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Abstract. Program profiling can help performance prediction and compiler
optimization. This paper describes the initial work behind TFP, a new profil-
ing strategy that can gather and verify a range of flow-specific information at
runtime. While TFP can collect more refined information than block, edge or
path profiling, it is only 5.75% slower than a very fast runtime path-profiling
technique. Statistics collected using TFP over the SPEC2000 benchmarks re-
veal possibilities for further flow-specific runtime optimizations. We also show
how TFP can improve the overall performance of a real application.
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1 Introduction

Profiling a program can be used to predict the program’s performance [1], identify
heavily executed code regions [9, 23, 11], perform additional code optimizations [12,
10], and locate data access patterns [13]. Traditionally, profiling has been used to
gather information on one execution of the program, which is then used to improve its
performance on subsequent runs. In the context of dynamic compilation and run time
optimizations, profiling information gathered in the same run itself can be used to
improve the program’s performance. This creates a greater need for efficient profiling,
since the runtime overheads might exceed any possible benefit achieved from its use.
In addition, the information gathered by profiling must be relevant for runtime
optimizations and should remain true while the optimized code is executed. In this
paper we propose a new profiling framework, TFP (Time-Sensitive, Flow-Specific
Profiling), that extracts temporal control flow patterns from the code at runtime
which are persistent in nature i.e., these patterns hold true for a given, selectable
period of time. This information can then be used to guide possible optimizations
from a dynamic perspective. This paper makes the following contributions:

1. Proposes a new profiling strategy that is both flow-specific and time-sensitive.
2. Provides a comparison of the profiling overheads of TFP with the dynamic path

profiling of [6]. On the SPEC 2000 benchmarks, we show that TFP is on average
only 5.75% slower than the technique of [6] (which is well suited fora dynamic
environment), while collecting a wider range of information.

3. Provides a case study of RNAfold [21] that demonstrates that TFP can be used
to improve overall performance of an application.



The rest of this paper is organized as follows. Section 2 describes the background
and motivation for our work. Section 3 discusses our framework in detail and how it
can be used to collect a range of runtime information. In Section 4 we discuss some
implementation details and how they can be changed to meet specific requirements.
Section 5 presents experimental results and a case study using our framework. We
conclude in Section 6 with possible future research directions.

2 Background and Motivation

Profiling code to gather information about the flow of control has received con-
siderable attention over the years. Most existing profiling techniques are meant for
off-line program analysis. However, with the advent of dynamic compilation and run-
time optimizations, the use of profile data generated for runtime use has increased
[19, 16, 13, 3, 2, 5, 4]. Recently [7] has shown that runtime flow-specific information
can be used to improve code performance significantly. In [15, 13], a technique called
Bursty Tracing is introduced that facilitates the use of runtime profiling further. This
technique allows the programmer to skip between profiled and un-profiled versions
of a code as well as control the duration spent in either version. Such a technique
will allow the user to control the overheads involved in running profiled code to a
far greater extent. Some of these techniques require hardware support while others
rely completely on software. Our work falls in the latter category.

Some of the more popular flow profiling techniques include block profiling,
edge profiling [17], [8] and path profiling [9], [18]. These techniques differ in the
granularity of the information they collect. Figure 1 illustrates the differences, where
block profiling collects basic block frequencies, edge profiling collects edge execution
frequencies and path profiling collects path frequencies.

In [6], Bala developed a profiling technique well suited for finding path
profiles in a dynamic environment. This technique instruments each edge of a code
segment with a 0 or 1, and represents each path as a starting block followed by a bit
sequence of 0’s and 1’s. The easy implementation and simplicity of this technique
makes it an attractive choice for runtime path profiling. With adequate support from
the compiler and hardware this technique can provide near-zero overhead profiling
and forms the basis of comparison for the work we develop here.
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It must be mentioned that path profiling ⊇ edge profiling ⊇ block profiling,
i.e. all the information gathered by block profiling can be gathered by edge profil-
ing, while all the information gathered by edge profiling can be collected by path
profiling. However, retrieving this information comes at a greater cost in terms of
overheads since one needs to maintain data structures to save this information and
often require multiple passes of these data structures to get the necessary granularity
of information.

However, several possible runtime optimizations such as dependence anal-
ysis and loop unrolling can benefit from block and edge profiling alone, and often
do not require more refined information. Even though this information might be
retrieved from path profiles, it could require considerable additional processing (to
store the blocks and edges a path corresponds to, and then scan through the paths
again to retrieve the necessary information). A fundamental question to be addressed
by our research is whether there is additional advantage in using more powerful pro-
filing information at runtime.

We also question whether a detailed analysis of the programs execution
pattern is useful for online analysis. For example, one might want to detect whether
a single path is being executed persistently (thereby making it a possible target of
optimizations [7]) or observe if certain pathological cases never occur [20]. This paper
seeks to combine several benefits of block, edge and path profiling in a single unified
profiling framework - providing easy and efficient access to a range of information
at runtime.

3 The TFP Approach to Profiling

TFP can not only count frequencies of flow-patterns but is capable of capturing a
variety of temporal trends in the code too. These trends can then be used to guide
runtime optimizations. To capture this idea we make use of persistence i.e. flow pat-
terns and information that continuously holds true for a period of time. We define
persistent flow patterns as follows:

A K-Persistent Flow Property (K-PFP) of a program segment is a property
which holds true for the control flow of that segment for K consecutive executions of
the segment.

The motivation for such a technique lies in the assumption that if a PFP holds
for a period K, it may continue for some additional time. Additional optimizations
could then be made assuming the trend would remain persistent to the benefit of
the dynamic compiler. For example consider the two code snippets in Figure 2.

Traditional frequency based profilers will find both the paths along f() and
g() to be equally hot [9]. The code in 2(a) is not suitable for runtime optimization,
since the path in the loop body only lasts for one iteration. On the other hand in
2(b) an optimization that is valid for only one path in the loop body would remain
valid longer, making it worthwhile to perform the optimization. This shows that
frequency is not the only parameter for locating hot paths, but persistence should
also be considered (similar distinctions about access patterns can also be found in

3



for (i=1 to 100)
{
	 if(i%2 = 0)
		 f();
	 else
		 g();
}       

for (i=1 to 100)
{
	 if(i > 50)
		 f();
	 else
		 g();
}       

(a) (b)

Fig. 2. Sample Code Snippets where the code in (b) has a 50-PFP but the one in (a) does
not

[14] for the purpose of code layout). When using a PFP guided approach, the code
snippet in 2(b) will qualify as a 50-PFP but the one in 2(a) will not, allowing us to
differentiate between them.

Even if a sequence of code does not have a persistent path, we might
still be interested in finding other PFPs. Each PFP might lead to different kind
and granularity of optimization. Listed below are some other possible PFPs and
examples of runtime optimizations that can be based on them.

1. Persistently taken paths: This information can help the compiler identify a possi-
bly smaller segment of code on which runtime path-specific optimizations might
be conducted.

2. Basic blocks which are persistently not taken: This information would allow us
to form a smaller CFG of the code region by eliminating these blocks from the
original CFG. As a result, we might eliminate dependences, loops, variables etc.
that might promote additional runtime optimizations.

3. Persistently taken path segments: Even if persistent paths do not exist we might
have sub-paths that are persistent. This can help in eliminating certain depen-
dences and code regions.

4. Whether a given set of edges are ever taken: This information can be used to
remove possible dependences at runtime.

5. The minimum/maximum level of persistence during a time period : Even if no
path meets the persistence parameter of K, such information can be useful to de-
termine the extent to which loops can be unrolled without causing inter-iteration
dependences.

Though some of the existing profiling techniques can be modified to incor-
porate persistence, they are aimed at gathering one kind of information efficiently.
While path profiling can do a good job of PFPs 1 and 5, block profiling can perform
2 and edge profiling can collect 3, 4 and 5 efficiently. Path profiling techniques like [9]
and [6] can also be used to detect 2, 3 and 4 but that would require maintaining ad-
ditional data structures, storing additional data, and making multiple passes of the
profiled information. TFP provides a unified framework that collects all the above
mentioned PFPs with a small amount of instrumentation. The following section
describes TFP in detail.
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3.1 Detailed Description of TFP

Like most control-flow profiling techniques, our targets for profiling are acyclic code
regions (we later describe in Section 4 how we can include nested loops). Thus any
region of code that begins with a block that is the target of a back-edge, and ends
with the block from which the back edge originated, with no intermediate back edges,
is a valid candidate for our profiling strategy.

TFP is a hybrid between Bala’s method [6] of path profiling and block
profiling. Instead of assigning each edge a 0 or 1 (as in Bala’s method), we represent
each (profiled) block by a single bit position in a bit string. Conceptually, each block
represents an integer which is a unique power of two (i.e. blocki is represented by
the value 2i). The initial block always sets the value of this register to 0. At the end
of each profiled block an instruction is inserted to perform a mathematical ADD (or
bitwise OR) of this number to a register r. The value of this register identifies the
path taken, and Bookkeeping code is inserted in the exit block of the instrumented
region. For acyclic code regions with multiple exit blocks we add the Bookkeeping
code in each of the exit blocks. The Bookkeeping code can vary with the kind of
PFP(s) we wish to track, as illustrated in the sections to come. Figure 3 gives
an example of our profiling method, showing a sample code region, the inserted
instrumentation code and the register values associated with the various paths.

r = 0

r = r+1 r =  r+2

r = r+4 r = r+8

 Bookkeeping
r = r+16

A

B C

D E

F

ACF     - 10010
ABEF   - 11001
ABDF   - 10101
ABCF   - 10011
ACEF   - 11010
ABCEF - 11011

Fig. 3. An example of our profiling technique (the values of r corresponding to the paths
is also given)

The basic idea behind our approach is that each path will produce a unique
value in the register, as well as give all the information about the blocks that form
that path. Thus we get the benefits of both block and path profiling simultaneously
(and some benefits of edge profiling as shown in Section 3.5). This idea is embodied
in the following:

Theorem 1. With the register assignments inserted as described above, each different
value of the register r corresponds to a unique path.
Proof. Since each basic block is represented by a bit in the register, the only way in
which the register can get a value is by traversing all the blocks that correspond to
a 1 in the bitwise representation of the value. Thus given a value in the register, we
can determine the basic blocks in the corresponding path. To complete the proof,
we have to show that no two paths can have the exact same set of blocks in them.

5



The proof is by contradiction. Assume that X = x1, x2, ..., xN are the basic blocks
that were traversed and Y = y1, y2, ..., yN and Z = z1, z2, ..., zN are two different
paths using X, i.e., Y and Z are two different permutations of X. All the elements
of X must be unique, else X would have a loop, and thus an associated back edge,
contradicting our assumption. Now let k be the position where Y and Z first differ
i.e. yi = zi for i = 1, ..(k − 1) and yk 6= zk. Obviously k < N or Y and Z would
be identical. Now since yk 6= zk there is some value zj , j ε (k + 1, ..., N) for which
zj = yk (since both Y and Z have the same set of elements). Thus there exists an
edge from zj−1 to yk in the path Z. Now zj−1 has to appear in Y as well and it can
only appear after or at the kth position. Thus in Y there is a path from yk to zk−1

and we also know that there is an edge from zk−1 to yk. Thus this edge is actually
a back edge, contradicting our assumption for profiling candidates. Hence Y and Z
cannot be different. 2

TFP provides two major benefits when compared to traditional path profil-
ing techniques. Firstly it collects a much wider range of information as a by-product
of path profiling. Other path profiling techniques would require additional data struc-
tures (TFP uses just a few variables), and multiple passes over these data structures
to find this information. The second advantage that TFP provides is that most
other path profiling techniques instrument the edges which can result in additional
branches in the program, affecting the overall performance. TFP instruments at the
block level and though this requires instrumenting every block of the region it does
not add further checks in the code.

We now describe how TFP can be used to detect some of the PFPs men-
tioned earlier in this section. We first consider the parameter Persistence Factor (K)
which represents a lower bound (threshold) on the persistence of interest. To gather
various K-PFPs the TFP instrumented code is executed for K iterations (this can
be achieved using [15]). The values of the Bookkeeping variables at the end of these
iterations reveal the various K-PFPs observed.

3.2 Persistent Paths

The following Bookkeeping is needed to track persistent paths using TFP.

bblock1 = bblock1 AND r;
bblock2 = bblock2 OR r;

Bookkeeping for persistent paths

After running the TFP instrumented code for K iterations if bblock1 and bblock2 are
equal then we know that we have a K-persistent path (which the compiler might
then wish to optimize). This follows from the fact that each path produces a unique
value of r (from Theorem 1) and the only way bblock1 and bblock2 will be equal is if
r remained unchanged for the K iterations (bblock1 and bblock2 are initially set to
-1 and 0 respectively). If we detect a persistent path then we can expect the code to
remain in the same path for a while and make further optimizations based on this
assumption. As an example assume that for the CFG shown in Figure 3, the path

6



ABEF is persistently taken for 10 iterations. It is easy to see that at the end of the
10 iterations both bblock1 and bblock2 will be equal to 11001, denoting the existence
of a 10-persistent path.

3.3 Path Segments that are always taken

Even if we do not find persistent paths using the method given in Section 3.2, we
might still want to find the set of path segments or sub-paths that are always taken.
This kind of information can be used to form a smaller CFG from the code by
eliminating untaken blocks and paths. To get this information using TFP, we use
the same Bookkeeping code as in Section 3.2 but assign the numbers ADD/ORed
to r in each basic block in a topologically sorted manner (this need not be done
at runtime if one uses a framework like [15] or if all regions of possible interest
are instrumented at compile time itself). Thus if each instrumented basic block bi

ADD/ORs the value vi to r, then vi < vj if bi comes before bj in the topologically
sorted order of the blocks.

To gather the information about path segments that are always taken
(during the K iterations of the TFP instrumented code), we need to scan through
bblock1 (from left to right or right to left) and join blocks that correspond to adjacent
1’s in bblock1, unless there is some other block in between the two blocks in bblock2

that is a 1. Thus if xi1, xi2, ..., xiK where (i1 < i2... < iK) is a persistent path
segment then the bit locations i1, i2, ..., ik will be 1 in bblock1 and the only bits
which are 1 in bblock2 between i1 and ik will be those at (i1, i2, ..., ik). This follows
from the fact that since the blocks are topologically sorted, then the edge (xi1, xi2)
is always taken if no block between xi1 and xi2 is ever taken.

As an example let us refer to Figure 3 again. Assume that during a profiled
run only paths ACEF and ABCEF are taken. At the end of the profiled run bblock1

will contain 11010 and bblock2 will contain 11011. Following the technique given
above we see that bit positions 1,3 and 4 are set to 1 in bblock1 and none of the
other intermediate positions (position 2) are set to 1 in bblock2. Thus we can conclude
that the path segment connecting bit positions 1,3 and 4 (i.e CEF ) is always taken
- which is the case.

3.4 Basic Blocks that are not taken

To determine the basic blocks that are not taken, we could use block profiling and
check each counter of the basic blocks to see if they are 0. However, for TFP, we
do not need counters to gather this information, which saves us memory. Using
our method this information can be easily obtained using the following code for
Bookkeeping.

bblock = bblock OR r;

Bookkeeping for blocks persistently not taken

On executing the instrumented code for K iterations, the variable bblock has a 1 for
all the blocks that get taken at any time during the execution of the instrumented
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code, and all bit positions that have 0’s correspond to basic blocks that are not
executed even once, in those K iterations. Note that TFP doesn’t gather the exact
frequency of the blocks that are taken.

It can be observed that the Bookkeeping for this PFP is a subset of the
ones described in Sections 3.2 and 3.3, and need not be additionally inserted in case
we are also instrumenting for persistently paths or sub-paths.

3.5 Tracking if specific edges are taken

Several useful optimizations are impossible to verify statically because of possible
dependences along different control flow paths. Our framework provides an easy way
of tracking whether a specific set of edges is ever executed (or persistently not exe-
cuted). The compiler can use this information to eliminate false dependences at run-
time, enabling several optimizations (such as constant propagation, loop unrolling,
code compaction etc). To achieve this using our framework, we assign blocks their
additive values based on a topological sort as described in Section 3.3. Thereafter
if we want to test if an edge between blocks i and j is ever taken, we add a test in
the Bookkeeping code to check if the bit positions i and j are ever simultaneously 1
with no other 1’s between them. This can be done by assigning two variables having
the initial values of r1, an integer with all bits between positions i and j as 1, and r2,
an integer with only bit positions i and j set as 1. These variables can be defined at
compile time with their corresponding values. At runtime, the following code needs
to get executed for Bookkeeping:

if ( (r AND r1) == r2)
	 inform OPTIMIZER that edge (i, j) is taken;

Bookkeeping needed to track if specific edges are taken

It is easy to see why this works. If the edge i → j is ever taken, then the bit
positions i and j of r will be 1 (by definition of our profiling technique). Moreover
all the intermediate bit positions between i and j will be 0 (otherwise the edge i →
j could not have been taken since the blocks are topologically sorted). Thus when
r is ANDed with r1, the only bit positions which will be 1 are i and j, making
the profiled code call the optimizer. If after executing the TFP instrumented code
for K iterations the OPTIMIZER is not informed (we need not necessarily inform
the OPTIMIZER but can just set a flag to true as well) we can conclude that the
monitored edge is not taken persistently.

3.6 TFP for normal path profiles

It must be mentioned that TFP can be used to measure normal path frequencies
as well. We have already seen that each path produces a unique value in r. This
value can be hashed into a counter array at the end of the loop (back-edge) to
maintain an exact count of the path frequencies. However, path profiling techniques
like [9] will do a better job of maintaining such frequencies alone. The range of
the path identifiers used by this technique is exactly equal to the total number of
paths, making direct indexing into the counter array possible. Both TFP and Bala’s

8



method [6] use path identifiers that do not reflect the actual number of paths in
the instrumented region, thereby requiring hashing. To summarize, we claim that
several dynamic optimizations might not need the “exact” frequency of paths. How-
ever, if needed, TFP can easily be modified to maintain these frequencies without
adding to the overheads significantly ([6] required ≈ 3 cycles for their hashing phase).

These are just some of the statistics we can gather using our profiling strat-
egy. One can easily change the Bookkeeping segment to calculate further statistics
like basic blocks that are always taken, minimum amount of persistence between
paths etc. Moreover we have already seen that some part of the bookkeeping needed
for different statistics overlap, making the bookkeeping more efficient.

4 Implementation Issues for TFP

In this section we discuss some of the issues involved in implementing TFP and how
the strategy can be modified in different situations.

4.1 Use of Variables and Registers

Much of TFP’s value relies on the fact that it uses only a few variables to achieve
profiling as well as to maintain the information gathered. Traditional profilers can
consume large amounts of memory to store profiled data. This use of memory can
have adverse effects on performance if used in a runtime scenario. TFP shows that
it is possible to maintain a fairly wide and relevant range of runtime information
by using only a few variables. This, however is based on the assumption that the
number of blocks in the instrumented region is not too large. If the number of
blocks instrumented by TFP is small, a single register can be used to represent all
the blocks (since each block is represented by a bit in the register). This helps in
reducing the overheads of TFP as we avoid reloading values from memory every
time profiling occurs, and all the data needed for profiling can be maintained in a
single register. The bookkeeping may need a few extra variables (depending on the
amount of information we want to gather) but still this would be significantly less
than using large arrays to store the frequencies of every path/block/edge.

To test our assumption that a single register is sufficient to store tempo-
ral program behavior, we profiled the code regions covered by the most frequently
executed back edges in the SPEC 2000 benchmarks1 to see how many basic blocks
they cover. The results are in Figure 4. It is observed that more than 99% of these
frequently executed code regions have less than 64 blocks in them. This implies that
in nearly all cases a 64 bit register is sufficient to implement TFP efficiently.

To use TFP for code regions having more than 64 blocks, we can use the
same technique as long as the number of block instrumented is not too large. We use
a new variable every time we finish instrumenting 64 blocks (assuming we are using
a 64-bit register) i.e. instead of just using r we use (r1, r2, ..., rn) as needed. At the

1 We did not consider some trivial two block loops having just a single path. Also for eon
and some FP benchmarks we considered less than 10 back edges as there was a significant
drop in the frequencies of the remaining ones.
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(a) (b)

Fig. 4. Cumulative distribution of the number of basic blocks present in the profiled code
regions in (a) INT Benchmarks and (b) FP Benchmarks

end in the Bookkeeping section, instead of checking if (r = prev) we check if (r1 =
prev1 AND r2 = prev2 ... AND rn = prevn) and set all ris to 0 after that. Thus we
make up for not being able to store the bit stream corresponding to a path in a single
variable by maintaining parts of the bit stream in separate variables. However, n = d
(Num of Blocks Instrumented)/64 e, is rarely more than 1 (for the 110 code regions
we instrumented only one had more than 64 blocks in it). Thus at most we will need
a few extra variables, which is still better than using large arrays. Moreover, if we
assign blocks the variables they update by traversing the instrumented code region
in a depth-first manner, we ensure that most paths do not involve updating more
than one variable. This would mean that a variable once loaded in a register is likely
to remain there for the whole path, reducing unnecessary loads at runtime.

4.2 Nested Loops and Procedure Boundaries

Till now we have discussed how TFP can be applied to an acyclic region of code.
TFP can also be applied to multiply-nested regions of code. A simple way to achieve
this this would be to assign a separate variable to monitor different levels of loops.
Figure 5 shows this assignment. Since loops normally don’t have more than 2-3 levels
of nesting, this should not be a problem.

 

r1 = 0 

r1 += 1 

r1 += 2 
r2 = 0  

r2 += 1  r2 += 2 

r2 += 4 
 

r1 += 4 
 

Loop 2 

Fig. 5. Effect of nested loops. We use 2 variables r1 and r2 for the 2 levels of the loop

10



The same technique can also be used to perform inter-procedural profiling
using TFP by treating function calls as inner-loops and using separate variables to
profile them.

Another trend of interest is to make the tracking of these PFPs last across
multiple procedure calls. For example one might detect a K-PFP in a procedure,
even if the K runs of the instrumented code region is spread across multiple calls to
the procedure. A simple way of achieving this would be to declare the TFP variables
used for profiling the procedure as static so that they are persistent across multiple
procedure calls.

5 Experimental Results

We performed several experiments using TFP on the SPEC 2000 benchmarks and
a real application RNAfold [21]. The objectives behind the experiments were three
fold - to study the overheads of TFP for runtime profiling, analyze the information
collected by TFP to test for non-trivial PFPs in programs, and to study the overall
impact of using TFP in a real application.

5.1 Overheads of using TFP

We implemented TFP on 7 SPEC 2000 INT benchmarks and 6 FP benchmarks (the
remaining benchmarks were also considered but were left out since most of their
dominant back-edges led to trivial single-path regions). Instrumentation was done
using ATOM [22]. We first instrumented the programs to detect the most frequently
executed back edges, and then instrumented the code regions covered by these back
edges. We omitted trivial two-block loops with a single path between them. There
remained 4 regions (out of the total 110 regions we instrumented) with only one
static control flow path between them. Ideally the compiler would have coalesced
them into a single block but it did not do so. The remaining 106 regions had more
than one possible static path in them. We did not have a customizable compiler for
our use, and ATOM itself adds overheads. Thus we decided to test the overheads of
TFP by comparing it with our implementation of [6], one of the fastest runtime path
profiling techniques. TFP did not maintain the path frequencies since the primary
purpose of our experiments was to study the use of TFP in gathering PFPs. To be fair
we did not save the results of [6] as originally done (thus preventing it from making
unnecessary stores) but just used it to ensure that the same path was persistently
taken. TFP on the other hand not only tracked persistent paths but also tracked
persistent sub-paths and untaken blocks (Section 3.3 and 3.4). Ideally one would stop
running the instrumented code once a PFP is detected to take optimization actions.
However, for our experiments, we wanted to ensure that the instrumented code kept
running for the entire duration of the program (to study its overall overheads) and
therefore set a very high value of K. The normalized results are shown in Figure 6.2

2 Actual slowdowns varied from 10% to nearly a factor of 3. Most of the overheads were
because of ATOM’s use of procedural calls to instrument code. Thus even a single line
of instrumented code involved making a procedural call. Compiler support will help in
bringing down these overheads considerably.
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Fig. 6. Comparison of TFP and Bala’s technique on (a) INT Benchmarks (b) FP Bench-
marks

On average, TFP was only 5.75% slower than Bala’s method, even though
it gathered a wider range of information (for our experiments TFP tracked persistent
paths, persistently untaken blocks and persistent sub-paths while Bala’s only gath-
ered persistent paths). For three of the FP benchmarks, TFP outperformed Bala’s
method. This happens because Bala’s method needs two instrumentation statements
(a bitwise OR and a register shift) at each conditional edge3, while TFP requires a
single instrumentation statement (a bitwise OR) at every block. For the FP bench-
marks the paths were small and the number of blocks in a path was comparable to the
number of conditional edges along the path, making TFP more efficient. For the in-
teger benchmarks we observed that several blocks that could be coalesced together
were separate. Since we did not have control over the compiler, we instrumented
each of these blocks, though ideally they would have been one block (reducing our
overhead). Since there were no conditional edges in these blocks Bala’s method did
not instrument them. We believe our 5.75% relative slow down is a good result,
since Bala’s technique achieves nearly zero overhead profiling with adequate com-
piler support. We thus conclude that TFP is lightweight enough for runtime use on
these benchmarks.

5.2 Statistics from TFP

In this section we present some runtime statistics collected by TFP on the SPEC 2000
benchmarks. These statistics reveal the presence of persistent trends in programs
which can be used for dynamic compilation.

Persistent Paths We ran TFP over the SPEC 2000 INT and FP benchmarks
and detected persistent paths with different values of K. The results from these
3 Often one needs additional conditional statements to instrument conditional edges. TFP

instruments at the block level and does not add additional conditional statements in the
code.
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experiments are shown in Table 1.We used static variables to track the paths as
mentioned in Section 4.2. The total number of static paths in these regions and the
number of paths that were persistent for a given value of K are given. The percentage
of total iterations in the instrumented regions contributed by the persistent paths is
also provided. Since we have considered the most frequently executed back edges,
the instrumented code regions constitute a large fraction of the program’s actual
running time. In summary, the regions of code we instrumented had 1961 static
paths each on an average. Of these a small number of paths (≈ 16 for K=50 and
≈ 14 for K=100) account for a fairly large percentage (≈ 61% for K=50 and ≈
59% for K=100) of the total iterations in these regions at runtime.4 These paths
also have the property that the code continuously stays in these paths for at least
50/100 iterations on average without shifting to the other possible paths in the
region. Thus it makes sense to perform path-specific runtime optimizations on these
paths since (i) these paths constitute a fair fraction of the executed code and (ii)
the path-specific optimizations will hold true for that period, allowing them to be
profitable.

Benchmark Number of Persistent Path Statistics
Name Static Paths K=50 K=100

Instrumented paths % paths %

cc1 33 11 98.14 10 96.67
gzip 3563 15 0.912 10 0.658
bzip2 1057 11 49.11 11 45.71
mcf 130 18 55.81 18 51.91

crafty 826 62 15.54 40 12.13
eon 20 4 3.109 3 3.108

parser 19623 40 45.90 35 41.18
AVG (INT) 3607 23 38.36 18.14 35.91

swim 9 4 99.99 4 99.99
applu 48 6 85.71 6 85.71
apsi 27 9 99.99 9 99.99

wupwise 18 4 61.54 4 61.54
mgrid 46 10 99.84 10 99.65
fma3d 94 16 75.05 16 75.05

AVG (FP) 40.33 8.16 87.02 8.16 86.98

AVG (net) 1961 16.15 60.81 13.53 59.48

Table 1. Runtime Persistent Paths detected by TFP in SPEC 2000 INT and FP
benchmarks. Path denotes the number of unique persistent paths that TFP detected
and the percentages denote what fraction of total paths executed at runtime in the
instrumented regions were persistent.

4 Note that 50-PFP ⊇ 100-PFP and 50-PFP ≈ 100-PFP implies that most of the PFPs
with persistence 50 also had a persistence of 100.
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Persistently Untaken Blocks Information that might also be of use is the number
of blocks that do not get executed persistently. One can remove these blocks from the
code iterations, which might lead to several subsequent optimizations. We used TFP
to detect opportunities for such optimizations. Once again we used static variables
for our instrumentation and after every K iterations of that code region we checked
to see which were the blocks that were not executed even once during these iterations.
A total of the number of such blocks and the total number of blocks for every set
of K iterations was maintained and is provided as an average in Table 2. We have
also provided the average number of blocks in the code regions we instrumented to
give an estimate of how many blocks one might actually eliminate temporarily. Since
block-reduction is a smaller sub-set of path-reduction we set higher values of K for
these experiments(500,1000). To sum up the results of Table 2 - our instrumented
code regions had on an average 10.67 blocks each, of which 29.03% blocks were not
executed for at least 500 consecutive runs of these regions and 27.94% of the blocks
were not executed for at least 1000 consecutive runs of these regions. One can thus
try to eliminate these blocks, and can make further optimizations which are likely
to be valid for at least a while.

Benchmark Average Number % of Blocks NOT
Name of Blocks/instru- taken Persistently

mented region K=500 K=1000

cc1 6.6 38.97 31.80
gzip 16.4 22.94 21.73
bzip2 13.6 65.10 64.15
mcf 10.5 44.94 44.06

crafty 24.2 24.12 21.59
eon 10.0 0.017 0.017

parser 14.6 19.38 17.93
AVG (INT) 14.27 30.78 28.76

swim 4 0.000 0.000
applu 5 52.47 52.47
apsi 4.4 15.72 15.72

wupwise 7.4 39.18 39.18
mgrid 5.5 0.391 0.300
fma3d 12.5 54.22 54.18

AVG (FP) 6.47 27.00 26.98

AVG (net) 10.67 29.03 27.94

Table 2. Runtime Persistently Untaken Blocks detected by TFP in SPEC 2000 INT
and FP benchmarks.
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5.3 A Case Study: RNAFold

We studied if TFP could lead to improved program performance on RNAfold [21].
This computational biology application folds a given RNA sequence and returns its
minimum free energy. The major part of the program is spent in a loop of the form:

for (decomp = INFINITY, k = start_value; k <end_value; k++)
              if (decomp > Array1[k]+Array2[k+1][j])
			 decomp = Array1[k]+Array2[k+1][j];

Though this is a predominantly memory-intensive loop, one can get some
benefits by unrolling the loop. However, there is a possibility of a true dependence
on decomp between successive iterations of the loop. If we implement aggressive un-
rolling and decomp is seldom changed, then we can get a fair amount of additional
parallelism. However, we observed that if decomp changed frequently (thereby lim-
iting the parallelism), unrolling slowed down the overall execution by consuming
additional resources (registers etc.). For RNAfold it is not possible to decide at com-
pile time whether unrolling might be useful, since the decision is dependent on the
data values of the input arrays. One can use TFP to detect PFPs in the loop (either
a persistent path along the dependence-free path OR to see if the edge leading to the
dependence is ever taken). If we notice that the path along which decomp doesn’t
change is executed persistently we can decide to unroll the loop.

Ideally the instrumentation and optimization would be done in the com-
piler. However, since we used an existing compiler (gcc-2.96) that we did not have full
control over, we hand-coded the optimization. We manually implemented different
unrolled versions of the loop (3-level and 4-level). The original loop was instrumented
using TFP. The instrumentation searched for certain degrees of persistence along the
path where decomp did not change and on finding such a trend it passed on control
to the corresponding optimized, unrolled version. To test the usefulness of TFP in
this experiment we also ran a separate version of the code with just the unrolled
version of the loop. We ran the program with four different sizes of input sequences.
The results are shown in Figure 7.

The TFP-enabled unrolled version outperforms both the original code and
the unrolled version (without TFP). This is because the unrolled version uses up
registers and is only useful if it manages to introduce additional parallelism. The
TFP enabled version uses the original loop till it finds a persistent trend, and then
dynamically transfers control to the unrolled version, making the optimization more
profitable. Though the improvements in time are small, these experiments show that
time sensitive flow information can be used to improve overall program performance
at runtime.

6 Conclusion

In this paper we presented a new profiling strategy, TFP, designed to be used in
the context of dynamic compilation and optimization. In such a context, profiling
must not only provide information useful in a dynamic setting, but do so with
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Fig. 7. Normalized execution time for for three different optimized versions of RNAfold

low runtime overhead. Our strategy, TFP, can collect a range of time-sensitive,
control-flow-based information which is more detailed than than that collected by
block, edge or path profiling. Despite being more powerful, TFP’s overhead is on
average only 5.75% greater than that of [6]. We used TFP to gather statistics from
the SPEC 2000 benchmarks, showing possible opportunities for profile-directed flow
specific optimizations at runtime. We also showed a case study that demonstrates
the usefulness of the information collected by TFP for optimization at runtime.

TFP is still in its initial stages. We plan on incorporating it in the context of
a dynamic compiler to further explore its usefulness and actual overheads. Moreover,
the amount of persistence (K) needed at runtime to actually produce benefit should
be explored. Work is also going on to find efficient ways of using TFP to also gather
the exact path frequencies, if needed, at runtime. We plan to study if the definition of
persistence can be relaxed (to accommodate a larger range of information) without
adding to the overheads. Work is also going on in using TFP for “application profiles”
that can help in predicting application performance.
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