Rescue Robotics Challenge

Satoshi Tadokoro Tohoku University / International Rescue System Institute

Workshop on Intelligent Systems: A Festschrift for Richard Volts 2010.4.9

Kobe Earthquake (Jan. 17, 1995)

- Magnitude 7.3
- Serious Damage Region 20 x 1 km (13 x 0.6 mi) People seriously effected: 2,300,000 Deaths: 6,432 ++Seriously Injured: 43,800 ++ Buildings Damaged: 530,000 fully destroyed: 104,906, fully burnt: 6,148,

fully destroyed: 104,906, fully burnt: 6, half destroyed: 144,272

- Fire: 285 large scale: 14 (>10,000m² (3600 mi²))
- Direct Damage: 10 trillion yen (100 billion US\$)

R International Rescue System Institute

Kobe, 1995

Predicted Earthquake Disaster

		<u></u>	OHOKI
	Magnitude	Probability in this 30 years	UNIVERSITY
Tokai	M8.0	87%	
Nankai	M8.4	50%	
To-Nankai	M8.1	60%	
Nankai + To-Nankai	M8.5		
Miyagi-Oki	M7.5	99%	
(Sendai area)			

cf. Hanshin Awaji (Kobe): M7.3

(Cabinet Office, Central Disaster Prevention Committee)

Expectation for Robotic Systems by Firefighting Departments of Major Urban Cities in Japan

CBRNE Disaster		
 Identification of CBRNE materials by sensors 	39	(out of 49)
Transfer of victims to safe area	30	
Removal of CBRNE material	24	
Fire		
Extinguishment in buildings	30	
 Search in buildings 	25	
 Extinguishment irrespective of heat radiation 	24	
Earthquake		
Search from above the rubble pile	26	
 Search in the rubble pile 	22	
Remove heavy rubbles	21	
Water		
Search of victims	27	
Rescue from water	24	
(Japan Fire and Disaster Management Agency, Workshop or	. Future Fire	fighting & Disaste

(Japan Fire and Disaster Management Agency, Workshop on Future Firefighting & Disaster Response Robots, Questionnaire to Fire Fighting Departments of 49 Major Cities, 2003) International Rescue System Institute

Expected Functions of Robots

- Contribution of Rescue Robots
 - Rescue operations that are impossible by human
 - Prevention of secondary damage of responders
 - Improvement of rapidness
 - As Good Tools of Human Responders
- Expected Functions of RT
 - Surveillance of overview information
 - Information gathering of hazmat and environmental conditions
 - Search and diagnosis of victims
 - Quantitative investigation of damage
 - Support for recovery To Give Sensors Mobility
 - Life support at refuge
 - Removal of rubble piles
 - Medical examination and treatment

Japan MEXT DDT Project on Rescue Robots

2002-2007, PI: Prof. S. Tadokoro, Intl. Rescue System Inst., Budget: US\$20M

Information Integration

Protocol and Database

Protocol standardization (MISP)
Disaster info. database (DaRuMa)
Network integration and operation

Overview Info. Gathering

Surveillance from Sky

- Small-size helicopter (automatic surveillance)
- InfoBalloon (monitoring from fixed points)

Distributed Sensors

 Rescue
 Communicator
 (victim search sensor)

Advanced Rescue Instruments

Surveillance in Rubble Pile

GIS Multi Functional Range Finder

HI Utilizing Past Image Multi-Camera System

Surveillance in Underground

ActiveScope Camera

- Integrated serpentine robot
- Rescue tools (jacks, search cam, power tools, etc.)
- •Wireless triage tag (for rescue logistics)
- Integrated UGV
- ·Connected mobile mechanism
- Jumping robot
- •Human interface for teleop. (virtual bird-eye view, 3D map, standardization, etc.)
- •UWB human body sensor •Adhoc network

Verification, Training, Demonstration

- Tokyo FD training site
- ·Niigata Chuetsu EQ.
- ·JICA Intl. Rescue training
- FEMA training site
- Collapsed House Simulation Facility in Kobe Lab.
 Firefighters unit, IRS-U

Field+User-Based Development

- Collapsed House Simulation Facility (2003-2007)
 - Research and development by repetitive testing and improvement using test field
- IRS-U (2006-)
 - Volunteer responder corp
 - Captain: Mr. Kenichi Makabe
 - Feedback to research

Active Scope Camera for Search in Confined Space

Video Scope with Search in 3 cm gap Active Surface

(Oct.3, 2006 @ Intl. Disaster Relief Team Exercise)

(Intl. Rescue System Inst. Kobe Lab., Collapsed House Simulation Facility)

(Tadokoro, Tohoku U)

Ciliary Vibration Drive Mechanism

Principle of Motion

[Actuator2006, IROS2006]

- Drive by reaction force produced by pressing inclined cilia using vibration
- Tips of cilia repetitively stick and slip

Active Scope Camera [IROS2007]

Actuation by the whole surface Change the direction of motion R International Rescue System Institute

Active Scope Camera

Advantages

- Cable penetrates deep into debris by distributed actuators.
- Horizontal insertion is possible as well as vertical insertion.
- Direction of cable motion is controllable.
- Cable can avoid or get over obstacles 20 cm high (max).
- Cable can climb slopes 20 deg. (max).
- Cable are pulled out smoothly and seldom gets stuck.
- Evaluation by Sam Stover (FEMA US&R IN-TF1 Search Team Manager, CRASAR)
 - Operated Active Scope Camera at the site
 - Effective also for searching victims in collapsed structures
 - Expects deployment ASAP

Disaster City, FEMA TX-TF1 Training Site

World-largest simulated disaster situations for training of Urban Search and Rescue (USAR)

Victim Search in Trains

Search under Train

Search through Small Hole

Search in Drain Pipe

Search in RC Rubble Pile

ActiveScope Camera

Negotiation with Obstacles

ActiveScope Camera

@ FEMA TexasTF1 Training SiteDisaster City6/18-22/2007

(Tadokoro, Tohoku U)

The New Hork Times

June 25, 2007

Jessica Kourkounis for The New York Times

Satoshi Tadokoro operates the Active Scope Camera, an optic robot that inches along like a snake.

NHK Morning Show 1/16/2007

ActiveScope Camera

New York Times 6/25/2007

(Tadokoro, Tohoku U)

TOHOKU

Construction Site Collapse

- Berkman Plaza II Parking Garage, Jacksonville, FL, USA
- Dec. 6, 2007 Collapse when workers were pouring concrete on the top floor
- 1 death, 23 injury
- Forensic investigation: OSHA, owner, developer, contractor, subcontractors
- Fiber scopes, robots, etc. could NOT penetrate deep into the debris.

Deployment at Construction Site Collapse

- Dec. 12, 2007 Call-out of Active Scope Camera
- Jan. 4-5, 2008 Investigation by Active Scope Camera
- Responders Team

- Prof. Satoshi Tadokoro (Grad. School of Info. Sci., Tohoku U.): inventor, instruction, operation, recording
- Prof. Toshihiko Nishimura (US Office, Tohoku U.): MD, recording
- Prof. Osachika Tanimoto (SFO Center, Osaka U.): structural collapse specialist
- Mr. Sam Stover operation, safety guidance (FEMA IN-TF1 Tech. Search Team Manager, CRASAR USF):
- Prof. Robin Murphy (U. South Florida, Center for Robot Assisted Search and Rescue): recording, HI analysis
- Mr. Bill Brack (Bracken Eng.): chief investigator, direction
- Researchers from USF: recording, HI analysis

Use for Forensic Investigation

- Data Collected at Investigation by Active Scope Camera
 - Movie image of 7 m deep in debris
 - Shape and direction of concrete cracks
 - Shape of concrete flakes, stripped planes
 - Situation of spaces in rubble pile
- Why Good?
 - Compact -----> can enter narrow gaps
 - Distributed Actuation --> stable robust drive
 - Flexibility -----> adaptable to complex shapes
 - Controllability ----> search in large spaces in debris

Major Contribution to Forensic Investigation = Effective in Urban Search and Rescue

Removal by construction machines - lose data

тоноки

Use at Const. Accident

能動スコープカメラ (走行性能・実地試験)

東北大学 田所研究室

Cologne Historical Archive Collapse

Germany, March 3, 2009

- Search for 2 victims
- ASC was called out and deployed
 - Risk of collapse was too high to operate from top of the rubble pile

Letter of Appreciation from Mayer

Der Oberbürgermeister der Stadt Köln

Professor Dr. Eng Satoshi Tadokoro Tohoku University 6-6-01 Aramaki Aza Aoba, Aoba-ku Sendai 980-8679 Japan Historisches Rathaus, 50667 Köln Telefon 0221/221-26020, Telefax 0221/221-23384 E-Mail oberbuergermeister@stadt-koeln.de

Köln, 16. Oktober 2009

Dear Prof. Tadokoro,

as you are aware, our historical archive suddenly collapsed on March 3rd, 2009. Immediately after its collapse, an unprecedented rescue effort has been initiated. Over the following days, the aim of this rescue mission was to search for the two victims, who have been buried under more than 10.000 tons of rubble, which was a mixture of stone, concrete, and historical papers. One of the two victims was a 17 year old apprentice, who wanted to become a baker, the other one was a 24 year old 1st Prototype

- 2 vibration motors, 12 brush rings
- Motor units and cables for bending
- Length of brush: 160 mm, Diameter: 68 mm
- Weight: 1 kg

Motion of 1st Prototype

Active Scope Camera

- Technical Future Issues
 - More mobility and operability
 - Wider field of view
 - Position estimation
 - Recording functions
- Non-technical Future Issues
 - Operation methods and guidelines
 - Training
 - More application to real situations
 - Deployment

TOHOKU

Testing by IRS-U at Collapsed House Simulation Facility in Kobe

Expectation for Robotic Systems by Firefighting Departments of Major Urban Cities in Japan

NBC Disaster		
 Identification of NBC materials by sensors 	39	(out of 49)
 Transfer of victims to safe area 	30	
 Removal of NBC material 	24	
Fire		
Extinguishment in buildings	30	
 Search in buildings 	25	
 Extinguishment irrespective of heat radiation 	24	
Earthquake		
Search from above the rubble pile	26	
 Search in the rubble pile 	22	
Remove heavy rubbles	21	
Water		
Search of victims	27	
Rescue from water	24	
(Japan Fire and Disaster Management Agency, Workshop or	n Future Fire	fiahtina & Disaste

(Japan Fire and Disaster Management Agency, Workshop on Future Firefighting & Disaster Response Robots, Questionnaire to Fire Fighting Departments of 49 Major Cities, 2003)

NEDO Strategic R&D PJ on Advanced Robot Components High-Speed Search Robots for Confined Space

Kenaf: Mobility Challenge Champion @ RoboCupRescue 2007 Atlanta and 2009 Graz

Kenaf showed the best mobility in the world using the NIST rescue robot evaluation field, which is proposed as international standard by ASTM.

Rubble Pile Negotiation at Disaster City

Traverse of RC rubble pile (40 m x 40 m)

Traverse of wooden rubble pile (10 m)

Traverse of slope (2008.11.18-20)

Operator Support by Semi-Autonomy

(2) Based on Measurement of Terrain Shape by Laser Range Finders

(1) By Using Touch Sensors+ Distance Sensors

3D Scanner and 3D Mapping

(Ohno, Tadokoro, Tohoku U)

Ali-Baba

3D Scanner

Environment

3D Scan Data

<u>3D Scanner</u> ∙2D LRF ∙Color Camera

<u>3D Scan Match</u> • Fast ICP • Gravity Condition

Rescue System Environment

Scan Matching

3D Teleoperation Interface @ Disaster City

3D interface + semi-autonomous rubble pile negotiation in pancake crush structure

> cf. 2D maps are useless

(2008.11.18-20)

3D Mapping @ Disaster City

Pancake Crush Building

Train Accident

Integration of Sensor Data from Multiple Robots by GIS

Mapping by 3 Robots

Raw data from three robots

Corrected map using three robots' data

Expected Functions of Robots

- Contribution of Rescue Robots
 - Rescue operation that was impossible by human
 - Prevention of secondary damage of responders
 - Improvement of speed
 - As Good Tools of Human Responders
- Expected Functions of RT
 - Surveillance of overview information
 - Information gathering of hazmat and environmental conditions
 - Search and diagnosis of victims
 - Quantitative investigation of damage
 - Support for recovery To Give Sensors Mobility
 - Life support at refuge
 - Removal of rubble piles
 - Medical examination and treatment

Future Advanced Infrastructure for Safe Secure Social System

