Dynamic Maneuvers in a 3D Galloping Quadruped Robot

David E. Orin and Darren P. Krasny Dept. of Electrical and Computer Engineering The Ohio State University

David Orin

Workshop on Intelligent Systems, Texas A&M University

Dynamic Maneuvers

- Sudden changes in trajectory or speed
- Turning, sudden starts/stops, running jumps
- Initiating, terminating, or interrupting *high-speed* dynamic locomotion
- Difficulty: Dynamic stability, hybrid control dynamics, hard to observe in nature

April 9, 2010

David Orin

Objectives

- Find solutions to dynamic maneuvers
 - High-Speed Turn
 - Running Jump
 - \longrightarrow High-speed running gait (Gallop)
- Develop flexible control architecture
- Use multiobjective genetic algorithm (MOGA)

Workshop on Intelligent Systems, Texas A&M University

David Orin

Dynamic Model

- Articulated legs with 3 DOF, nonzero mass
- Asymmetric body mass
- Passive knee compliance
- Compliant contact model
- Static, kinetic friction

David Orin

Dynamic Simulation

- Dynamic simulation used to compute quadruped robot dynamics
- *DynaMechs* package developed by Scott McMillan used for recursive dynamics computation

David Orin

Workshop on Intelligent Systems, Texas A&M University

Controller Architecture

- Modular, hierarchical structure
- Flexible: Define cyclic or one-shot behaviors
- Low-level motor primitives defined for each leg
 - Basic movements for running or maneuvering
 - Minimal parameters vs. maximum functionality

Leg Primitive Functions

Function	Description
FREE	Allow all joints to move freely.
TRANSFER	Transfer all joints from initial to desired ending positions over period <i>T</i> using a cubic spline.
EARLY- RETRACTION	Rotate hip rearwards at desired tangential velocity.
STANCE- CONTROL	Maintain desired tangential velocity of foot; maintain touchdown ab/ad angle; achieve desired knee energy at max compression.

David Orin

The Genetic Algorithm

- Genetic algorithm (GA) overview
 - Direct random search of unknown parameter space
 - Parameters encoded in a *chromosome*
 - Chromosome is altered via genetic operators
 - Algorithm similar to Darwinian evolution
 - Each chromosome considered an individual
 - Group of all individuals considered a population
 - Population changes over several generations via genetic operators
 - Individuals ranked according to their *fitness* with the best performers able to reproduce

David Orin

Genetic Operators

• Selection: Fittest individuals get to reproduce

- Elitism used to preserve the best individual(s)
- Fitness-proportionate (Roulette-wheel) selection
 - Higher fitness \rightarrow better selection probability
- Multiple copies of fittest individuals in mating pool

David Orin

Workshop on Intelligent Systems, Texas A&M University

Genetic Operators (cont'd)

- *Crossover*: Individual *genes* are swapped between two parents to form two new children
- *Mutation*: Genes of each individual are randomly changed with a probability p_m

David Orin

Workshop on Intelligent Systems, Texas A&M University

GA Summary

For Generation = 1 to N = 250 max

- 1. Evaluate fitness of all *S* individuals in the population S = 32
- 2. Select fittest individuals for mating pool
- 3. Crossover individuals in mating pool with probability p_c (60%)
- 4. Mutate each individual's genes with probability p_m (5%)

David Orin

Multiobjective Genetic Algorithm

- Trade-offs among multiple criteria
- Vector-valued fitness $f=[f_1, f_2, ..., f_n]^T$
- Pareto front: set of *nondominated* solutions
 - Domination: One solution ≥ the other in each position, > in at least one position

Example of a Pareto Front.

David Orin

The Gallop

- Preferred gait for high-speed quadrupedal locomotion
- Asymmetric footfalls (e.g., LR-RR-LF-RF)
- At least one flight phase (gathered)
- Early retraction of limbs
- Smoother than trot, bound

The Turn

- State machine approach
- Control parameters (12)
 - Four touchdown ab/ad angles
 - Four stance-phase hip velocity target values
 - Four stance-phase knee energy target values
- Evolve a single stride at a time
 - Multiple turning angles

David Orin

Stance phase

The Turn Fitness Function • Fitness function: $f = [f_a, f_{\Delta \alpha}, f_c]^T$

- → General accuracy
 - Body state variables other than yaw, yaw rate
 - Acceptable ranges for roll, roll rate
 - Turn angle accuracy
 - Achieve the desired change in yaw angle
 - Correctness

• Correct number of footfalls, correct footfall sequence, no excessive leg spread

Workshop on Intelligent Systems, Texas A&M University

David Orin

Turn Results

Roll vs. change in yaw for the turn.

Conical pendulum model for the turn.

David Orin

Multiple-Stride Turning

Multi-stride turn in the CCW direction.

Multi-stride turn in the CW direction.

David Orin

The Running Jump

- Same state machine as the turn
- Control parameters (17): hip angles, velocity biases, knee energy
- Evolved in stages
- → Stage 1: Jump

Results

Workshop on Intelligent Systems, Texas A&M University

Summary

- Non-traditional solution approach for complex motions, bio-inspired system
 - Evolutionary optimization vs. traditional approaches
 - No simplifying assumptions required
 - Emergent, unanticipated solutions
- Future of robotics
 - Realization of biological abilities
 - Non-traditional, biologically-inspired solution
 approaches

David Orin

Future Work

- Develop dynamic movements for biped
- 26 degree-of-freedom model (DOF) in *RobotBuilder*
 - 6 DOF legs
 - 4 DOF arms
 - 6 DOF torso

Workshop on Intelligent Systems, Texas A&M University

