
Operation Reuse on Handheld Devices

(Extended Abstract)

Yonghua Ding and Zhiyuan Li

Department of Computer Sciences
Purdue University

West Lafayette, Indiana 47907
{ding,li}@cs.purdue.edu

Abstract. Compilers have long used redundancy removal to improve
program execution speed. For handheld devices, redundancy removal is
particularly attractive because it improves execution speed and energy
efficiency at the same time. In a broad view, redundancy exists in many
different forms, e.g., redundant computations and redundant branches.
We briefly describe our recent efforts to expand the scope of redundancy
removal. We attain computation reuse by replacing a code segment by
a table look-up. We use IF-merging to merge conditional statements
into a single conditional statement. We present part of our preliminary
experimental results from an HP/Compaq iPAQ PDA.

1 Introduction

Compilers have long used redundancy removal to improve program execution
speed. For handheld devices, which have limited energy resource, redundancy
removal is particularly attractive because it improves execution speed and en-
ergy efficiency at the same time. In a broad sense, any reuse of a previous result
can be viewed as a form of redundancy removal. Recently, our research group
has investigated methods to expand the scope of redundancy removal. The in-
vestigation has resulted in two forms of operation reuse, namely computation

reuse and branch reuse.
Computation reuse can be viewed as an extension of common subexpression

elimination (CSE). CSE looks for redundancy among expressions in different
places of the program. Each of such expressions computes a single value. In
contrast, computation reuse looks for redundancy among different instances of
a code segment or several code segments which perform the same sequence of
operations. In this paper, we shall discuss computation reuse for a single code
segment which exploits value locality [13, 14, 22, 26] via pure software means.
We exploit branch reuse through an IF-merging technique which reduces the

number of conditional branches executed at run time. This technique does not
require special hardware support and thus, unlike hardware techniques, it does
not increase the power rate. The merger candidates include IF statements which
have identical or similar IF conditions which nonetheless are separated by other
statements. The idea of IF-merging can be implemented with various degrees of

2 Yonghua Ding and Zhiyuan Li

aggressiveness : the basic scheme, a more aggressive scheme to allow nonidentical
IF conditions, and lastly, a scheme based on path profiling information. In the
next two sections, we discuss these techniques respectively and compare each
technique with related work. We make a conclusion in the last section.

2 Computation Reuse

Recent research has shown that programs often exhibit value locality [13, 14, 22,
26], a phenomenon in which a small number of values appear repeatedly in the
same register or the same memory location. A number of hardware techniques
[7–9, 13, 14, 17, 21, 26] have been proposed to exploit value locality by recording
the inputs and outputs of a code segment in a reuse table implemented in the
hardware. The code segment can be as short as a single instruction. A subsequent
instance of the code segment can be simplified to a table look-up if the input
has appeared before.
The hardware techniques require a nontrivial change to the processor design,

typically by adding a special buffer which may contain one to sixteen entries.
Each entry records an input (which may consist of several different variables)
and its matching output. Such a special buffer increases the hardware design
complexity and the hardware cost, and it remains unclear whether the cost is
justified for embedded systems and handheld computing devices. Using a soft-
ware scheme, the table size can be much more flexible, although table look-up
will take more time. The benefit and the overhead must be weighed carefully.
In our scheme, we use a series of filtering to identify stateless code segments

which are good candidates for computation reuse. Figure 1 shows the main steps
of our compiler scheme. For each selected code segment, the scheme creates a
hashing table to continuously record the inputs and the matching outputs of
the code segment. Based on factors such as value repetition rate, computation
granularity estimation, and hashing complexity, we develop a formula to esti-
mate whether the table look-up will cost less than repeating the execution. The
hashing complexity depends on the hash function and the input/output size.
The hashing table can be as large as the number of different input patterns.
This offers opportunities to reuse computation whose inputs and outputs do not
fit in a special hardware buffer.

2.1 How to Reuse

Computation reuse is applied to a stateless code segment whose output de-
pends entirely on its input variables, i.e. variables and array elements which
have upwardly-exposed reads in the segment. The output variables are identified
by liveness analysis. A variable computed by the code segment is an output vari-
able if it remains live at the exit of the code segment. If we create a look-up
hash table for the code segment, the input variables will form the hash key. An
invariant never needs to be included in the hash key. Therefore, for convenience,
we exclude invariants from the set of input variables.

Operation Reuse on Handheld Devices 3

Data flow analysis to determineinput/output

Estimate hashing overhead

Granularity analysis

Choose code segments for value profiling

Determine code segments to transform

Identify candidate code segments

Fig. 1. Frame-work of the compiler scheme

The code segment shown in Figure 2(a) has an input variable val which is
upwardly exposed to the entry of function quan. The array power2 is assumed
to be invariant. The output variable is integer i which remains live at the exit
of the function.
Our scheme collects information on three factors which determine the perfor-

mance gain or loss from computation reuse, namely the computation granularity,
the hashing overhead, and the input reuse rate of the given code segment. With
the execution-frequency profiling information, it is relatively easy to estimate the
computation granularity defined as the number of operations performed by the
code segment. To get the reuse rate, we estimate the number (Nds) of distinct
sets of input values by value profiling and the number (N) of instances the code
segment executed. We define the reuse rate ρ by the following equation:

ρ = 1−
Nds

N

Based on the inputs and the outputs of the candidate code segment, we esti-
mate the overhead of hashing table for computation reuse. The hashing overhead
depends mainly on the complexity of the hash function and the size of each set
of inputs and outputs.
To produce a hash key for each code segment, we first define an order among

the input variables. The bit pattern of each input value forms a part of the
key. In the case of multiple input values, the key is composed by concatenating
multiple bit strings. In common cases, the hash key can be quite simple. For
example, the input of the code segment in Figure 2(a) is an integer scalar, so
the hash key is simply the value of the input. The hash index can simply be the
hash key modularized by the hash size. Figure 2(b) shows the transformation
result of the code segment in Figure 2(a).

4 Yonghua Ding and Zhiyuan Li

int quan(int val) {
 int i;

 for (i = 0; i < 15; i++) {
 if (val < power2[i])
 break;
 }
 return (i);
}

(a)

int quan(int val) {
 int i, key;

 if (check_hash(val, hash_table, &key) == 0) {
 for (i = 0; i < 15; i++) {
 if (val < power2[i])
 break;
 }
 hash_table[key] = i;
 }
 else {
 i = hash_table[key];
 }

 return (i);
}

(b)

Fig. 2. An example code segment and its transformation by applying computation
reuse

The hashing overhead depends on the size of the input and the output. The
time to determine whether we have a hit is proportional to the size of the input.
For a hit, the recorded output values should be copied to the corresponding
output variables. For a miss, the computed output values must be recorded in
the hashing table. In both cases, the cost of copying is proportional to the size of
the output. In our scheme, we count the numbers of extra operations performed
during a hit or a miss. (Note that a hit or a miss has the same number of extra
operations.) A hashing collision can increase the hashing overhead. However, we
assume there exist no hashing collisions.

2.2 Cost-Benefit Analysis

For a specific code segment, suppose we know the computation granularity C,
the hashing overhead O, and the reuse rate ρ. The cost of computation before
transformation equals C. The new cost of computation with computation reuse
is specified by formula (1) below. Our scheme checks to see whether the gain by
applying computation reuse, defined by formula (2), is positive or negative.

(C +O) · (1− ρ) +O · ρ (1)

C − [(C +O) · (1− ρ) +O · ρ] ≡ ρ · C −O (2)

ρ · C −O > 0 or ρ >
O

C
(3)

In the above, computation reuse improve performance for the specific code seg-
ment if and only if the condition in formula (3) is satisfied. Obviously, reuse
rate ρ can never be greater than 1. This gives us another criteria to filter out

Operation Reuse on Handheld Devices 5

code segments so as to reduce the complexity of value-set profiling. The com-
piler scheme removes code segments which do not satisfy O

C
< 1 from further

consideration. For the remaining code segments, value profiling is performed to
get ρ.
After we obtain ρ, the compiler picks the code segments which satisfy formula

(3) for computation reuse. Such code segments are transformed into codes that
perform table look-up.

2.3 Value-set Profiling

Our scheme requires information on the reuse rate ρ which measures the repet-
itiveness of a set of input values for a code segment. This is in contrast to
single-variable value profiling [5], where one can record the number of different
values of the variable written by an instruction during the program execution.
The ratio of this number over the total number of execution of the instruction
defines the value locality at the instruction. (The lower the ratio, the higher
the locality.) The locality of a set of values, unfortunately, cannot be directly
derived based upon the locality of the member values. For example, suppose x
and y each has two distinct values. The set of (x, y) may have two, three, or
four distinct value combinations.
Therefore, our scheme first needs to define code segments for which we con-

duct value-set profiling. Given such a code segment, profiling code stubs can be
inserted to record its distinct sets of input values. If we indiscriminately perform
such value-set profiling for all possible code segments, the profiling cost will be
prohibitive. To limit such cost, we confine the code segments of interest to those
frequently executed routines, loops and IF branchs. Such frequency information
is available by well-known tools such as gprof and gcov.

2.4 Experimental Results

We use Compaq’s iPAQ 3650 for the experiments. The iPAQ 3650 has a 206MHZ
Intel StrongArm SA1110 processor [1] and 32MB RAM, and it has 16KB instruc-
tion cache and 8KB data cache both 32 way set-associative. To test the energy
consumption on the handheld device, we connect an HP 3458a high precision dig-
ital multi-meter to measure the actual current drawn on the handheld computer
during the program execution.
We have experimented with six multimedia programs from Mediabench [16]

and the GNU Go game. In our experiments, we use the default input parameters
and input files as specified on the Mediabench web-site. The results from these
programs are described below.
The two programs, G721 encode and G721 decode perform voice compression

and decompression, respectively, based on the G.721 standard. They both call a
function quan which have a computation reuse rate of over 99%.
The programs MPEG2 encode and MPEG2 decode encode and decode, re-

spectively, MPEG data. Our scheme identifies the function fdct for computation
reuse in MPEG2 encode and the function Reference IDCT in MPEG2 decode.

6 Yonghua Ding and Zhiyuan Li

RASTA, which implements front-end algorithms of speech recognition, is a
program for the rasta-plp processing. Its most time-consuming function FR4TR
contains a code segment with one input variable and six output variables. The
input repetition rate is 99.6%.

UNEPIC is an image decompression program. Its main function contains a
loop to which our compiler scheme is applied. The loop body has a single input
variable and a single output variable, both integers. The input has a repetition
rate of 65.1%.

GNU Go is a go game. In our experiments, we use the input parameters “-b 6
-r 2”, where “-b 6” means playing 6 steps in benchmark mode and “-r 2” means
setting the random seeds as 2 (to make it easier to verify results). The function
accumulate influence contains eight code segments for computation reuse and
the average repetition rate of inputs is 98.2%.

Table 1. Performance Improvement by Computation Reuse

Programs Original (s) Computation Reuse (s) Speedup

G721 encode 2.01 1.53 1.31

G721 decode 3.69 2.76 1.34

MPEG2 encode 120.63 113.30 1.06

MPEG2 decode 83.02 46.06 1.80

RASTA 14.92 12.66 1.18

UNEPIC 1.73 0.76 2.28

GNUGO 788.05 654.51 1.20

Harmonic Mean 1.37

Tables 1 and 2 compare the performance and energy consumption, respec-
tively, before and after the transformation. The machine codes (both before and
after our transformations) are generated by GCC compiler (pocket Linux ver-
sion) with the most aggressive optimizations (O3). The energy is measured in
Joules (J).

Table 2. Energy Saving by Computation Reuse

Programs Original (J) Computation Reuse (J) Energy Saving

G721 encode 4.59 3.56 22.4%

G721 decode 8.43 6.47 23.3%

MPEG2 encode 281.67 265.12 5.9%

MPEG2 decode 193.85 108.01 44.3%

RASTA 36.60 31.02 15.2%

UNEPIC 4.03 1.81 55.1%

GNUGO 1936.23 1613.69 16.7%

Operation Reuse on Handheld Devices 7

Since our computation reuse scheme is based on profiling, we test the effec-
tiveness of the scheme with different input files. The program transformation
is based on the profiling with default input files from the Mediabench web-site,
and we run the transformed programs with other different input files. We show
the results in Table 3. GNU Go has no input files, and we change the parameter
from 6-step to 9-step. For each other program, we arbitrarily collect one input file
from Internet or other benchmark suite such as MiBench [10]. We list the sources
of input files in the second column of Table 3. For G721, we choose the input file
small.pcm from the MiBench program ADPCM . We select the tens 015.m2v,
which plays table tennis, from Tektronix web-site, and extract the first 6 frames
as the input of MPEG2 encode and decode. For RASTA, we choose the input
file phone.pcmbe.wav in 1998’s RASTA test suite from ICSI. For UNEPIC,
we get the input file baboon.tif of EPIC, and we generate its UNEPIC input
file by running EPIC with the baboon.tif as input. The last column of Table 3
shows the effectiveness of our scheme. Based on the profiling information with
the default input files, these programs applied the computation reuse scheme
can achieve substantial performance improvement for other different input files.

Table 3. Performance Improvement for Different Input Files

Programs Sources of Inputs Original (s) Computation Reuse (s) Speedup

G721 encode MiBench 9.12 6.77 1.35

G721 decode MiBench 8.60 6.32 1.36

MPEG2 encode Tektronix(table tennis) 175.36 147.47 1.19

MPEG2 decode Tektronix(table tennis) 139.32 94.37 1.48

RASTA ICSI(rasta testsuite 1998) 37.87 31.98 1.18

UNEPIC EPIC web-site(baboon.tif) 7.26 1.71 4.25

GNUGO “-b 9 -r 2” 1485.28 1236.96 1.20

Harmonic Mean 1.43

2.5 Related Work

Since Michie introduced the concept of memoization [17], the idea of computa-
tion reuse had been used mainly in the context of declarative languages until
the early 90’s. In the past decade, many researchers have applied this concept to
reuse the intermediate computation results of previously executed instructions
[7–9, 13, 14, 21, 26]. Richardson applies computation reuse to two applications by
recording the previous computation results in a result cache [21]. However, he
does not specify how the technique was implemented, and the result cache in his
paper is a special hardware cache. Sodani and Sohi [26] propose an instruction
reuse method. The performance improvement of instruction level reuse is not
significant, due to the small reuse granularity [27]. In the block and sub-block
reuse schemes [13, 14], hardware mechanisms are proposed to exploit computa-
tion reuse in a basic block or sub-block. The reuse granularity on basic block

8 Yonghua Ding and Zhiyuan Li

level seems still too small, and the hardware needs to handle a large number of
basic blocks for computation reuse.
Connors and Hwu propose a hybrid technique [9] which combines software

and hardware for reusing the intermediate computation results of code regions.
The compiler identifies the candidate code segments with value profiling. During
execution, the computation results of these reusable code regions are recorded
into hardware buffers for potential reuse. Their compiler analysis can identify
large reuse code regions and feed the analysis results to the hardware through
an extended instruction set architecture. In the design of the hardware buffer,
they limit the buffer size to 8 entries for each code segment.

3 IF-Merging

Modern microprocessors use deep instruction pipelining to increase the number
of processed instructions per clock cycle. Branch instructions, however, tend to
degrade the efficiency of deep pipelining. Further, conditional branches reduce
the size of basic blocks, introduce control dependences between instructions,
and hence may hamper the compiler’s ability to perform code improvement
techniques such as redundancy removal, software pipelining, and so on [4, 15,
30].
To reduce the penalty due to branch instructions, researchers have proposed

many techniques, including static and dynamic branch prediction [2, 25], predi-
cated execution [20, 23], branch reordering [30], branch alignment [6] and branch
elimination [4, 15, 18], etc. Among these, branch prediction, especially dynamic
branch prediction, has been extensively studied and widely used in modern high-
performance microarchitectures. Branch prediction predicts the outcome of the
branch in advance so that the instruction at the target address can be fetched
without delay. However, if the prediction is incorrect, the instructions fetched
after the branch have to be squashed. This situation results in a waste of CPU
cycles and power consumption. Hence, a high prediction rate is critical to the
performance of high-performance microprocessors. To achieve a high prediction
rate, almost all high-performance microprocessors today employ some form of
hardware support for dynamic branch prediction.
In contrast, processors designed for power-aware systems, such as mobile

wireless computing and embedded systems, must take both the program speed
and the power consumption into consideration. The concern for the latter may
often be greater than for the former on many platforms. A branch predictor
dissipates a non-trivial amount of power, which can be 10% or higher of the total
processor’s power dissipation. Such a predictor, therefore, may not be found on
microprocessors have more stringent power constraints [19].
Hardware support for predicated execution [11] of instructions has been used

on certain microprocessors, such as Intel XScale. Predicated execution removes
forward conditional branches by attaching flags to instructions. The instructions
are always fetched and decoded. But if the predicate evaluates to false, then a
predicated instruction does not commit. Obviously, the effectiveness of predi-

Operation Reuse on Handheld Devices 9

cated execution highly depends on the rate at which the predicates evaluate to
true. If the rate is low, then the waste in CPU cycles and power can be rather
high.
It is also worth noting that branch prediction, as a run-time technique, gen-

erally does not help enhance the compiler’s ability to improve codes. Recently
proposed speculative load/store instructions expose the control of speculative ex-
ecution to the software, which may increase the compiler’s ability to pursue more
aggressive code improvement techniques [29]. However, by today’s technology,
hardware support for speculative execution tends to increase power consumption
considerably. Therefore, such support is not available on microprocessors which
have more stringent power constraints.
In order to reduce the number of conditional branches executed at run time,

we perform a source-level program transformation called IF-merging. This tech-
nique does not require special hardware support and it does not increase the
power rate. Using this technique, the compiler identifies IF statements which
can be merged to increase the size of the basic blocks, such that more instruc-
tion level parallelism (ILP) may be exposed to the compiler backend and, at run
time, fewer branch instructions are executed. The merger candidates include IF
statements which have identical or similar IF conditions which nonetheless are
separated by other statements. Programmers usually leave them as separate IF
statements to make the program more readable.
The idea of IF-merging can be implemented with various degrees of aggres-

siveness: the basic scheme, a more aggressive scheme to allow nonidentical IF
conditions, and lastly, a scheme based on path profiling information.

if (sign) {
 diff = −diff;
}

if (sign)
 valpred −= vpdiff;

else
 valpred += vpdiff;

......

(a)

if (sign) {
 diff = −diff;

 valpred −= vpdiff;
}
esle {

 valpred += vpdiff;
}

(b)

Fig. 3. An example code shows opportunity of basic IF-merging

3.1 A Basic IF-merging Scheme

In the basic scheme, we merge IF statements with identical IF conditions to
reduce the number of branches and condition comparison. Figure 3(a) shows

10 Yonghua Ding and Zhiyuan Li

an example extracted from the Mediabench suite. In the example code, two IF
statements with identical condition are separated by other statements, which we
call intermediate statements. Based on the data dependence information, we find
that such intermediate statements have data dependences with the two merger
candidates. Hence, we cannot move any of these intermediate statements before
or after the new IF statement. We duplicate the intermediate statements and
place one copy in the then-component of the merged IF statement, and another
in the else-component. Figure 3(b) shows the transformed code by applying IF-
merging on the code in Figure 3(a).

Throughout this section, we assume the source program is structured. Thus
we can view the function body as a tree of code segments, such that each node
may represent a loop, a compound IF statement, a then-component, an else-
component, or simply a block of assignment statements and function calls. The
function body is the root of the tree. If a node A is the parent of another
node B, then the code segment represented by B is nested in the code segment
represented by A. Unless stated otherwise, the merger candidates must always
have the common parent in such a tree.

Obviously, in all of our IF-merging schemes, we need to be able to identify
identical IF conditions, which requires symbolic analysis of IF conditions. To fa-
cilitate such analysis, we perform alias analysis [12], global value numbering [24],
and transform the program into static single assignment (SSA) form [28], such
that variables with identical values can be clearly identified. We then apply a
set of normalization rules to the predicate trees of IF conditions, including the
sub-trees that represent the arithmetic expressions in those conditions. Such
normalization rules and the ensuing symbolic comparisons have been discussed
extensively in the literature of software engineering and parallelizing compilers.

if (tmp1==−32768 && tmp2==−32768)
 tmp2 = 32767;
else
 tmp2 = 0x0FFFF&((tmp1 *
 tmp2 + 16384) >> 15) ;

if (tmp1==−32768 && sri==−32768)
 tmp1 = 32767;
else
 tmp1 = 0x0FFFF&((tmp1 *
 sri + 16384) >> 15) ;

Original Code

if (tmp1 == −32768) {
 if (tmp2==−32768)
 tmp2 = 32767;
 else
 tmp2 = 0x0FFFF&((tmp1*tmp2+16384)>>15);
 if (sri==−32768)
 tmp1 = 32767;
 else
 tmp1 = 0x0FFFF&((tmp1*sri+16384)>>15);
}
else {
 tmp2 = 0x0FFFF&((tmp1*tmp2+16384)>>15);
 tmp1 = 0x0FFFF&((tmp1*sri+16384)>>15);
}

Transformed Code

Fig. 4. Nonidentical conditions with common sub-predicates and its transformation

Operation Reuse on Handheld Devices 11

3.2 IF-Condition Factoring

The basic IF-merging scheme only identifies IF statements with identical IF con-
ditions for IF-merging. Suppose the conditions are nonidentical but have com-
mon sub-predicates. By factoring the conditions we can also reduce the number
of branches. The left-hand side of Figure 4 shows an example code extracted
from Mediabench, and the right-hand side of Figure 4 shows the transformed
code.
Our factoring scheme identifies IF statements with conditions containing

common sub-predicates, and it factors the common sub-predicates from the con-
ditions to construct a common IF statement, which encloses the original IF
statements with the remaining sub-predicates as conditions.

3.3 IF-merging with Path Profiling

With path profiling information [3], we can make the IF-merging technique even
more aggressive. For example, in the case of the code in the left-hand side of
Figure 5, if the path profiling shows that majority of executions go to both S1
and S2, then we can transform the code into that showed in the right-hand side
of Figure 5.

if (a) { if (a&& b) {
 S1; S1;
} S2;
 }
if (b) { else if (a)
 S2; S1;
} else if (b)
 S2;

Original Code Transformed Code

Fig. 5. Example code shows IF-merging with profiling

We note that the probability of both taken in the two IF statements is
pab. If pab is greater than 0.5, merging the two IF statements will reduce the
number of branches. (The original code has two branches and the merged code
has 1+2∗(1−pab) < 2 branches.) The number of comparison operations (denoted
by λ) in the transformed code is defined by Formula (4) below, where pa is the
probability of taken in the first IF statement.

λ = (1 + pa) + (1− pab)(1 + (1− pa)) (4)

λ = 3− 2pab + papab

⇒ λ ≥ 3− 2pab + p2
ab ⇒ λ ≥ 2 + (1− pab)

2 ⇒ λ ≥ 2
λ = 3− 2pab + papab

⇒ λ = 3− pab(2− pa) ⇒ λ ≤ 3− 0.5(2− pa) = 2 + 0.5pa ⇒ λ ≤ 2.5
Hence, the number of comparison operations in the transformed code ranges

12 Yonghua Ding and Zhiyuan Li

from 2 to 2.5 when pab is greater than 0.5. The original code has two comparison
operations. Although the number of condition comparisons is increased after
merging, the performance has a net gain. Further, the then-component of the
merged IF statement may present more opportunities for other optimizations.

if (a) { if (b) {
 if (b) { if (a) {
 S1; S1;
 } }
 else { else {
 S2; S3;
 } }
} }
else { else { /* !b => a */
 S3; S2;
} }

Original code Transformed code

Fig. 6. Nested IF statements and the transformation of IF-exchanging

Another case for consideration is nested IF statements whose conditions are
dependent. For example, the condition (or its negation) of the inner IF statement
may derive the condition of the outer IF statement. (Obviously, the opposite is
normally false. Otherwise we can remove the inner IF statement.) Given such
nested IF statements, with profiling information on the taken probability, we can
decide whether it benefits to exchange the nesting. Figure 6 shows an example
code of nested IF statements in the left-hand side, and the code after the IF-
exchange transformation in the right-hand side. In this example, we suppose the
condition !b (the negation of b) implies the condition a. (For example, suppose
b is X > 0 and a is X ≤ 100.) We further suppose that, based on profiling
information, the taken probability of the outer IF statement (pa) is greater than
that of the inner IF statement (pb). In the original code, both the number of
branches and the number of comparison are 1+pa, and in the transformed code,
both of them are 1+ pb. Since pa is greater than pb, the IF-exchange will reduce
both the number of branches and the number of comparison.

3.4 Experimental Results

We have experimented with eight multimedia programs from Mediabench [16].
Tables 4 and 5 show the performance and energy consumption, respectively,
before and after IF-merging. The machine codes (both before and after our
transformations) are generated by GCC (pocket Linux version) with the most
aggressive optimizations (O3). Due to the space limit, detailed explanations are
omitted.

Operation Reuse on Handheld Devices 13

Table 4. Performance improvement by IF-Merging

Programs Original (s) Optimized (s) Speedup

ADPCM coder 0.0670 0.0607 1.104

ADPCM decoder 0.0639 0.0594 1.076

G721 encode 2.01 1.88 1.069

G721 decode 3.69 3.46 1.066

GSM toast 1.11 1.04 1.067

GSM untoast 0.51 0.47 1.085

PEGWIT encrypt 0.424 0.412 1.029

PEGWIT decrypt 0.240 0.236 1.017

Harmonic Mean 1.063

Table 5. Energy Saving by IF-Merging

Programs Original (J) Optimized (J) Saving

ADPCM coder 0.0324 0.0294 9.3%

ADPCM decoder 0.0325 0.0299 8.0%

G721 encode 0.9403 0.8855 5.8%

G721 decode 1.7375 1.6311 6.1%

GSM toast 0.5374 0.5049 6.0%

GSM untoast 0.2426 0.2228 8.2%

PEGWIT encrypt 0.2226 0.2171 2.5%

PEGWIT decrypt 0.1260 0.1241 1.5%

3.5 Related Work

To reduce branch cost, many branch reduction techniques have been proposed,
which include branch reordering [30], conditional branch elimination [4, 18],
branch alignment [6], and predicated execution [20, 23], etc. As we finish writing
this paper, we have discovered that part of our work in Section 3.3 is similar to
a recent independent effort by Kreahling et al [15]. They present a profile-based
condition merging technique to replace the execution of multiple branches, which
have different conditions, with a single branch. Their technique, however, does
not consider branches separated by intermediate statements. Neither do they
consider nested IF statements, which we consider in Section 3.3. We have also
given an analysis of the trade-off which is missing in [15]. Moreover they re-
strict the conditions in the candidate IF statements to be comparisons between
variables and constants. We do not have such restrictions.
Calder and Grunwald propose an improved branch alignment based on the

architectural cost model and the branch prediction architecture. Their branch
alignment algorithm can improve a broad range of static and dynamic branch
prediction architectures. In [18], Mueller and Whalley describe an optimization
to avoid conditional branches by replicating code. They perform a program anal-
ysis to determine the conditional branches in a loop which can be avoided by code
replication. They do not merge branches separated by intermediate statements.
In [30], Yang et al describe reordering the sequences of conditional branches us-

14 Yonghua Ding and Zhiyuan Li

ing profiling data. By branch reordering, the number of branches executed at
run-time is reduced. These techniques seem orthogonal to our IF-merging.

4 Conclusion

In this extended abstract, we use computation reuse and IF-merging as two
examples of expanding the scope of redundancy removal. We show that both
program execution time and energy consumption can be reduced quite substan-
tially via such operation reuse techniques. It is clear that profile information is
important in both examples. We believe that a general model for redundancy
detection can be highly useful for uncovering more opportunities of redundancy
removal. As our next step, our research group is investigating alternative models
for this purpose.

Acknowledgments

This work is sponsored by National Science Foundation through grants CCR-
0208760, ACI/ITR-0082834, and CCR-9975309.

References

1. Intel StrongARM SA-1110 Microprocessor Developer’s Manual. October 2001.
2. T. Ball and J. Larus. Branch prediction for free. Proc. of the Conference on

Programming Language Design and Implementation, 1993.
3. T. Ball and J. Larus. Efficient path profiling. Proc. of the 29th International

Symposium on Microarchitecture, December 1996.
4. R. Bodik, R. Gupta, and M. Soffa. Interprocedural conditional branch elimination.

Proc. of the Conference on Programming Language Design and Implementation,
1997.

5. B. Calder, P. Feller, and A. Eustace. Value profiling. Proc. of the 30th Int. Symp.

on Microarchitecture, pages 259–269, December 1997.
6. B. Calder and D. Grunwald. Reducing branch costs via branch alignment. Proc. of

the 6th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, October 1994.
7. D. Citron and D. Feitelson. Hardware memoization of mathematical and trigono-
metric functions. Technical Report, Hebrew University of Jerusalem, March 2000.

8. D. Connors, H. Hunter, B. Cheng, and W. Hwu. Hardware support for dynamic
activation of compiler-directed computation reuse. Proc. of the 9th Int. Conf. on

Architecture Support for Programming Languages and Operating Systems, Novem-
ber 2000.

9. D. Connors andW. Hwu. Compiler-directed dynamic computation reuse: Rationale
and initial results. Proc. of 32nd Int. Symp. on Microarchitecture, pages 158–169,
November 1999.

10. M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown.
Mibench: A free, commercially representative embedded benchmark suite. IEEE

4th Annual Workshop on Workload Characterization, pages 3–14, December 2001.

Operation Reuse on Handheld Devices 15

11. J. Hennessy and D. Patterson. Computer architecture: A quantitative approach.
Second Edition, Morgan Kaufmann.

12. M. Hind, M. Burke, P. Carini, and J. Choi. Interprocedural pointer alias analysis.
ACM Trans. on Programming Languages and Systems, 21(4), 1999.

13. J. Huang and D. Lilja. Exploiting basic block value locality with block reuse. In

The 5th Int. Symp. on High-Performance Computer Architecture, January 1999.
14. J. Huang and D. Lilja. Balancing reuse opportunities and performance gains with

sub-block value reuse. Technical Report, University of Minnesota, February 2002.
15. W. Kreahling, D. Whalley, M. Bailey, X. Yuan, G. Uh, and R. Engelen. Branch

elimination via multi-variable condition merging. Proc. of the European Conference

on Parallel and Distributed Computing, August 2003.
16. C. Lee, M. Potkonjak, and W. Mangione-Smith. Mediabench: A tool for evaluating

and synthesizing multimedia and communications systems. Proc. of the 30th Int.

Symp. on Microarchitecture, pages 330–335, December 1997.
17. D. Michie. Memo functions and machine learning. Nature, 218:19–22, April 1968.
18. F. Mueller and D. Whalley. Avoiding conditional branches by code replication.

Proc. of the Conference on Programming Language Design and Implementation,
1995.

19. D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. Stan. Power issues related to
branch prediction. Proc. of the 8th International symposium on High-Performance

Computer Architecture, February 2002.
20. J. Park and M. Schlansker. On predicated execution. Technical Report. HPL-91-58,

Hewlett Packard Laboratories, May 1991.
21. S. Richardson. Exploiting trivial and redundant computation. Proc. of the 11th

Symp. on Computer Arithmetic, pages 220–227, July 1993.
22. S. Sastry, R. Bodik, and J. Smith. Characterizing coarse-grained reuse of com-

putation. 3rd ACM Workshop on Feedback Directed and Dynamic Optimization,
December 2000.

23. J. Sias, D. August, , and W. Hwu. Accurate and efficient predicate analysis with
binary decision diagrams. Proc. of the 33rd International Symposium on Microar-

chitecture, December 2000.
24. T. Simpson. Global value numbering. Technical report, Rice University, 1994.
25. J. Smith. A study of branch prediction strategies. Proc. of the 4th International

Symposium on Computer Architecture, May 1981.
26. A. Sodani and G. Sohi. Dynamic instruction reuse. Proc. of the 24th Int. Symp.

on Computer Architecture, pages 194–205, June 1997.
27. A. Sodani and G. Sohi. Understanding the differences between value prediction

and instruction reuse. Proc. of the 31th Int. Symp. on Computer Architecture,
pages 205–215, December 1998.

28. M. Wolfe. High performance compilers for parallel computing. Addison-Wesley

Publishing Company, 1996.
29. Y. Wu and Y. Lee. Comprehensive redundant load elimination for the ia-64 archi-

tecture. 12th International Workshop, LCPC’99, August 1999.
30. M. Yang, G. Uh, and D. Whalley. Efficient and effective branch reordering using

profile data. Trans. on Programming Languages and Systems, 24(6), November
2002.

