Dynamic Maneuvers in a 3D Galloping Quadruped Robot

David E. Orin and Darren P. Krasny Dept. of Electrical and Computer Engineering The Ohio State University

Dynamic Maneuvers

- Sudden changes in trajectory or speed
- Turning, sudden starts/stops, running jumps
- Initiating, terminating, or interrupting high-speed dynamic locomotion
- Difficulty: Dynamic stability, hybrid control dynamics, hard to observe in nature

David Orin

April 9, 2010

Objectives

- Find solutions to dynamic maneuvers
- High-Speed Turn
- Running Jump
$-\quad \longrightarrow$ High-speed running gait (Gallop)
- Develop flexible control architecture
- Use multiobjective genetic algorithm (MOGA)

Dynamic Model

- Articulated legs with 3 DOF, nonzero mass
- Asymmetric body mass
- Passive knee compliance
- Compliant contact model
- Static, kinetic friction

Dynamic Simulation

- Dynamic simulation used to compute quadruped robot dynamics
- DynaMechs package developed by Scott McMillan used for recursive dynamics computation

Controller Architecture

- Modular, hierarchical structure
- Flexible: Define cyclic or one-shot behaviors
- Low-level motor primitives defined for each leg
- Basic movements for running or maneuvering
- Minimal parameters vs. maximum functionality

Leg Primitive Functions

Function	Description
FREE	Allow all joints to move freely.
TRANSFER	Transfer all joints from initial to desired ending positions over period T using a cubic spline.
EARLY-	Rotate hip rearwards at desired tangential velocity.
STANCE- CONTROL	Maintain desired tangential velocity of foot; maintain touchdown ab/ad angle; achieve desired knee energy at max compression.

The Genetic Algorithm

- Genetic algorithm (GA) overview
- Direct random search of unknown parameter space
- Parameters encoded in a chromosome
- Chromosome is altered via genetic operators
- Algorithm similar to Darwinian evolution
- Each chromosome considered an individual
- Group of all individuals considered a population
- Population changes over several generations via genetic operators
- Individuals ranked according to their fitness with the best performers able to reproduce

Genetic Operators

- Selection: Fittest individuals get to reproduce
- Elitism used to preserve the best individual(s)
- Fitness-proportionate (Roulette-wheel) selection
- Higher fitness \rightarrow better selection probability
- Multiple copies of fittest individuals in mating pool

Genetic Operators (cont’d)

- Crossover: Individual genes are swapped between two parents to form two new children
- Mutation: Genes of each individual are randomly changed with a probability p_{m}

GA Summary

For Generation = 1 to $\boldsymbol{N} \quad N=250$ max

1. Evaluate fitness of all S individuals in the population $S=32$
2. Select fittest individuals for mating pool
3. Crossover individuals in mating pool with probability p_{c} (60\%)
4. Mutate each individual's genes with probability p_{m} (5\%)

Multiobjective Genetic Algorithm

- Trade-offs among multiple criteria
- Vector-valued fitness $\mathrm{f}=\left[\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}}\right]^{\mathrm{T}}$
- Pareto front: set of nondominated solutions
- Domination: One solution \geq the other in each position, > in at least one position

Example of a Pareto Front.

The Gallop

- Preferred gait for high-speed quadrupedal locomotion
- Asymmetric footfalls (e.g., LR-RR-LF-RF)
- At least one flight phase (gathered)
- Early retraction of limbs
- Smoother than trot, bound

The Turn

- State machine approach
- Control parameters (12)
- Four touchdown ab/ad angles
- Four stance-phase hip velocity target values
- Four stance-phase knee energy target values
- Evolve a single stride at a time
- Multiple turning angles

The Turn Fitness Function

- Fitness function: $f=\left[f_{a}, f_{\Delta \alpha}, f_{c}\right]^{T}$
\rightarrow - General accuracy
- Body state variables other than yaw, yaw rate
- Acceptable ranges for roll, roll rate
- Turn angle accuracy
- Achieve the desired change in yaw angle
- Correctness
- Correct number of footfalls, correct footfall sequence, no excessive leg spread

Turn Results

Roll vs. change in yaw for the turn.

Conical pendulum model for the turn.

Multiple-Stride Turning

Multi-stride turn in the CCW direction.

Multi-stride turn in the CW direction.

The Running Jump

- Same state machine as the turn
- Control parameters (17):
hip angles, velocity biases, knee energy
- Evolved in stages
\longrightarrow - Stage 1: Jump
- Stage 2: Landing

Results

Summary

- Non-traditional solution approach for complex motions, bio-inspired system
- Evolutionary optimization vs. traditional approaches
- No simplifying assumptions required
- Emergent, unanticipated solutions
- Future of robotics
- Realization of biological abilities
- Non-traditional, biologically-inspired solution approaches

Future Work

- Develop dynamic movements for biped
- 26 degree-of-freedom model (DOF) in RobotBuilder
- 6 DOF legs
- 4 DOF arms
- 6 DOF torso

