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Topics of This Talk

– Conformational transitions between two 
folded states

– Statistical analysis of helix-helix interactions

– Approximating the conformational statistics of 
unfolded and partially folded chains



Conformational Transitions
Using Elastic Network Interpolation



Lactoferrin Transition from 
1lfg.pdb to 1lfh.pdb 

M. K. Kim, R. L. Jernigan, G. S. Chirikjian. Biophysical Journal. 83:1620-1630. 
2002 



Rigid-cluster systems

• Many conformational changes in macromolecules can 
be resolved into hinge and shear motions which are 
associated with the collective behavior of atoms.

• Some macromolecules could be represented by a set 
of rigid-clusters. 
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Rigid-cluster ENI

• The position of residue a at time t is 

• Assuming small rigid-body displacement,
motions of body i depend on the six-
dimensional vector:

translational orientational

• The new ENI cost function is defined as
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M. K. Kim, R. L. Jernigan, G. S. Chirikjian. Biophysical Journal. 89:43-
55. 2005 



Lactoferrin
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ENI for the GroEL-GroES complex



Virus Capsid HK97
(1FH6  to 1IF0)

M. K. Kim, R. L. Jernigan, G. S. Chirikjian. Journal of Structural Biology. 
143: 107-117. 2003 



Helix-Helix Statistics



At What Angles Do
Alpha-Helices like to Cross ? 

– Biophysicists for 30 years predicted close to 
zero crossing angle

– Statistical analysis of Protein Data Bank 
(PDB) data suggested close to 90 degrees 

– Kinematics/Group-Theory explains why there 
is a difference



The Pose of a Rigid Body

Euclidean motion group SE(3)
– An element of SE(3): 

– Binary operation: matrix multiplication

– Describes not only motion, but relative 
position and orientation (pose) as well
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Helices in Proteins Can 
Interact in Several Ways
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S. Lee, G. S. Chirikjian. Biophysical Journal. 86:1105-1117. 2004 



How Do We Analyze Statistics of the Set 
of Such Pairs ? First We Need Kinematics
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• Infinitesimal motions

• Jacobians for the motion group SE(N)
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Computing Volume in SE(3)



Normalization by Proper 
Volume Element is Important

Case 1:

Case 2:

Case 3: 

βϑ 2sin det =R

θϑ sin det rR =

θβϑ sinsin det 2rR =



How Do We Take Into Account 
Measurement Uncertainty ?
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Normalized Interhelical Angle-
Distance Distribution for Case 
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A Model for Conformational 
Statistics of the Unfolded Ensemble



Structure of Proteins and 
Attachment of Reference Frames



Properties of Rigid-Body Motions



The Ensemble of Freely Moving 
Conformations



Generating the Ensemble of 
Conformations by Convolution

G. S. Chirikjian. Computational and Theoretical Polymer Science.
11:143-153. 2001

J. S. Kim, G. S. Chirikjian. Polymer 46:11904-11917. 2005 



Propagating By Convolution
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Fourier Analysis of Motion
• Fourier transform of a function of motion, f(g)

• Inverse Fourier transform of a function of motion

∫ −==
G

dgpgUgfpffF ),()()(ˆ)( 1

∫==− dpppgUpftracegffF )),()(ˆ()()ˆ(1

where where g g ∈∈SE(N)SE(N) , , pp is a frequency parameter, is a frequency parameter, 
U(g,p)U(g,p) is a matrix representation of is a matrix representation of SE(N),SE(N), andand
dg dg is a volume element at is a volume element at gg..



For More on Harmonic Analysis …



Geometry of Lie Groups



Lie Algebra Basis Elements and Exponential

Parametrization for SE(3)
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Example of exponential map:

exp(θE3) =
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The ‘exponential parametrization’

g = g(χ1, χ2, ..., χ6) = exp
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is a useful way to describe relatively small rigid-body motions because,

unlike the Euler angles, it does not have singularities near the identity.
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The Adjoint Matrix:

Adg(X
∨) = (gXg−1)∨,

If g = (a, A) then
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The ‘Vee’ operation:

χ = (log g)∨.

The volume element:

dg = |J(χ)|dχ1 · · · dχ6

Convolution:

f0,2(g) = (f0,1 ∗ f1,2)(g) =
∫
G

f0,1(h)f1,2(h
−1 ◦ g)dh



Computing Bounds on the Entropy of the Unfolded

Ensemble Using Gaussians on SE(3)

We can define the Gaussian in the exponential parameters as

f(g(χ)) =
1

(2π)3|Σ|12 exp(−1

2
χTΣ−1χ) (1)

Given two distributions that are shifted as fi,i+1(g
−1
i,i+1 ◦ g), each with

6×6 covariance Σi,i+1, then it can be shown that the mean and covariance

of the convolution f0,1(g
−1
0,1 ◦ g) ∗ f1,2(g

−1
1,2 ◦ g) respectively will be of the

form g0,2 = g0,1 ◦ g1,2 and

Σ0,2 = Ad−1
g1,2

Σ0,1Ad−T
g1,2

+ Σ1,2. (2)

f(g1, g2, ..., gn) =
n−1∏
i=0

fi,i+1(g
−1
i ◦ gi+1) (3)

where g0 = e, the identity.

The full pose entropy of a phantom chain:

Sg = −
∫
G
· · ·

∫
G

f(g1, g2, ..., gn) log f(g1, g2, ..., gn)dg1 · · · dgn. (4)

Marginal and conditional entropies can also be computed.
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Summary
– Kinematics and Lie group theory can be used 

in new ways to model protein motions
– Differential geometry has a place in the 

analysis of statistical data extracted from the 
pdb

– Polymer-like models with quasi-closed-form 
solutions can provide insights from a different 
perspective than massive computations

Thanks to NSF (Robotics/Math) and NIH (NIGMS)
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