From Prediction of Structure to Design of Function

Prediction

Genome sequences => Macromolecular Structures and Interactions

Design

Designed sequences <= New structures, interactions, enzymes, endonucleases, vaccines

	Model of energetics of inter and intramolecul interactions	of ar
Prediction (Given Sequence, Optimize	ROSETTA	Design (Given Structure, Optimize
Structure)		Sequence)
Ab initio structu prediction	re Protein stru	cture Protein design
Protein-protein d	ocking Protein-prot interactions	ein Interface design
Protein-ligand do	cking Protein-ligations	nd Enzyme design
DNA binding spe	cificity Protein-DN interactions	Endonuclease design

Rosetta high resolution potential

repulsion (screened)

RNA folding in Rosetta

Rhiju Das

De novo modeling

In more than a third of the cases, de novo modeling achieves < 2.0 Å structures, and selects them.

Native free energy gaps recurrent feature of structure prediction problems

- Soluble proteins, multimeric proteins, heterodimers, RNAs, membrane proteins, etc.
- Reflection of very large free energy gaps required for existence of single unique native state
- Prediction possible because (magnitude of actual free energy gap) >> (error in free energy calculation)
- Challenge: how to sample close to native state?

How to find global minimum?

- Smarter algorithms
- Volunteer computing: rosetta@home
- Start closer: comparative modeling
- Use experimental data to limit search
- Collective brain power of game playing humans: http:fold.it

Rosetta refined comparative models often more accurate than starting template.

Zscore 6.45

Blind prediction of Human A2A Adenosine Receptor TMH core region

X-ray structure Rosetta Model 1.3 Å (over TMH region) Beta2 adrenergic receptor 1.8 Å (over TMH region)

Patrick Barth

Use experimental data to help locate global minimum

- X-ray diffraction data
- NMR chemical shift assignments
- Low resolution CryoEM density
- Different from traditional approaches: data guides search, does not specify structure

"Ab initio phasing by ab initio folding"

Red: PDB coordinates from crystal structure phased by selenium SAD

Gray: Electron density map, phased by molecular replacement with ab initio Rosetta model

Rhiju Das, Randy Read, Nature 2007

High accuracy models from limited NMR data!

- Backbone chemical shifts only
- Chemical shifts plus unassigned NOESY spectra
- Chemical shifts plus residual dipolar couplings
- Data confines search only; details from rosetta forcefield=>can be more accurate than conventional models

NMR CASP Blind Targets 2009

Rosetta plus chem shift plus unassigned NOESY data

Blind Rosetta structure calculations using chemical shifts and RDCs. No sidechain assignments needed!

BcR268F 118 aa 0.99 Å

DvR115G 94 aa 1.24 Å

SrR115 100 aa 1.49 Å

Accurate models from chemical shifts and RDCs: new paradigm for NMR structure determination?

Topology-broker fold tree: allows stochastic sampling and quasi-Newton minimization of any combination of rigid body and internal degrees of freedom

blue: deposited NMR structures, red: Rosetta

High-resolution model of RDV from 6.8Å cryoEM data

Integrin α IIb β 3 model based on Rosetta + disulfide constraints transmembrane section

 $C\alpha$ rmsd: 2.1 Å

Rosetta (Zhu et al., Mol.Cell in press) NMR (Lau et al., 2009, EMBO J., March 12) Patrick Barth Tim Springer

Integrin α IIb β 3 model based on Rosetta + disulfide constraints entire heterodimer

Low energy Rosetta structures perhaps better models of proteins in solution than crystal structures?? Heresy!

1FNA

Green: Rosetta Blue: Native

Mike Tyka Jane Richardson

Protein Design

Top7 X-ray structure has correct topology. Backbone RMSD to design only 1.2Å

 $C-\alpha$ Backbone Overlay

Red : X-ray structure

Blue : Design model

Brian Kuhlman, Gautam Dantas; Science 302 1364-8

Design of new protein functions

- Design of new protein-protein interactions
- Design of enzymes catalyzing novel chemical reactions
- Design of new DNA cutting enzymes
- Design of HIV vaccine

Design of Novel Enzymes

- I. Model reaction transition states and intermediates
- II. Design disembodied ideal active site around transition states and intermediates
- III. Design protein containing ideal active site

Alex Zanghellini, Daniela Roethlisberger, Lin Jiang, Eric Althoff

de novo Computational Enzyme Design: Engineering a Stereoselective Bimolecular Catalyst

THE DIELS-ALDER REACTION

de novo Enzyme Design using Rosetta

ROSETTA MATCH

de novo designed Diels-Alderase

DA_20_10 ACTIVE SITE VIEW

DIELS-ALDER REACTION PROGRESS CURVE

(1x PBS, 298K, 0.1MM DIENE, 3MM DIENOPHILE, 20UM PROTEIN)

Crystal Structure of designed Diels-Alderase

DESIGN (BROWN) vs. CRYSTAL STRUCTURE (CREAM) ALL ATOM RMSD: 0.3Å

Stereospecificity of designed Diels-Alderase

Kinetic Characterization of *designed* **Diels-Alderase**

Kinetic Constants

Enzyme	k _{cat} (hr⁻¹)	K _{M-diene} (mM)	K _{M-dienophile} (mM)
DA_20_00 (298K)	0.10	3.53	146.3
DA_20_10 (298K)	2.39	0.95	56.1
mAb 7D4 (310K)	0.21	0.96	1.7
mAB 4D5 (310K)	0.21	1.6	5.9

De novo enzyme design--Successes thus far

- General acid-base catalysis: Kemp elimination
- Covalent catalysis: novel aldol and Michael condensation catalysts (dozens of active retroaldol designs on several different scaffolds)
- Bimolecular reactions: Diels Alder
- Polar transition state stabilization: ester hydrolysis

Kemp eliminase

<u>Esterase</u>

+ HO >0

Retro-aldolase

Diels-Alder enzyme

Indole-3-glycerol phosphate synth.

Retro-aldolase

Kemp eliminase

Baylis-Hillman enzyme

Structures of evolved variants illustrate shortcomings of design round 0 - round 4 - round 6

Precise positioning of catalytic groups critical!

Olga Kheronsky, Orly Dym, Danny Tawfik

De novo enzyme design-lessons and questions

- Can design active enzymes from scratch!
- Starting activities low, but can be increased readily by directed evolution
- Need more precise positioning of catalytic groups, elimination of competing reactions (aldolase trapped intermediates), etc.
- Enzymes are masters of art of compromise-have to do everything well!
- Critical question is about evolution--what fraction of nascent enzymes have the potential to become highly active catalysts??

	Search problem?	Low accuracy?	Solution
Structure calculation	Yes	No	Experiment then Computation
Function design	No	Yes	Computation then Experiment

Accuracy high for structure calculation: Evolved energy gap for folded macromolecules

Accuracy low for enzyme design:

No evolved energy gap for designed macromolecules Don't have complete understanding of requirements for catalysis. Will learn in the process! Rosetta@home puts people's computers to work to solve problems; how to enlist their brains as well?

FoldIt--Multiplayer online computer game for research and education

Adrien Treuille, Seth Cooper, Zoran Popovic, Firas Khatib

Blue = Native Red = Foldit Puzzle Green = Highest Scoring Foldit Solution Player name: bzipitidoo Foldit team name: Void Crushers

Acknowledgements

- Structure prediction: Mike Tyka Ingemar Andre Patrick Barth Oliver Lange
- Incorporation of experimental data
 Vatson Raman
 Ad Bax
 Rhiju Das
 Wah Chiu
- Enzyme design

 Justin Siegal
 Alex Zanghellini
 Daniela Roethlisberger
 Eric Althoff

Danny Tawfik and Olga Kheronsky Don Hilvert Rosetta@home puts people's computers to work to solve problems; how to enlist their brains as well?

FoldIt--Multiplayer online computer game for research and education http:fold.it

Adrien Treuille, Seth Cooper, Zoran Popovic, Firas Khatib

Integrin α IIb β 3 model based on Rosetta + disulfide constraints entire heterodimer

- Structure determination: experiment=>computation=>global minimum
- Function design: computation=>experiment=>high activity
- Problems are opposite, in structure determination have high accuracy but search problem; in enzyme design, no search problem but low accuracy

Blue = Native Red = Foldit Puzzle Green = Highest Scoring Foldit Solution Player name: bzipitidoo Foldit team name: Void Crushers

Improving autobuilt model in 4Å crystallographic data

Autobuilt model

- 1.12Å RMS
- 85% C α within 1Å of native

Rosetta prediction

- 0.88Å RMS
- 92% C α within 1Å of native

Native structure

Designed enzyme is >95% Stereoselective for the Endo Diastereomer!

Rate enhancement greater than 10⁴ (depending on definition)

	Description	Units	DA_20 _10	7D4
$(k_{cat}/K_{M-Diene}K_{M-Dienophile})/k_{uncat}$	rate enhancement per mole of enzyme	M ⁻¹	1.11 x 10 ⁶	2.95 x 10 ⁶
(k _{cat} /K _{M-Diene})/k _{uncat}	rate enhancement saturating dienophile	-	4.03 x 10 ⁴	5.01 x 10 ³
$(k_{\rm cat}/{\rm K}_{\rm M-Dienophile})/k_{\rm uncat})$	rate enhancement saturating Diene	-	1.30 x 10 ³	2.83 x 10 ³

Justin Siegal and Alex Zanghellini

Computational Enzyme Design of A Novel Intermolecular Diels Alderase

De novo enzyme design-lessons

- Can design active enzymes from scratch!
- Starting activities low, but can be increased readily by directed evolution
- Need more precise positioning of catalytic groups, elimination of competing reactions, etc.
- Enzymes are masters of art of compromise-have to do everything well!

Acknowledgements

Nick Grishin

 Structure prediction: Mike Tyka Ingemar Andre

Patrick Barth

- Incorporation of experimental data
 Vatson Raman
 Ad Bax
 Rhiju Das
 Yang Shen
- Enzyme design Justin Siegal Alex Zanghellini Daniela Roethlisberger Eric Althoff
- Foldit Adrien Treuille Seth Cooper

Zoran Popovic

De novo enzyme design--Successes thus far

- General acid-base catalysis: Kemp elimination
- Covalent catalysis: novel aldol and Michael condensation catalysts
- Bimolecular reactions: Diels Alder
- Polar transition state stabilization: ester hydrolysis

Aldolase Design Diversity

Red shows Imine-Lysine positions of active designs. Wide range of

