Apr. 10th, 2010, Workshop on Intelligent Systems: A Festschrift for Richard Volz , TAMU, College Station, TX

Collaborative Observation of Natural Environments (CONE)

***** Smithsonian

Panasonic

Dezhen Song Texas A&M University

Microsoft

int_{el}.

Thanks to:

Ni Qin, Yiliang Xu, Chang Young Kim, Ji Zhang TAMU Ken Goldberg, UC Berkeley Ron Rohrbach, Cornell Lab of Ornithology John Fitzpatrick, Cornell Lab of Ornithology David Luneau, U Arkansas John Rappole, Smithsonian Selma Glasscock, Welder Wildlife Foundation **National Science Foundation** The Nature Conservancy Arkansas Game and Fish Commission U.S. Fish and Wildlife Service **Arkansas Electric Cooperative** Cache River National Wildlife Refuge

outline

- networked telerobots and project cone
- automated observation: ivory billed woodpecker
- engaging citizen scientists: bird range change in south texas

YOU HAVE TO SEE IT TO BELIEVE IT!

ONLY ZENITH HAS IT!

A flash of magic light from across the room (no wires, no cords) turns set <u>on</u>, <u>off</u>, or <u>changes</u> <u>channels</u>...and you remain in your easy chair!

this Zenith "flash tunet" works TV miraclest Absolutely harmless to humansi

YOU CAN ALSO SHUT OFF LONG, ANNOYING COMMERCIALS WHILE PICTURE REMAINS ON SCREEN!

Here is a truly amazing new television development—and only Zenith has it! Just think! Without budging from your easy chair you can turn your new Zenith Flash-Matic set on, off, or change channels. You can even shut off annoying commercials while the picture remains

on the screen. Just a flash of light does it. There are no wires or cords. This is not an accessory. It is a built-in part of several new 1956 Zenith television receivers. Stop at your Zenith dealer's soon. Zenith-quality television begins as low as \$149.95.* The Bismarck (Model X2264EQ). 21", Flash-Matic Tuning, Cinébeam®, Ciné-Lens. Blond grained finish cabinet on casters. Also in mahogany color (X2264RQ). As low as 8399.95.*

The royalty of TELEVISION and radio Backed by 36 years of leadership in radionics exclusively ALSO MAKERS OF FIRE HEARING AIDS Zenith Radio Corporation, Chicago 39, III.

If it's new...it's from Zenith! YOU HAVE TO SEE IT TO BELIEVE IT

*Manufacturer's suggested retail price. Slightly higher in Far West and South.

nikola tesla (1898)

teleoperation: related work

- Tesla, 1898
- Goertz, '54
- Mosher, '64
- Tomovic, '69
- Salisbury, Bejczy, '85
- Ballard, '86
- Volz, '87-
- Sheridan, '92
- Sato, '94
- Goldberg, '94-
- Presence Journal '92-
- O. Khatib, et al. '96

collaborative control

networked robotic camera

Frame Selection Problem: Given *n* requests, find optimal frame

frame selection algorithms

Processing	Zoom	Туре	Complexity	
Centralized	Discrete	Exact	<i>O</i> (<i>n</i> ²)	springer tracts in advanced robotics 51
Centralized	Discrete	Approx	O(nk log(nk)),	
			k=(log(1/ε)/ε)²	Dezhen Song
Centralized	Contin.	Exact	<i>O</i> (<i>n</i> ³)	
Centralized	Contin.	Approx	$O((n + 1/\varepsilon^3) \log^2 n)$	Sharing a Vision
Distributed	Discrete	Exact	Server: <i>O</i> (<i>n</i>),	Systems and Algorithms
			Client: O(n)	Robotic Cameras
Distributed	Contin.	Approx	Server: <i>O</i> (<i>n</i>),	2000
			Client $O(1/\varepsilon^3)$	
p-Frame	Discrete	Approx	$O(n/\varepsilon^3 + p^2/\varepsilon^6)$	D Springer

biological observation is arduous, expensive, dangerous, lonely

cone

Sensor Network

Biologists

Collaborative frame selection:

Periodic Checks

Motion Sensors

Students

outline

- networked telerobots and project cone
- automated observation: ivory billed woodpecker
- engaging citizen scientists: bird range change in south texas

The Ivory-billed Woodpecker

by James T. Tanner

Detecting Rare Birds

- Low occurrence (e.g., <10 times per year)
- Short duration (e.g., <1 sec. in FOV)
- Huge video data for human identification.
- Setup and maintenance in remote environments.

Design Goals

- Accuracy
 - low false negative
- Data reduction
 - filtering the targeted bird
- Easy to setup and maintain
 monocular vision system

Natural cameras

- Crittercam
- DeerCam
- Africa web cams at the Tembe Elephant part
- Tiger web cams
- James Reserve Wildlife
 Observatory
- Crane Cam
- Swan Cam

Related Work

- Motion detection and tracking
 - Elgammal, Grimson, Isard ...
- Periodic motion detection
 - Culter, Ran, Briassouli ...

- 3D inference using monocular vision
 - Ribnick, Hoiem, Saxena ...

Related Work

- Kalman Filter
 - SLAM, tracking, recognition ...
 - Convergence
 - ample observation data
 - manageable noise

- less than 11 data points
- significant image noise

Bird detection problem

- Input
 - targeted bird body length l_b and speed range $\mathcal{V} = [v_{\min}, v_{\max}]$.
 - a sequence of *n* images containing a moving object

• Output

- to determine if the object is a bird of targeted species

Assumptions

- Static monocular camera
 - High resolution
 - Narrow FOV

- Single bird in FOV
 Motion segmentation
- Constant bird velocity

 High flying speed
 Narrow camera FOV

Conjecture 1: Invariant body length

Conjecture 1: Invariant body length

 $\mathbf{z} = [u^h, v^h, u^t, v^t]^T$ (observation)

Bird Body Axis Filtering

• Conjecture 2: Body axis orientation close to tangent line of trajectory

Modeling A Flying Bird

Extended Kalman Filter

Determine Species for Noise-free Cases

EKF Convergence Metrics

EKF converges $\iff \|\mathbf{\hat{v}}(k|k) - \mathbf{\hat{v}}(k-1|k-1)\| \to 0$

$$\varepsilon(\mathbf{X}^{1:n}) = \sum_{k=2}^{n} \omega(k) \| \mathbf{\hat{v}}(k|k) - \mathbf{\hat{v}}(k-1|k-1) \|$$

$$\omega(k) = E\left(\frac{\|\hat{\mathbf{v}}\|}{\|\hat{\mathbf{v}}(k|k) - \hat{\mathbf{v}}(k-1|k-1)\|}\right)$$
Estimation with Observation Noises

Probable Observation Data Set (PODS)

 $\varepsilon(\mathbf{X}^{1:n}) < \delta$

PODS-EKF

Decision-making:

Dezhen Song and Yiliang Yu, *A Low False Negative Filter for Detecting Rare Bird Species from Short Video Segments using a Probable Observation Data Set-based EKF Method*, IEEE Transactions on Image Processing (Accepted, in press)

PODS-EKF Approximate Computation

Dezhen Song and Yiliang Yu, A Low False Negative Filter for Detecting Rare Bird Species from Short Video Segments using a Probable Observation Data Set-based EKF Method, IEEE Transactions on Image Processing (Accepted, in press)

PODS-EKF Approximate Computation

Dezhen Song and Yiliang Yu, A Low False Negative Filter for Detecting Rare Bird Species from Short Video Segments using a Probable Observation Data Set-based EKF Method, IEEE Transactions on Image Processing (Accepted, in press)

Algorithm

Algorithm 1: PODS-EKF based Bird Detection Algorithm

input : n frames with a segmented motion sequenceoutput: TRUE or FALSE for the targeted species.for the segmented motion block in i-th frame do

calculate the geometric center point C_i of the bird;

Connect C_i , i = 1, 2, ..., n to generate a piecewise linear trajectory;

Obtain $\overline{\theta}$ from the trajectory;

for the segmented motion block in i-th frame do

Obtain z(i) using the BBAF in (2);

Initialize the EKF using (20) and (21); Solve the constrained nonlinear optimization problem in (14);

```
if \|\widetilde{\mathbf{v}}(n|n)\| \in \mathcal{V} \text{ AND } \varepsilon(\widetilde{\mathbf{X}}^{1:n}) < \delta then
return TRUE;
```

else

return FALSE;

Experiments and Results

Experiments:

- Testing phase: May 2006 to Oct.
 2006 in Texas A&M campus
- Field phase: Oct. 2006 to Oct. 2007 in Brinkley, AR

Simulation on three birds

Physical Experiment on Rock Pigeon

ROC Curves for Rock Pigeon

Area under ROC curve: 91.5% in Simulation; 95.0% in Experiment.

Results:

• No Ivory-billed Woodpecker!

- Sensitivity: <10% false negative rate
- Data reduction:
 - 146.7MB out of 29.41TB raw data
 - data reduction rate 99.9995%
- Robustness: running continuously in the Arkansas wilderness for 12 months

outline

- networked telerobots
- automated observation: ivory billed woodpecker
- engaging citizen scientists: bird range change in south texas

Birds of the Texas Coastal Bend Abundance and Distribution

BY John H. Rappole AND Gene W. Blacklock

Copyrighted Material Wildlife OF THE Mid-Atlantic A COMPLETE REFERENCE MANUAL JOHN H. RAPPOLE

Project CONE-Welder

Remote natural environment with robotic camera

Relay station

Citizens from around the world participate in operating the robotic camera

observed range change

Species	Photos
Green Jay (Cyanocorax yncas)	3659
Bronzed Cowbird (Molothrus aeneus)	1710
Buff-bellied Hummingbird (Amazilia yucatanensis)	1671
Black-chinned Hummingbird (Archilochus alexandri)	768
Great Kiskadee (<i>Pitangus sulphuratus</i>)	516
Eastern Bluebird (Sialia sialis)	144
Audubon's Oriole (Icterus graduacauda)	28
Couch's Kingbird (Tyrannus couchii)	12

Current and Future Work

Current and Future Work

Examine wing-flapping motion
 Wing beat frequency is unique for each species

Wing Kinematic Model

Preliminary Results

Thanks!

Websites: http://telerobot.cs.tamu.edu/ http://www.c-o-n-e.org http://rbt.cs.tamu.edu/

