

On Proactive Helping Behaviors In Teamwork
Sen Cao, Richard A. Volz, Thomas R. Ioerger, and Michael S. Miller

Department of Computer Science, Texas A&M University
College Station, TX 77843, USA

{sencao, volz, ioerger, mmiller}@cs.tamu.edu

 -Sen Cao

International Conference on Artificial Intelligence (IC-AI). Las Vegas, 2005.

On Proactive Helping Behaviors In Teamwork

Sen Cao, Richard A. Volz, Thomas R. Ioerger, and Michael S. Miller
Department of Computer Science, Texas A&M University

College Station, TX 77843, USA
{sencao, volz, ioerger, mmiller}@cs.tamu.edu

Abstract - Teamwork has become increasingly important
in diverse disciplines. Cognitive studies on teamwork have
shown that team members in an effective team often have
mutual expectations based on their shared mental models
and proactively offer assistance to each other. We present
a formal model called Role-Based Proactive Helping
Behaviors (RoB-PHB) to enable proactive assistance
among (sub)teams. Through RoB-PHB, agents can
dynamically identify others’ help needs and provide helps
by a course of actions on the fly. We have designed
algorithms to implement our RoB-PHB formalism in a
teamwork architecture called Role-Based Collaborative
Agents for Simulating Teamwork (RoB-CAST). Our
experiments on RoB-CAST have shown that the team with
proactive helping behavior achieved better team
performance.

Keywords: Teamwork, Role-Based Shared Mental
Model, Helping Behavior

1 Introduction
In recent years, teamwork has become increasingly
important in diverse disciplines, from business
management to sports and entertainments to defense
simulations and to virtual training. In dynamic and
distributed environments, teamwork is more than an
aggregation of coordinated individual actions. Several
teamwork models have been developed to explore the
critical underlying mental states that drive agents to
perform their individual actions while leading to a
team effort, such as joint intentions [5], SharedPlan
theory [6], and joint responsibility [7, 8]. Based on
these teamwork models, various teamwork
architectures have been designed to support agent
teamwork, such as the BDI architecture [15], STEAM
[17], GRATE [9], and CAST [18].
Moreover, cognitive studies on teamwork have shown
that team members in an effective team often
maintain shared mental models [3, 12]. Cannon-
Bowers et al. suggested that shared mental models are

“knowledge structure held by members of a team that
enable them to form accurate explanations and
expectations for the task, and in turn, to coordinate
their actions and adapt their behavior to demands of
the task and other team members” [3]. Klimoski and
Mohammed insisted that “there can be (and probably
would be) multiple mental models co-existing among
team members at a given point in time” [10]. Shared
mental models could contain task-specific knowledge,
task-related knowledge, knowledge of teammates and
attitudes/beliefs and “shared” means overlapping,
similar, identical, complimentary and/or distributed
[4]. Empowered by shared mental models, agents in
an effective team bear mutual expectations to each
other; in particular, they can dynamically identify
others’ help needs and proactively offer assistances
on the fly.
Brehm and Kassin identified the motivations of
helping behavior from biological factors (i.e., a
creature has a tendency, originated from natural
selection, to reciprocal helping), emotional factors
(i.e., a person’s empathy makes him/her help to
reduce the distress of another person) and social
normative factors (i.e., social norms promote help
giving in social contexts) [1]. Lind proposed a dual-
aspect-theory of moral development and helping
behavior to distinguish a person’s desire to help and
his/her ability to help adequately and further
hypothesized the conditions of triggering helping
behavior [11]. The dual-aspect-theory of helping
behavior can be viewed as a hypothesis about how
social norms actually motivate helping behavior.
Miceli, Cesta and Rizzo described the conditions and
motivations for seeking and giving help based on
social dependence between two agents (with attitudes
of help seeking and giving respectively) [13].
Backing up behaviors are a special kind of helping
behaviors in the situation where some team
member(s) fails to accomplish a certain action and
other team member(s) take an action to cover what
the failure action targets. Porter et al. proposed a Five
Factor Model of personality to describe the key

characteristics of backing up behaviors, including
back up recipients, back up providers, and the
legitimacy of the needs for backing up [14].
In this paper, we present a formal model of proactive
helping behavior based on shared mental models.
While many social morals, such as laws, religions and
cultures, might affect the decisions on helping
behaviors, we focus on how to identify help needs
and how to provide helping behaviors
correspondingly. Unlike social dependence that only
enables helping behaviors between two agents, our
model facilitates proactive helping behaviors among
teams.
Our model enables two types of helping behaviors: 1)
taking over what others are doing if they fail (called
backup behaviors), and 2) helping others to achieve
conditions required by what they are doing (called
promotion behaviors). Based on shared mental
models, agents can identify help needs for these types
of helping behaviors and initialize courses of actions
to meet the needs if they can.
In next sections, we will first briefly describe our
teamwork architecture called Role-Based
Collaborative Agents for Simulating Teamwork
(RoB-CAST), including the specification of
teamwork knowledge and Role-Based Shared Mental
Models (RoB-SMMs). Then we will explain our
formal model of Role-Based Proactive Helping
Behaviors (RoB-PHB) to facilitate the above two
types of helping behaviors among teams. We will
present the algorithms that implement RoB-PHB in
our RoB-CAST. We will also describe our
experiments to show that our RoB-PHB enables
agents to achieve better team performance. Finally,
we will summarize the contribution of this work and
discuss further improvements.

2 Overview of RoB-CAST
RoB-CAST has been developed to simulate effective
teamwork based on shared mental models. Teamwork
knowledge is specified by a teamwork programming
language called Role-Based Multi-Agent Logic
Language for Encoding Teamwork (RoB-MALLET).
Agents in RoB-CAST maintain Role-Based Shared
Mental Models (RoB-SMMs) and represent the
teamwork knowledge in their RoB-SMMs. In
particular, agents maintain task-specific knowledge
by team processes in RoB-SMMs. Through team
processes, agents coordinate with each other for the
execution of teamwork; moreover, agents can be
mutually aware of what others are doing, and further
activate various reasoning mechanisms to improve
team performance, such as proactive helping
behaviors discussed in this paper.

In this section, we will briefly describe RoB-
MALLET, and how task-specific knowledge is
specified therein. Then we briefly describe RoB-
SMMs, particularly how they represent task-specific
knowledge as team and how agents maintain team
processes during the execution of teamwork.

2.1 RoB-MALLET
RoB-MALLET has rich expressivity for teamwork
knowledge. It contains a variety of constructs for
specifying operators, plans, team structures, shared
goals, and team processes. From the perspective of
the task-specific knowledge, RoB-MALLET is
distinguished from other agent/team programming
language in two aspects: 1) RoB-MALLET specifies
team processes explicitly by using the mental states
underlying teamwork, as discussed in existing
teamwork models [5, 6, 7], such as, mutual beliefs,
shared goals, and joint intentions; 2) the
specifications of team processes are in terms of
conceptual notions (roles and role variables) instead
of specific agents, allowing reuse by different teams
of agents.
The primitive actions in team process are operators
that are executed by agents in the domain. RoB-
MALLET specifies an operator by a set of
preconditions and a set of effects. The execution of an
operator transits the domain from a state in which its
preconditions are satisfied to another in which its
effects are satisfied. Before executing an operator, an
agent evaluates the preconditions based on its
individual beliefs and asserts the effects of the
operator in its individual beliefs after the execution of
the operator. There are three modes of handing false
preconditions: fail, wait and achieve. Suppose the
preconditions of an operator op are false. In a fail
mode, an agent does not execute op but continues
with the next action1. In a wait mode, if the
preconditions become true within a specified period
of time, op is executed. Otherwise the behavior is as
in the fail mode. In an achieve mode, an agent tries to
achieve the preconditions. If the preconditions are
achieved, the agent executes op; otherwise the agent
does not execute op but continues with the next
action. E.g., an operator for moving to a square (?x,
?y) in a wumpus world is specified as (ioper movein
(?x ?y) (pre-cond (not (wumpus ?x ?y)))).
In RoB-MALLET, a team process is specified by a
role-based plan. Similar to an operator, a plan has a
set of preconditions and a set of effects and there are
the same modes for handling false preconditions.
Their semantics are the same as those in an operator,
except that plan preconditions and effects are in terms
of the performers’ mutual beliefs while those of an

1 A choice construct is also defined in which when a plan or operator
fails, an alternative is attempted.

operator are in terms of the performer’s individual
belief. A plan also has a virtual team of roles, a set of
constraints, a set of termination conditions and a
process. We require that every action in a team
process must be associated with a role (or role
variable) or a set of roles (or role variables) , e.g., (Do
r1 op1). A role variable is a reference to a role
dynamically selected from a list of roles according to
concrete situations. An agent is delegated to every
role, and must execute the actions associated with the
role and those associated with a role variable, which
the role is selected to fill. The virtual team consists of
all roles in the team process. The set of constraints is
a conjunction of literals and specifies the conditions
that must be satisfied when delegating the roles in the
virtual team to the agents invoking the plan2, which
may involve communication to access others’ beliefs.
A process consists of actions. Do constructs associate
actions (e.g., operators or plans) with roles and/or role
variables, e.g., (Do r1 (movein 3 4)). So, Do
constructs specify individual/joint intentions of the
agent(s) to which a role is (are) delegated. A variety
of constructs can be used to express the flow of the
actions, such as sequential, parallel, selection and
iteration. The conditions in selection and iteration
constructs are evaluated based on the mutual beliefs
of individuals involved in the actions controlled by
the constructs. Termination conditions are a set of
literals, and are used to monitor the execution of the
plan, similar to Jennings’ conventions [7], If a
termination condition becomes true, the plan
execution is terminated.
In RoB-CAST, a team of agents starts a task by
invoking a plan. Once the plan is invoked, the roles
are dynamically delegated to the agents and each
agent executes the actions associated with the role(s)
and/or role variable(s) delegated to the agent. An
agent could be in multiple teams, and a team could be
involved in multiple tasks simultaneously.

2.2 RoB-SMM
Each agent has a RoB-SMM and the union of these
models forms a complementary, overlapping and
distributed mental model. A RoB-SMM contains
teamwork knowledge, including operators, plans,
team structures (agents in teams and their
capabilities), beliefs, shared goals, and team
processes for achieving the shared goals. We focus on
how team processes are represented and maintained
in RoB-SMMs and how RoB-SMMs enable mutual
awareness.
The team processes in a RoB-SMM are represented
by a tree structure called a team organization and an

2 See [2] for a detailed discussion of our roles vis a vis previous use of
roles.

execution model called an individual process. In a
team organization, each node is a tuple (G, φ, P, S,
C), where G is a team of agents, φ is a shared goal of
G, P is a plan by which the agents in G use to achieve
φ, S is the team structure of G invoking P (i.e., the
delegations from roles to agents), and C is the set of
nodes corresponding to the sub-goals of φ. When a
team of agents invokes a sub-plan to achieve a goal, a
corresponding node is added under the root of the
team organization. For a hierarchical plan, a team
organization represents the hierarchy of tasks in
teamwork and each node represents the relationships
among agents, shared goals, plans for achieving the
goals and team structures for executing the plans.
The individual process of an agent contains only the
actions related to the agent, rather than the whole
team process. An individual process is expressed in
an extended Petri net, called RoB-CAST-PN. For
each plan, RoB-CAST generates a RoB-CAST-PN
representation for a role or role variable to represent
the actions associated with it. Every action associated
with a sub-plan in the team process is translated into a
special transition attached with preconditions, effects,
and termination conditions. When an agent together
with other agents invokes a plan, the agent
dynamically composes its individual process by
expanding the transition corresponding to the plan
with the RoB-CAST-PN representation(s) of the
role(s) or role variable(s) delegated to the agent. The
agent shrinks the RoB-CAST-PN representation(s) to
the plan transition after the plan is finished. An
important feature of RoB-CAST-PN is that the
temporal orders between the actions (even those
associated with different individuals) are preserved
during the translations and compositions.
Although each agent only maintains the actions
related to itself, RoB-CAST agents have mutual
awareness of what other agents are doing. Agent ag1
can refer its team organization to see what plans agent
ag2 is involved in and what role(s) and/or role
variable(s) is (are) delegated to agent ag2. Then,
agent ag1 can construct the individual process of
agent ag2 and further know the actions in it. Agent
ag1 can infer the markings of ag2’s individual process
in multiple ways, e.g.: 1) the temporal orders and/or
coordination between ag1’s actions and ag2’s actions,
2) observations on ag2’s performances of actions.

3 Formal Model of Proactive Helping
Behaviors

From the behavioral perspective of teamwork, a team
of agents (G1) may provide helping behaviors (a
course of action a) to benefit the goal (φ) of another
team of agents (G2). In general, team G1 can help
team G2 to reach G2’s goal φ in two ways: 1) G1 takes
over G2’s goal φ (called backup behaviors); and 2) G1

achieves the prerequisite condition of to G2’s goal φ
(called promotion behaviors). Our model of Role-
Based Proactive Helping Behaviors characterizes
these two types of helping behaviors by a meta-
predicate Help(G1, G2, φ, a), which expresses the
condition that agents in team G1 can help agents in G2
by executing an action a, as follows:
Help(G1, G2, φ, a) MBel(G≡ 1, Goal(G2, φ)) 1

^ (MBel(G1, μ) ∨ MBel(G1, ν)) 2
^ MBel(G1, Capable(G1, a)) 3

where,
μ = (□┐Done(G2, φ) ^ 4

 (Done(G1, a) → φ)) 5
ν = (ψ ((┐ψ ^ 6 ∃

(┐ψ→ □┐Done(G2, φ)) ^ (ψ→┐□┐Done(G2, φ))) ^ 7
(┐(G∃ 3∃ a' (Do(G3, a') ^ (Done(G3, a') → ψ)))) ^ 8
(Done(G1, a) → ψ))) 9

Then, Help(G1, G2, φ, a) → Do(G1, a).
In the above formula, symbol □ is the temporal
operator “always”; MBel(G, I) means that the agents
in G mutually believe I; Goal(G, g) means that the
agents in G have a shared goal g; Done(G, g) means
that the agents in G have achieved a shared goal g;
Done(G, a) means that the agents in G have executed
action a; Do(G, a) means that that the agents in G
executes action a; and Capable(G, a) means that team
G can perform action a.
Clause 2 in Help(G1, G2, φ, a) contains two
disjunctive clauses and these two clauses characterize
two types of help needs. The first clause specifies a
help need for a backup behavior, and the second, a
help need for a promotion behavior. For easier
understanding, we explain Help(G1, G2, φ, a) for
these two types separately.
For backup behaviors, the agents in G1 proactively
help the agents in G2 to achieve a goal φ by executing
action a if 1) G1 mutually believes that G2 has a
shared goal φ (clause 1); 2) G1 mutually believes that
G2 will never reach the shared goal φ (clause 4); 3) G1
mutually believes that φ will be true if G1 executes
action a (clause 5); and 4) G1 mutually believes that
G1 is capable of action a (clause 3).
For promotion behaviors, the agents in G1 proactively
help the agents in G2 to achieve a goal φ by executing
action a if 1) G1 mutually believes that G2 has a
shared goal φ (clause 1); 2) G1 mutually believes that
there exists a condition ψ and ψ is not true (clause 6);
3) G1 mutually believes that G2 will never reach the
shared goal φ if ψ is not true and that G2 might reach
the shared goal φ if ψ is true (clause 7); 4) G1
mutually believes that no action performed by any
other team can make ψ true (clause 8); 5) G1
mutually believes that ψ will be true if G1 executes
action a (clause 9); and 6) G1 mutually believes that
G1 is capable of action a (clause 3).

Based on RoB-SMMs, the agents in G1 can evaluate
the clauses Help(G1, G2, φ, a) as follows:
1. G1 evaluates clause 1 by checking if there is a node

in their team organization representing that G2 is
trying to achieve goal φ.

2. G1 can find the plan P used by G2 to try to achieve
φ through their team organizations, and the
termination conditions of P through the plan
knowledge. If the termination conditions become
true, G2 terminates the execution of plan P and thus
G2 cannot achieve φ. In this way, G1 can evaluate
clause 4 and identify help needs for backup
behaviors.

3. Based on the mutual awareness enabled by RoB-
SMMs, G1 can check clauses 6 - 8. As described
earlier, agents can construct other agents’ individual
processes and thus know the actions other agents
are doing. Through the knowledge of operators and
plans, the agents in G1 know the preconditions and
effects of G2’s actions3. If G1 mutually believes
that a precondition of one of G2’s actions is false,
then G1 believes G2 might need help (clauses 6 and
7). However, if the agents also know the effect of
any ongoing action will imply the precondition
(clause 8), they know they do not need to help.

4. Even though planning algorithms may be applied to
decide a course of actions for G1 to achieve φ (or
ψ), agents in RoB-CAST currently just search for a
plan in their plan library. A plan is a proper course
of actions only if its effects imply φ (or ψ), G1
mutually believes its preconditions, and G1 can find
a team delegation for the roles in the plan to G1 that
satisfies the constraints of the plan and capability
requirements of the roles.

In summary, the meta-predicate Help(G1, G2, φ, a)
gives the conditions under which proactive helping
behaviors take place, as well as the specific agents
(G1) and behaviors (a). Although our model is in
terms of RoB-SMMs and there may be other
representations of shared mental models, this formal
works as long as shared mental models enable mutual
awareness on team processes. It is important to note
that only partial mutual awareness is needed.

4 Algorithms of Proactive Helping
Behaviors

Based on the formal model of proactive helping
behaviors (PHBs), we implement proactive helping
behaviors by a PHB offline algorithm and a PHB
online algorithm. The offline algorithm generates all
potential helping needs (fail and wait preconditions of
actions) and all potential coverage of possible helping

3 As the achieve mode implies that the executors of an action would
achieve its preconditions by themselves, we treat false preconditions in
fail or wait modes as help needs for promotion behaviors.

needs (the effects of actions) in a plan. The online
algorithm identifies actual help needs based on RoB-
SMMs, the potential help coverage generated by the
offline algorithm, and then initializes a proper plan to
provide helping behaviors. The offline algorithm is
run on plans statically before the plans can be
invoked as tasks. The online algorithm is run by each
agent in a separate thread during the execution of
teamwork.
The offline algorithm functions on the basis of the
RoB-CAST-PN representations for the roles and role
variables in a plan. The offline algorithm checks
every transition representing an action (operator/plan)
in the RoB-CAST-PN representations and generates
potential help needs and coverage. A potential
helping need is represented by a 4-tuple (Predicate,
Plan, Needers, Transition). A potential coverage is
represented by a 2-tuple (Predicate, Plan). The
following is the offline algorithm generating potential
help needs and coverage for plan P:
PHB_Offline(P)
 Create a helping need list HelpNeeds;
 Create a coverage list HelpEffects;
 For each role or role variable r in P, do
 Generate a Rob-CAST-PN PN for r;
 For each transition t in PN, do
 Let precond be the precondition corresponding to t;
 If precond is a fail or wait mode, then
 Add (precond, P, r, t) into HelpNeeds;
 Let effect be the effect of corresponding to t;
 Add (effect, P) into HelpEffects;

The online algorithm refers to the team organization
and finds the current plan invocations. Through the
offline algorithm, it infers all potential helping needs
and coverage of the plan invocations. To identify the
actual help needs, the online algorithm first filters the
potential helping needs by the coverage implied by
the current plan invocations. The online algorithm
then has the agent communicate with agents needing
help to decide the exact conditions for which help is
needed. Through RoB-SMMs, agents can
dynamically construct individual processes of agents
needing help, but without concrete markings. That
means, agents can be mutually aware of what actions
needers are doing, except the exact time when the
actions are being executed. Also, the potential help
needs generated by the offline algorithm may contain
variables and agents may not know their exact
bindings. The potential helping agents know which
roles need help and can decide which agents to
communicate with according to their team
organizations.
The online algorithm searches the plan library for a
plan, and finds a team of agents to whom the roles in
the plan can be delegated. If such a plan and team
exist, the online algorithm coordinates with the team

to invoke the plan. Each agent ag executes the
following online algorithm:
PHB_Online()
 While ag is alive, do
 For each plan invocation P in ag’s team organization, do
 For each helping need Need in HelpNeeds generated by

PHB_Offline(P), do
 Bindings = Identify_Actual_Help_Needed(P, Need);
 If Bindings ≠ null, then
 Let HelpGoal be the predicate in Need with Bindings;
 Search for a plan P1 that achieves HelpGoal;
 If P1 ≠ null, then
 Search for a team G to invoke P1;
 If G≠ null, then
 Notify the help needers that Need has been helped;
 Ask G start P1;

Identify_Actual_Help_Needed (P, Need)
 Let (Pred, P, G, t) = Need;
 If Need in P has been helped, then return null;
 For each plan invocation PI in ag’s team organization, do
 For each coverage Effect in HelpEffects generated by

Helping_Offline(PI), do
 If the predicates in Effect implies pred, then return null;
 Check ag’s team organization & find the agents T assigned to G;
 Ask one agent in T for the Bindings in Pred;
 Return Bindings;

For simplicity, we did not include the recognition of
helping needs for backup behaviors in the algorithm.
As explained earlier, this type of need can be
identified by tracking plan termination conditions.
We can enable backup behaviors by slightly changing
the algorithms, but omit doing so here due to length
considerations.
We used a pull mode of communication to identify
actual help needs in the online algorithm. The
communication volume and response time are
decided by the frequency. The more frequently agents
communicate with each other for identifying actually
help needs, the more responsive agents are to help
needs. Users can set the frequency of identifying
needs according to the time requirements of specific
domains.

5 Experiment and Analysis
We have constructed experiments on a multi-agent
extension of the Wumpus World with a team T of
three agents ag1, ag2 and ag3. Agent ag1, ag2 and
ag3 play the roles of, a sniffer to sense wumpuses and
gold in squares within a radius of two, a carrier to
collect gold, and a fighter to shoot wumpuses,
respectively. The goal of the team is to collect as
much gold as quickly possible. Agents ag1 and ag2
form a subteam to invoke plan Sense&Collect, by
which ag1 walks around and senses gold and
wumpuses. and ag2 collects the gold found. Ag3
invokes plan Wander, by which ag3 just randomly

moves in the map. Although ag3’s plan Wander is
irrelevant to the team goal, it could be replaced with
any plan relevant.
Figure 1 shows the map we use. It contains 400
squares (20 by 20), and has 40 wumpuses and 60
pieces of gold. A piece of gold may be surrounded by
wumpuses. Such gold is unreachable unless a path is
opened by killing one of the wumpuses. Also, a piece
of gold may be in a square together with a wumpus.
Such gold is also unreachable unless the wumpus is
killed. There are 25 pieces of unreachable gold in the
wumpus world shown in Figure 1.
To illustrate the impact of proactive helping
behaviors, we ran two configurations on RoB-CAST,
with and without PHB, and collected team
performance for each. The agents with and without
PHB behave differently in two situations: 1) once ag2
knows a piece of gold surrounded by wumpuses, ag2
tries to find a path to reach the gold; or 2) once ag2
knows a piece of gold with a wumpus, ag2 tries to
move to the square to collect the gold. Without PHB,
nobody kills the wumpus and ,ag2 gives up collecting
the gold. With PHB, ag3 can be aware of ag2’s help
need.. If ag3 knows it can help ag2 by killing a
wumpus, then ag3 provides help by starting a plan kill
to kill the wumpus.

Figure 1. The wumpus world used in our experiment

The result of the experiment is shown by Figure 2. On
average, the agents with PHB collected 54 pieces of
gold while the agents without PHB only collected 35
pieces of gold. Moreover, to collect a certain amount
of gold, the agents with PHB took less time than the
agents without PHB. We note that the agents with
PHB did not collect all gold and some pieces of gold
were not collected even though proactive helping
behaviors made them reachable.
As a trade-off for proactive helping behaviors extra
communication is required to identify the needs. We
set the frequency of checking help needs to be once

per second. The agents responded help needs
promptly and invoked plan kill 25 times (same as the
amount of unreachable gold). The extra
communication was about 1500 messages.

Collected Gold

0

10

20

30

40

50

60

0.5 68 136 203 271 338 406 473 541 608 676 743 811

Time(s)

C
ol

le
ct

ed
 G

ol
d

helping

nonhelping

Figure 2. The distribution of the number of pieces of gold

collected over the execution time

In summary, the experiment shown that proactive
helping behaviors can improve team performance at
the cost of a modest amount of communication.

6 Conclusion and Further
Improvements

In summary, we have developed a formal model to
enable proactive helping behaviors in teamwork. The
model can identify two types of help needs (backup
and promotion) and have agents initialize courses of
actions to meet the needs. We have implemented the
model in our teamwork architecture RoB-CAST.
Experiments have shown that proactive helping
behaviors improved team performance. Although the
formal model is presented and implemented based on
our role-based shared mental models, the formal
model works on other shared mental models that
enable mutual awareness of team processes.
Further improvements can be made. First, the model
can be extended to monitor help needs during the
execution of proactive helping behaviors. If a help
need is dismissed, there is no need for agents to
continue execution of helping behaviors. In our
experiment, after ag2 waited for a period of time and
gave up, the help need for collecting the gold was
dismissed. However, ag3 still finished plan kill for the
(no longer needed) help.
Second, the model does not capture the impact of
helping behavior on what the agents are currently
doing. Helping behaviors benefit the agents who need
help, but they may hurt what agents are doing. For
example, providers of help may have other higher
priority of tasks; or the plan used for helping may
lead to some effects that reverse the goals, which
some agents are achieving. Also, multiple plans with

different costs might usable to provide helping
behaviors. An extension to weight the costs, side
effects and benefits of these plans and apply theoretic
decision-making to decide whether to provide helping
behaviors or which plan to use would be useful.
Finally, complex planning mechanisms might be
adopted to replace the mechanism of searching for a
plan and team.

7 Acknowledgements
This research was supported by a DOD MURI grant
F49620-00-1-0326 administered through AFSOR.

8 References
[1] Brehm, S., and Kassin, S. M. “Social Psychology”
(Second Edition). Boston: Houghton Mifflin. 1993
[2] Cao, S. “Role-Based and Agent-Oriented
Teamwork Modeling”. Texas A&M University,
College Station, Texas, 2005.
[3] Cannon-Bowers, J. A., Salas, E., and Converse, S.
A. “Shared Mental Models in Expert Team Decision
Making”. Individual and Group Decision Making,
Castellan, NJ, 1993, pp. 221-246.
[4] Cannon-Bowers, J. A., and Salas, E. “Reflections
on Shared Cognition”. Journal of Organizational
Behavior, 22, 2001, pp. 195-202.
[5] Cohen, P. R., and Levesque, H. J. “Teamwork”.
Nous: Special Issue on Cognitive Science and
Artificial Intelligence, 25(4), 1991, pp. 487-512.
[6] Grosz, B., and Kraus, S. “Collaborative Plans for
Complex Group Actions”. Artificial Intelligence,
86(2), 1996, pp. 269-357.
[7] Jennings, N. R. “Commitments and Conventions:
The Foundation of Coordination in Multi-Agent
Systems”. The Knowledge Engineering Review, 8(3),
1993, pp. 223--250.
[8] Jennings, N. R., and Mamdani, E. H. “Using Joint
Responsibility to Coordinate Collaborative Problem
Solving in Dynamic Environments”. 10th National
Conference on Artificial Intelligence (AAAI-92), San
Jose, CA, 1992.
[9] Jennings, N. R., Mamdani, E. H., Laresgoiti, I.,
Perez, J., and Corera, J. “GRATE: A General
Framework for Cooperative Problem Solving”. IEEI-
BCS Journal of Intelligent Systems Engineering, 1(2),
1992, pp. 102-114.
[10] Klimoski, R., and Mohammed, S. “Team mental
model: Construct or metaphor?” Journal of
Management, 20, 1994, pp. 403-437.

[11] Lind, G. “How moral is helping behavior?”
American Education Research Association (AERA),
Chicago, IL, 1997.
[12] Mathieu, J. E., Heffner, T. S., Goodwin, G. F.,
Salas, E., and Cannon-Bowers, J. A. “The Influence
of Shared Mental Models on Team Process and
Performance”. Journal of Applied Psychology, 85(2),
2000, 273-283.
[13] Miceli, M., Cesta, A., and Rizzo, P.
“Autonomous help in distributed work
environments”. Seventh European Conference on
Cognitive Ergonomics, Bonn, Germany, 1994.
[14] Porter, C. O., Hollenbeck, J. R., Ilgen, D. R.,
Ellis, A. P. J., West, B. J., and Moon, H. K. “Backing
up Behaviors in Teams: The Role of Personality and
Team Structure”. Journal of Applied Psychology, 88,
2003, pp. 391-403.
[15] Rao, A. S., and Georgeff, M. P. “Modeling
Rational Agents within a BDI-Architecture”. In
Proceedings of the 2nd International Conference on
Principles on Knowledge Representation and
Reasoning (KR'91), Cambridge, MA, 1991.
[16] Rouse, W. B., Cannon-Bowers, J. A., and Salas,
E. “The Role of Mental Models in Team Performance
in Complex Systems”. IEEE Transactions on System,
Man and Cybernetics, 22(6), 1992, pp. 1296-1308.
[17] Tambe, M. “Towards Flexible Teamwork”.
Journal of Artificial Intelligence Research, 7(1),
1997, 83-124.
[18] Yen, J., Yin, J., Ioerger, T. R., Miller, M. S., Xu,
D., and Volz, R. A. “CAST: Collaborative Agents for
Simulating Teamwork”. 17th International Joint
Conference on Artificial Intelligence (IJCAI'2001),
Seattle, WA, 2001.

	dedication - scan resized.pdf
	article ICAI05
	1 Introduction
	2 Overview of RoB-CAST
	2.1 RoB-MALLET
	2.2 RoB-SMM

	3 Formal Model of Proactive Helping Behaviors
	4 Algorithms of Proactive Helping Behaviors
	5 Experiment and Analysis
	6 Conclusion and Further Improvements
	7 Acknowledgements
	8 References

