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Netherlands
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Medical Robotics
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Rehabilitation Robotics



Labora Et Obedira

Prosthetics
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Robotics Surgery

• NOTES Master
• Brain Assisted Surgery
• Epiduroscopy
• Robotised Endoscopes
• MRI compatible devices
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Inspection Robotics
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Inspection Robotics
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Humanoid Robotics
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Humanoid Robotics

θ

α

q1

q2

k
k

M2

R

Fig. 4. Design II - In this design, the change of the stiffness and the
output joint position θ is decoupled. The linear motor M2 generates a
linear displacement q2 and is used for changing the stiffness. The nonlinear
quadratic springs with fixed stiffness k generate the output torque. The
equilibrium of the output joint position θ is determined by q1. Note that
the end effector can rotate independently from the pulley.

By taking the time derivative of Eq. (31) and by using
Eqs. (33), (34), we can model this actuator in the port-based
setting through a Dirac structure of the form of Eq. (9), i.e.
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(35)

The output joint stiffness is given by

K =
∂T

∂θ
= −4kRq2 (36)

From Eq. (35), it follows that, for this type of actuator,
the matrix A has full rank and, thus, it has no kernel and we
expect to find µ > 0.
From Eqs. (31), (34), it follows that the initial conditions

given in Eq. (2) are satisfied for (q1, q2) = (π
2 , 0). In order to

keep the equilibrium, only q2 is allowed to change, therefore
r(t) is given by

r(t) =

[
π
2
bt

]

, t ∈ [0, 1] (37)

with q2 ∈ [0, b], where b is the maximum allowed value for
this configuration variable. Then, ∆E and∆K are calculated
as

∆E =
1

3
kb2(3 + b) (38)

∆K = −4kRb (39)

For this design we therefore obtain

µ =
b

12R
(b + 3) (40)

C. Design III
The third design is a conceptual actuator, presented in [10]

and depicted in Fig. 5. The design is based on the insights
gained from the analysis in Sec. III. It relies on a lever arm

α

−φ

q1

q2
x

−s
k

&

Fig. 5. Design III - This design is based on a lever arm with variable
effective length. The effective length of the lever is determined by q1 and
determines how the stiffness of the linear spring with fixed stiffness k is
felt at the output. The degree of freedom q2 controls the equilibrium of the
output joint position x.

with variable effective length. This effective length depends
only on the degree of freedom q1 and determines how the
stiffness of the linear spring is felt at the output. Note that
0 < q1 ≤ &, since q1 = 0 is a singular configuration. The
degree of freedom q2 controls the output, so also in this
design a decoupling between the change of the stiffness and
the change of output joint position is realized.
For simplicity, we assume that the lever length & is large

compared to the displacement s, and thus that we may
assume α = 0. The state s of the linear spring is

s = & sin φ = &
x − q2

q1
(41)

The linear spring has fixed stiffness k and energy function
H(s) = 1

2ks2. The force exerted by the spring, i.e. the effort,
is

es =
∂H

∂s
= ks = k&

x − q2

q1
(42)

It can be shown that the generalized forces τ1 and τ2 are

τ1 =
&

q1
sin(φ)es

τ2 =
&

q1
es

(43)

Since the end effector is actuated by q2, the output force
F = −τ2.
By taking the time derivative of Eq. (41) and by using

Eq. (43) we can model this actuator in the port-based setting
through a Dirac structure of the form of Eq. (9), i.e.
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20sim Package
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Port Based Modeling and simulation package
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Port-Based Thinking
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Signals versus Ports

Hp
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Signals versus Ports
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Conclusions on example
• With Physical Systems, signal modeling is often not 

suitable

• Always a bi-directional effect

• To model/control real OPEN systems signal modeling is 
NOT the solution

• This is true also between domains: typical example DC 
motor gyration  

• Robotics IS interconnection of multi-domain parts, we 
need something more !

Port-based 
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•             belong to vector spaces in duality

•            represents the instantaneous power flowing from A to B

• In general an a-causal description !!

Power Port

A B
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Examples
flow effort

current voltage

Domain

Electrical

1D mechanical velocity force

Rotational mechanics Ang.vel. torque

rigid 3D mechanics twist wrench

flow   
geOMETRY
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The Mathematics behind the framework:
Port-Hamiltonian Systems
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Autonomous, Symplectic, Hamiltonian Systems
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With ports…
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Port Hamiltonian Systems
Using the Poisson Framework

(2,0) tensor !
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Energy Conservation

The change in stored energy is equal to the supplied 
power:
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Network structure

Same elements and Energy function
but Different Network!
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Dirac Framework

Of the form

where
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Remark

• “All” physical parts can be modeled using this 
framework

• Interconnection of parts (and physical controllers!!) 
via port interconnections result in the same kind of 
equations (IPC)

• Looking at the network structure we get insight in 
the energy flows

• Delays in communication lines can be handled 
effectively (Passive Distributed Control)
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System composition in general

Control by interconnection
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Control by Interconnection
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Proposed Controller Structure
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Intrinsically Passive Control

• We can design a controller equivalent to a 3D multi-body system 
interconnected to the robot to be controlled: the controller will 
be a set of equivalent multi-bodies, spatial springs…, all using 
ports and Port Controlled Hamiltonian Systems representation

• More general structures are also possible
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F
x

m
System

mDesired Behavior

Note: 1.only position measurement available, 2. saturation F

Impedance Control
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Solution using interconnection ideas

x

m

k

b

k

b
mc

kc

controller

mc<<m
kc>>k

x

F

kc

m
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Examples
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Oscillations and Locomotion
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L.C. Control

DSER

Controller

The goal
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3D robust and energetical 
walking

Energetically continues oscillation
L.C. shaping in 2D p.s.

Phase lag/lead control with dynamic extension

Oscillations Syncronisations

Oscillations Synchronizations with communications delays

Oscillations Multidimensional

Oscillations with discontinuous Dynamics

??

Our vision in Locomotion
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What do we need?

Theory
-Able to address directly power flows 
     (network-theory)
-Keep track of energy flows and control them
    (control by interconnection)
-Multidimensional oscillations, synchronizations, 3D 
mechanics.. (l.c. and synchronizations)
Practice
-new actuators (VIACTORS), new transmissions (CVTs)
-reversible amplifiers
-passive handling of delays
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Limit cycles

• Limit Cycle: periodic solution of a differential equation with the 
additional property that it is isolated. (only for N.L. systems)

• Basin of Attraction (for a stable L.C.): set of points in the state 
space which asymptotically converge to the L.C. 
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What do we want?

• Be able to shape a Limit Cycle (Performance)
• Make the Basin of attraction as big as possible (Robustness)

and 
No waste of Energy
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13 September 2007 Analysis and Control of Nonlinear Oscillators 51

ẍ +
�
x2 − 1

�
ẋ + x = 0

ẍ +
�
ẋ2 − 1

�
ẋ + x = 0

Van der Pol Oscillator

Rayleight Oscillator

NL oscillator with globally attractive limit cycle
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YES!

Remarks

• Extremely stable oscillation, but it dissipates and sometimes 
require energy

• Can we make it completely conservative?
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+-

ports

IVT

n

ω1
ω2

τ2 τ1

IVT

n

ω1
ω2

τ2 τ1

×

Modulated
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out

in
∫

∂H
∂x

x

Energy Storage
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out = φ(in) v = Ri, F = Bv . . .

out = n · bout = n · ∂H

∂x

out = φ(in)




 n = φ(in)
∂H

∂x

power continuous
transmission

bout

bin

out

in

×
n

∫
1
C

φ(·)

Realizing “reversible” damping
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∫

∫

∫
nn

passive system

nonlinearity

q

p

r

−
+

−




q̇
ṗ
ṙ
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0 1 0
−1 0 −n
0 n 0








q
p
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 .

H(x) = 1
2x

T · x = 1
2q

2 + 1
2p

2 + 1
2r

2
.

Conservative V.d.Pol
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Continuous Variable Transmission
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Conclusions

•If we manage to make a decent CVT we can design 
and shape globally stable oscillators!

•We can also synchronize them by modulating 
transmissions

•Eventually we can create and tune oscillators online 
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The Twente CVT
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• Torque Servoing

• Stores any negative work applied on load

• Zero dissipation for constant force

• Ideal for periodic motions

Very Versatile Energy Efficient Actuator
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Variable Impedance Actuators

•Energy Efficiency
•Safety
•Passive behaviour in all conditions
•Embedding Intelligence

VIACTORS
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Telemanipulation and 
Sample Passivity
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•Explicitly handle energy exchanged with the 
environment/human

•Handle the coupling between the real, continuous time 
world and energy and virtual, descrete time, computer 
generated world

•Take care of the two energy leakages: sample-hold 
and integration

•Based on network theory and port-Hamiltonian 
systems

Rationale

Stramigioli, S., Secchi, C., van der Schaft, A.J., Fantuzzi, C.,, "Sampled Data Systems Passivity and Discrete 
Port-Hamiltonian Systems", IEEE transactions on robotics and automation, IEEE, vol. 21, nr. 4, pp. 574-587, 
2005
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Sampled Passivity

Robot Controller
S/H

ēD

f̄DfD

eD

eD(t) = ēD(k) t ∈ [kT, (k + 1)T ]

∆Ein
C =

� (k+1)T

kT
ēT
DfD(s)ds = ēD(k)

� (k+1)T

kT
fD(s)ds

= ēD(k)(q((k + 1)T )− q(kT ))
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Intrinsically Passive Control (IPC)

Standard PD IPC PD

30 Hz sample rate
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Conclusions



Labora Et Obedira

Conclusions

•Phisical ALWAYS involve bidirectional interaction
•Energy is the glue of physics
• In interactive tasks, energy flows are important for 

passivity and safety
•Port-based based robotics treats energy flows 

explicitly
•Novel concepts have been achieved using this 

paradigm
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Thanks for Listening
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3D Contact Modeling
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Visco-elastic contact model

Bloch and Crouch 1999, Stramigioli 2001). In this
technique the concept of a power port is of funda-
mental importance. A power port is a pair of dual
vectors whose intrinsic dual product is power:

ð f, eÞ 2 V# V $, ð1Þ

where f is called a flow, e an effort, V is a vector space
and eð f Þ 2 R represents the instantaneous power
passing through the port. In this paper, V will have
the structure of a Lie algebra since this will allow to
rigorously talk about spatial mechanics as shown in
the following sections.

Any power continuous interconnection can be
expressed using a Dirac structure which can be defined
in a complete coordinate free way for finite and
infinite dimensional spaces (van der Schaft and
Maschke 2002). For the sake of space and conciseness
we only say that it is geometrically a subspace of
V# V $ and as such any finite dimensional Dirac
structure where V ¼ V1 # & & & # Vn, can be represented
in Kernel representation by the following equation:

Eeþ Ff ¼ 0, ð2Þ

where e 2 V, f 2 V $ and E, F are in general time
varying matrices such that the rank of [E F] should be
equal to the dimension of V and should satisfy the
following condition:

EFT þ FET ¼ 0: ð3Þ

This latter condition implies that each element ( f, e)
belonging to the Dirac structure, or in other words all
the possible ( f, e) which are allowed by the network
constraints, are such that eð f Þ ¼ 0 which is nothing
else than Tellegen’s theorem (Tellegen 1952). This
allows to have a rigorous description of a network
structure which can be directly used for analysis.

3. Kinematics of Contacts

In Montana (1989a) the kinematics of two contacting
bodies is presented. This analysis does not consider
the case of non contacting bodies which is important
for the detection of collision and does not allow
a straight forward coordinate-free interpretation. In
Visser et al. (2002) the analysis of Montanais has been
extended to non contacting bodies and in Duindam
and Stramigioli (2003) a clean coordinate-free
formulation has been presented. In this last work,
based on the relative configuration H1

2 of the two
bodies, their differential geometric description of their
surfaces S1 and S2 and their relative twist T 1

2 2 seð3Þ,
the velocity of their minimal distance contact points

p1 2 S1 and p2 2 S2 is calculated providing an implicit
formulation of a section of the following form
describing the surfaces:

!ðH1
2,T

1
2Þ : S1 # S2 ! TS1 # TS2: ð4Þ

Using the last mapping it is possible to track the
motion of the points with minimal distance of the two
convex bodies under consideration. We indicate
the distance between this two points with D and we
address the reader to Duindam and Stramigioli (2003)
for more details.

In Lie group terms, the relative configuration of the
two contacting bodies can be studied using SE(3). The
relative instantaneous motion instead, can be studied
using the Lie algebra se(3) associated to SE(3). This
algebra is 6D and corresponds to the six possible
motions of a rigid body.

4. Viscoelastic Description

The general scheme which is presented follows the
port representation shown in Fig. 1 where it can be
seen that a Dirac structure expresses the power con-
tinuous interconnection between, the contacting
bodies, the elastic energy storage of the contact and
the (free) energy dissipation part.

4.1. The Dirac Structure of the Contact

The purpose of the Dirac structure is to provide
the correct, energy consistent relations between the
ports that connect the rigid bodies and the storage
and dissipation elements. This Dirac structure is not

Fig. 1. Setup of the model: the contact forces are realized by elastic
storage and dissipation, interconnected by a Dirac structure
between the two rigid bodies that are in contact.

Port Based Contacts 511

constant in time, since the connection of the storage
and dissipation elements depends on whether there is
contact or not. If the bodies are moving freely without
touching, there should be no interaction forces from
the dissipation and damping elements.

To monitor whether the Dirac structure should
switch or not, we use the kinematics equations which
are presented in Duindam and Stramigioli (2003). We
define the binary signal sD as

sD ¼ 1 if D " 0,
0 if D < 0,

!

so sD ¼ 1 if there is no contact and sD ¼ 0 if there is
contact. We will use this variable in the equations for
the Dirac structure.

We start by constructing the relative velocity of the
two bodies, since both the storage and the dissipa-
tion depend only on this velocity. So, denoting by T 1,1

2

the relative twist of body 2 with respect to body 1,
we need as the first part of the Dirac structure
(represented in the kernel form Eeþ Ff ¼ 0)

E

W 0
1

W 0
2

W 1
21

0

B

@

1

C

A
þ F

T 0,0
1

T 0,0
2

T 1,1
2

0

B

@

1

C

A
¼

0

0

0

0

@

1

A, ð5Þ

where

E :¼

0 0 0

I6 0 ðsD & 1ÞAdTH1
0

0 I6 ð1& sDÞAdTH1
0

0

B

@

1

C

A
ð6Þ

and

F :¼
ð1& sDÞI6 ðsD & 1ÞI6 AdH 0

1

0 0 0

0 0 0

0

@

1

A, ð7Þ

where we used the switching element in E to switch off
the contact forces W1

21 when there is no contact. The
matrix F and E which clearly also satisfy the rank
condition, then also contains the switching element
in such a way that the power continuity condition
EFT þ FET ¼ 0 for all values of sD.

If we consider a geometric description of the bodies
as undeformable for the purpose of modeling, we
allow the distance D between p1 and p2 to become
negative as shown in Fig. 2. This means that we
virtually allow the two bodies B1 \ B2 6¼ ;:

Under the assumptions previously explained of
convexness, there are two unique points p1 2 S1 and
p2 2 S2 in the region @ðB1 [ B2Þ (see Fig. 2) whose
connecting line ln is normal to the surfaces in p1 and p2.

Furthermore, given a point c 2 ln, there is a unique
plane O orthogonal to ln and passing through c.

We can therefore choose 6 basis vectors (screws)
belonging to se(3). In order to decompose the motion
between relative motions involving elastic storage of
energy and not, we will choose two screws represent-
ing pure distinct rotations around two axis living onO
and passing through cðrx, ryÞ (which are two screws
with zero pitch), and the other basis screws as the
rotation around lnðrzÞ (again a screw with zero pitch),
and the three translations (tx, ty, tz) (which are screws
with infinite pitch).

We can now decompose se(3) in the direct sum of
two subspaces1R :¼ span rx, ry

" #

and span tx, ty, rz, tz
" #

which turns out to be equal to the Lie algebra se(2)'T
of motions on O (se(2)) together with2 the normal
motion along li (T ):

seð3Þ ¼ R( ðseð2Þ ' TÞ,

that is, as the direct sum of two subspaces. We can
indicate the projection of a twist T 2

1 defined by this
decomposition as

PR,c : seð3Þ ! seð2Þ ' T; T 2
1 ! PT 2

1 : ð8Þ

For any linear operator, there is an adjoint opera-
tor which maps dual elements corresponding to
‘‘wrenches’’

P)
R,c : se

)ð2Þ ' T ) ! se)ð3Þ; W ! P)W ð9Þ

in such a way that power is conserved:

hWjPT 2
1 i ¼ hP)WjT 2

1 i:

Fig. 2. The geometrical undeformed contact model.

1It is important to note that this decomposition is only dependent
on the choice of the position of c and NOT on the choices of rx and
ry as long as they are linear independent and lying on the plane O.
2Notice that this is not a semi-direct group product, but a normal
group product.
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In this paper, the geometrical description of viscoelastic
contacts is described using physical modeling concepts
based on energy conservation and network theory. The
proposed model is on one side simple enough to be used
in real time applications and on the other captures the
geometrical features and coupling of a complete spatial
geometric unisotropical contact.
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1. Introduction

The model of contacts is of fundamental importance
in robotics since most of interesting situations like
grasping, walking and mechanical interaction, do
feature mechanical contact. The normal component of
a contact has been vastly studied and has led to the
Kelvin–Voight model and the better Hunt–Crossley
model (Hunt and Crossley 1975) which has been
analytically studied in Marhefka and Orin (1999).
Detailed models concerning tangential friction instead
can be found in Amstrong-Hlouvry et al. (1994). An
excellent reference on soft finger contacts is Cutkosky
and Wright (1986).

The first model to the knowledge of the authors
which did treat the complete geometry of contacts
from a kinematical point of view is Montana
(1989a,b). In this model the geometry of rolling is

described using the differential geometric description
of the curvature of the contacting surfaces, but no
dynamics is treated and the bodies are considered in
contact at all times.

A nice analysis on controllability of rolling contacts
can be found in Marigo and Bicchi (2000) and for a
general review on grasping and contacts the reader is
addressed to Bicchi and Kumar (2000).

In this paper, wewill showhow it is possible to built a
geometric port-Hamiltonian model of a contact which
is able to describe no-contact to contact transition,
rolling and contact viscoelasticity at the same time.The
presented model, being lumped, is a big simplification
of the continuous mechanic effects of material deforma-
tion, but at the same time, due to its geometrical
description is very valuable for its light computational
load and could be used in real time control.

The paper is organized as follows: in Section 3 the
kinematics of three-dimensional (3D) contacts will be
quickly reviewed, in Section 4 the major contribution
will be presented by first describing the used inter-
connection structure and then the elastic and viscous
description. Section 5 will illustrate some simulation
results and Section 6 will draw some conclusions and
address possible future research topics.

2. Background

In this paper, we use a network modeling approach
based on Dirac structures (Courant 1990, van der
Schaft and Maschke 1995, van der Schaft et al. 1996,
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Animation of a complex situation
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Using softer contact
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Very little damping
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Very soft
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Grasping
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Body 1 Body 2

Length Variation Variation RCC

It can be shown that varying RCC does NOT exchange energy !!

Variable Spatial Springs
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Changing Length
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Changing the RCS (no energy supply!) 
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Parametric Changes (1D)

H(x) =
1
2
Kx

2

H(x, k) =
1
2
Kx

2
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Virtual Object

VSS

Example: Proposed Grasp Strategy
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Animation of Algorithm


