applications previously limited to MPPs and clusters, reducing the demand and
vendor support for more complicated programming models.

Processor/memory integration. Processor-in-memory (PIM) designs can poten-
tially offer enormous improvements for specific problems by providing efficient
parallel operations on data. However, they do not obviate the need for inter-
processor communication. Hence the general utility of such designs will still de-
pend on communication performance. Specific aspects of PIM designs may start
to appear in memory controllers for conventional systems, but are probably still
a few years away. In general, PIM-like systems will likely increase the cost of non-
local memory accesses relative to computation, increasing rather than reducing
the difficulty of efficient parallel programming.

Multithreading. Microprocessor design seems to be heading towards greater sup-
port for multithreading to tolerate increasing memory latencies. Increasing levels
of task-level multithreading will start to make even single processor nodes on
MPP systems resemble SMPs, and likely accelerate the shift into hybrid pro-
gramming models suitable for cluster architectures.

The good news is that as parallel architectures improve, programs will be
able to process larger irregular problems more quickly. The bad news is that the
efficiency of parallel programs will continue to decrease.

7 Related Work

Obviously there is a tremendous amount of research on parallel language design
and benchmarking. The most relevant to this paper is the recent work analyzing
the performance of UPC. El-Ghazawi et al. have been developing and bench-
marking UPC codes [EC01,EC02,CY+03] and have discovered performance can
be respectable, if a coarse-grain programming style is adapted. Yelick et al. have
actually developed their own UPC translator/compiler [CB+03]. Their experi-
ments show similar results, that fine-grain accesses are significantly more expen-
sive, and performance improves if the compiler can aggregate remote accesses
to reduce costs. In comparison, we study a wider range of parallel languages
on a slightly different set of applications. Pugh and Spacco use similar bench-
marks to evaluate MPJava, a method for developing high-performance parallel
computations in Java [PS03].



8 Conclusions

In this paper, we evaluated features from a number of parallel programming
languages for their performance and ease of use. We find that languages such
as UPC that support a shared memory and flexible non-local accesses can re-
duce the difficulty of parallel programming. Unfortunately, parallel applications
requiring fine-grain accesses still achieve poor performance on clusters because
the amount of inherent software and hardware overhead, regardless of the pro-
gramming paradigm or language feature used. Language support for fine-grain
non-local accesses can still prove useful, by reducing the difficulty of parallel
programming. Decent performance is achievable by using coarse-grain bulk com-
munication in performance-critical sections of the code.

References

[BBB94] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R.
Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V.
Venkatakrishnan, and S. Weeratunga, ”The NAS Parallel Benchmarks,” Technical
Report RNR-94-007, NASA Ames Research Center, March 1994.

[BK94] R. Barriuso and A. Knies, ”SHMEM User’s Guide,” Cray Research, Inc., May
1994.

[CB+03] W. Chen, D. Bonachea, J. Duell, P. Husbands, C. Iancu, and K. Yelick. A
Performance Analysis of the Berkeley UPC Compiler, Proceedings of the 17th Annual
International Conference on Supercomputing (ICS’03), June 2003.

[CDC99] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and K. Warren,
”Introduction to UPC and Language Specification,” Center for Computing Sciences
Technical Report CCS-TR-99-157, May 1999.

[CMD00] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. McDonald,
”Parallel Programming in OpenMP,” Morgan Kaufmann Publishers, 2000.

[CY+03] F. Cantonnet, Y. Yao, S. Annareddy, A. Mohamed, T. El-Ghazawi. Perfor-
mance Monitoring and Evaluation of a UPC Implementation on a NUMA Architec-
ture, Proceedings of the International Conference on Parallel and Distributed Parallel
Systems (IPDPS’03), April 2003.

[EC01] T. El-Ghazawi and S. Chauvin, UPC Benchmarking Issues, Proceedings of the
International Conference on Parallel Processing (ICPP’01), September 2001.

[EC02] T. El-Ghazawi and F. Cantonnet. UPC Performance and Potential: A NPB
Experimental Study, Proceedings of SC2002, Baltimore, November 2002.

[GLS94] W. Gropp E. Lusk, and A. Skjellum, ”Using MPI: Portable Parallel Program-
ming with the Message-Passing Interface,” MIT Press, Cambridge, MA, 1994.

[LB98] B. Lewis and D. J. Berg, ”Multithreaded Programming with Pthreads,” Pren-
tice Hall, 1998.

[NHL94] J. Nieplocha, R. Harrison, and R. Littlefield, ”Global Arrays: A portable
shared-memory programming model for distributed memory computers,” Proceed-
ings of Supercomputing 1994, pages 340–349. IEEE Computer Society Press, 1994.

[OW97] S. Oaks and H. Wong, ”Java Threads. Nutshell Handbook,” O’Reilly & As-
sociates, Inc., 1997.

[PS03] B. Pugh and J. Spacco, ”MPJava: High-Performance Message Passing in Java
using Java.nio,” Proceedings of the Workshop on Languages and Compilers for Par-
allel Computing (LCPC’03), College Station, TX, October 2003.


