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Abstract

This paper presents a new method of grouping range image
regions such that each group of regions represents a meaning-
ful part of an object. The set of regions, defined as Convex
Region Ser(CRS), is made by analyzing the boundary types
between a pair of regions. The boundary types are classi-
fied as convex, concave, and jump boundaries. If two regions
share a convex boundary it is assumed that they are insepara-
ble regions, thus describing the same part(object). The CRSs
are determined by a Region Boundary Graph(RBG) which
is defined as a graph whose nodes represent regions, and the
edges represent boundaries: convex and concave. Since jump
boundaries represent no physical contact in 3-D, they are rep-
resented as null edges. A CRS is defined as set of regions(or
nodes in an RBG) such that for each pair of regions in the set,
there is a path, which is represented only by convex edges.
The physical interpretation is that a CRS represents part of an
object such that the regions in the set can not be separated.

1 Introduction

This paper describes a new way of analyzing segimented range
images to recognize 3-D objects, and follows earlier work by
Han, ef al.[7] on range image segmentation using surface nor-
mal analysis. The basic philosophy of our method is to use
the nature of the range data and 3-D objects in studying the
relationships between segmented range images, and to make
sets of regions that partition the image regions in such a way
that the regions in a set are inseparable from each other, and
represent a meaningful part of a 3-D object. As an anal-
ogy with a sheet of paper, we are trying to use two faces
of a sheet as one unit in matching, instead of dealing with
two faces separately. The aim of this scheme is to remove
non-candidate regions (or models) in the earlier stage of data
driven matching by testing simple binary relationships with-
out expansive computations, like geometric transformations
or optimization.
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The reduction of computation for matching comes from
several factors. One factor is that the number of candi-
dates is greatly reduced since a set of regions is a match-
ing unit. Another factor is that, since one set of regions can
be a unique combination(or at least very small number of
candidate groups might exist), detection of a unique set of
regions saves unnecessary searching. Additional speed up
comes from the fact that only binary relationships need to
be tested in the earlier stage of matching which is relatively
simple. And, this method also could be a preprocessor for the
matching method described by Shapiro, et al.[13] who used
parts in matching 3-D objects using relational paradigm.

In matching geometric descriptions for range image anal-
ysis, researchers used optimization [1], relaxation[3], various
tree search methods([5,9,10,12] and so forth. None of these
methods used a group of regions as a unit, even though some
of them used relational constraints. Depending upon the im-
age and the models, the number comparisons or calculations
in finding correspondence could be enormous in matching by
one primitive to one primitive.

Some analogous but quite different work has been done in
understanding 2-D line drawing of 3-D blocks world. Ac-
cording to Ballard and Brown[2], Guzman[6] used lines to
make polygonal regions and grouped the regions such that
each of the set represents one polyhedral block.

As another interpretation of line drawing of 3-D blocks
world, Clowes[4] used line labeling schemes. Similar works
on interpretation of line drawings can be found in Winston[15,
16]. Sugihara [14] also used junction types in analyzing 3-D
block objects from range images.

The region grouping method described in this paper is
based on the boundary types between two segmented regions
of range image. The boundary types are jump, convex, and
concave. If two regions are combined by a convex boundary,
it is assumed that the two regions belong to the same ob-
Ject, and they are non-separable regions. One assumption is
that we exclude accidental alignment which can be resolved
through model driven analysis.

In the next section, an overview of the segmentation
method is presented. Boundary types are defined in Section 3.
In Section 4, CRS is defined, and in Section 5, experimental
results are given, followed by a summary.



2 Segmentation

In this section we summarize our segmentation procedure. A
more detailed description can be found in Han, et al. [7,8].

The method is to find specified surfaces like, planar, cylin-
drical, and spherical segions that are the majority of man-
made parts. After calculating surface normals using a normal
operator, each type of the region is extracted in sequence.
The basic strategy of this segmentation is to use maximum
possible curved regions in order to capture curved surfaces,
while restricting the application to a region enclosed by jump
boundaries and other extracted regions in order to maintain
homogeneity of the region.

Planar regions are extracted by making normal histograms
and extracting regions of corresponding sizable height of the
smoothed normal histograms, flowed by planarity test which
compares the estimated overall normal of the region to the
normals of inside, and outside of the boundary of the region.
Without this planarity test, it is not possible to distinguish
small part of slightly curved surfaces with planar regions.

Cylindrical regions are extracted by first estimating the pos-
sible direction of axis. The direction of axis is estimated using
histogram analysis of cross product of a pair of normals. Then
a rotation matrix is made, and surface points are projected to
a plane perpendicular to the axis of the cylinder. From this
projection, center point and radius, and concavity-convexity
of the cylindrical regions is determined.

Spherical region extraction is based on the evidence of
the center of a sphere which is made by estimating possible
center points for each pair of surface points, and deciding
the majority value of the center. The radius is determined
from this estimated center at the same time. Distance criteria,
which test the distance from surface point to the estimated
center, is applied to remove false center points.

3 Boundary Types

In most cases, the properties of a region are not specific
enough to find a unique candidate region in matching. There
may be several candidate regions for a region of an image
with the same region properties. To reduce this ambiguity,
not only the property of a region but also relationships be-
tween regions must be checked. Two binary relationships ate
defined between a pair of regions such that different viewing
position does not affect their relationships. The first is a
boundary rype relationship defined between two adjacent re-
gions; the other is region relationship value that is measured
quantitatively such as inner preduct of surface normals in
planar-planar relationships, and the shortest distance from
a plane to the center of a sphere in planar—spherical rela-
tionships and so forth. The region relationship value is use-
ful in checking consistency between matched regions, but in
this paper we only introduce the boundary rype relationships.
Winnowing, and matching sets of regions using region prop-
erties and these binary relationships are described in Han[8].

Three boundary types are defined between two adjacent
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Figure 1: Boundary points, and inner and outer points.
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Figure 2: Relations between b; and £(b;)

regions. They are jump boundary, concave boundary, and
convex boundary. As shown in Figure 1, for each boundary
point b;, we define a pair of points (p;, ;) such that p; € R,
¢: ¢ R, and the line connecting p; and g; meets perpendicular
to the tangential line of boundary curve at b;, and the distance
from b; to g; is the same as that from b; to p;. As the distance
between b; and g;, chesshoard distance of 4 pixels is used.
But in calculation, there are cases that the distances can not be
made the same since the region could be an arbitrary shape.
In ihis case the distance could be different, but the point p;
should be in the region, and g; should be kept outside of the
region.

o Jump boundaries : A boundary point b; is a jump bound-
ary point if |2(p;) — z(@:)| > DEPT Hryresh, where 2(ps)
represents the depth value at point p;, 2(g;) represents depth
value at point g;, and DEPT Hryrgsu Tepresents a thresh-
old value of the depth difference. A jump boundary consists
of jump boundary points. That is, if two regions share a
boundary whose boundary points are jump boundary points,
then the boundary is a jump boundary. In a range image two
neighboring regions can share a jump boundary, but in actual



2(b;)

Figure 3: Concave boundary point.

3-D, they are not neighbors. Hence, if two adjacent regions
share a jump boundary in range image, we declare them as
non-neighbors.

Let b; = (biz,b;,) be a boundary point. Let ¢ be a line
in 3-D space that passes through (p;, z(p))) = (piz, iy, 2(p:))
and (g;, 2(4:)) = (o, §iy, 2(g;)). We use the notation (b;) to
denote the z-coordinate value of the line at point (;), that is,
the point on the line € is (b;, &) = (bia, biy, bz, b)) and
the depth value of the range image at point b; is denoted as
z(b;)(see Figure 2).

e Concave Boundary : A boundary point b; is a concave
boundary point if £(b;) > z(b;). That is, the depth value of
the boundary points is below the line segments that connects
point p; and g; as shown in Figure 3. In the figure, the cross
section is shown with vertical axis representing the depth
value of the surfaces. A boundary is a concave boundary if
its boundary points are concave boundary points.

o Convex Boundary : A boundary point b; is a convex bound-
ary point if £(b;) < z(b;). Actually, if £(b;) = z(b;) then b, is
neither convex nor concave. But in this case we define it as
a convex point as explained later. A boundary is a convex
boundary if its boundary points are convex boundary points.

As an example of the boundary types, let’s consider Fig-
ure 4 as a segmented range image of a cylindrical block on a
floor with a wall. In the figure, the boundary types between
regions 1 and 2, and 1 and 3 are jump, between regions 1
and 4, and 3 and 4, are concave. The boundary type between
regions 2 and 3 is convex. As we can see from the figure,
there are more than one type of boundary between regions 3
and 4. For region 3, two vertical boundaries are jump, and
the bottom boundary is concave. But, since jump means no
physical contact, the relation between regions 3 and 4 is de-
fined as concave. As in this example, two regions may share
more than one type of boundary. In this case the relation is
determined by the strength of the boundary types as defined

243

Figure 4: Region boundaries.
next.

o Strength of a boundary type : The strength of a boundary
rype means the strength of the relationship berween wo re-
gions that share the boundary. For example, the jump bound-
ary between regions 1 and 2, in Figure 4, has no physical con-
tact. Hence, the jump boundary is the weakest boundary type
among the three. The concave boundary as between regions
3 and 4 and between regions 1 and 4, shows actual contact
between those regions. This type is stronger than a jump
boundary. But two regions that share a concave boundary do
not necessarily belong to the same part. This boundary type
can be formed when we put an object on another.

Convex boundaries, on the other hand, cannot be made this
way except through an accidental alignment. If two regions
share a convex boundary, as in most of the cases, they belong
to the same object. That is, they cannot be separated. Hence
a convex boundary is the strongest type. In other words,
the strengths of the boundary types are ordered as convex>
concave> jump. If two regions share more than one type of
boundary, the relation is defined by the strongest boundary
type.

e Accidental alignment : In defining the strength of bound-
ary types, we excluded accidental alignment of objects. If
two or more objects contact in such a way that they form a
convex boundary(Figure 5-A), or two regions merge to one
region(Figure 5-B), it is not possible to say whether the ob-
served object is a single object or combination of several
objects without knowledge of the models. The left side ob-
ject in Figure 5-B could be a combination of two blocks as
shown in the figure, or it could be a single object. Or, it could
be a combination of more than two objects. In our analysis,
these cases are regarded as a single object. It is assumed that
this accidental alignment problem can be resolved in higher
level analysis using model data.

If two regions share a boundary where (£(b;) — z(b;)) is
positive and close to zero, then the regions are supposed to
be inseparable. And b; is regarded as the convex boundary
point. Hence, the convex boundary point is defined as the
point where £(b;) < z(b;) instead of £(b;) < z(b;).



Figure 5: Accidental alignment of objects.
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Figure 6: Region boundaries of objects.

4 Convex region set

Let’s consider Figure 6 as a drawing of some objects. Hu-
mans can easily perceive this picture as a drawing of four
objects jumbled together. But for machines, this picture is
just a set of regions(or line segments if you will). Let’s con-
sider the same picture as region boundaries of a segmented
range image. Then there are 18 regions without considering
the background.

If there is a way of grouping those regions into four sets
such that each set only matches one part(object), then match-
ing will be much faster and computation will be greatly re-
duced compared to region by region matching. In this sec-
tion we introduce Convex Region Ser(CRS) which is a set of
range image regions such that each of the regions in a set
only maiches one object.

We use graph notation in representing the regions and
boundary relationships. Some of the definitions of graphs
are given as follows. We will assume that the graph under
consideration is simple and undirected .

o Any sequence of edges of a graph such that the terminal
node of any edge in the sequence is the initial node of
the edge, if any, appearing next in the sequence defines
a parh of the graph.
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Figure 7: Segmented boundary types(A) and graph represen-
tation(B).

o A node v of a graph is said to be reachable(accessible)
from the node u of the same graph, if there exists a path
from u to v.

Let’s represent region and boundary types by a graph. A
region is represented by a node. Even though there are differ-
ent surface(region) types, we use one type of representation as
the node. A boundary between two regions is represented by
an edge. A convex boundary is represented by a solid edge,
a concave boundary is represented by a dotted edge, and a
jump boundary is represented by a null edge, that is, there is
no edge since jump boundary means no physical contact. If
there are more than one type of boundary types between two
regions, the strongest boundary type represents the relation-
ship. As we mentioned earlier, convex is the strongest bound-
ary and then concave. As an example, Figure 7-A represents
segmented regions with boundaries, where dotted lines repre-
sent concave boundaries, thick lines represent jump and thin
lines represent the convex boundaries. Figure 7-B represents
the corresponding region boundary graph. This representa-
tion is similar to the attributed relational graph used by Kak,
etal [11].

Definition 1 A Region Boundary Graph(RBG) G =
(R,CV,CC) consists of a nonempty set R repre-
senting the set of regions, C'V is the set of con-
vex edges which represent convex boundaries, CC
is the set of concave edges representing concave
boundaries.

Definition 2 Any sequence of convex edges of an
RBG such that the terminal node of any convex edge
in the sequence is the initial node of the convex
edge, if any, appearing next in the sequence defines
convex path of the RBG.

For example, (3,5)(5,4)(4,3) and (1,2) are convex paths in
Figure 7-B.

Definition 3 A node v of an RBG is convex reach-
able from the node u of the same RBG if there
exists a convex path from u to v.

Definition 4 A Convex Region Set (CRS) S of an
RBG is a set of regions such that any node v € §
is convex reachable from any node u € S.



Figure 9: Region boundary graph of Figure 8.

As an example, in Figure 7-B, there are two CRSs. One is
{1,2}, and the other is {3,4,5}. If we compare the regions
in Figure 7-A with the CRS, a cylindrical object consists of
regions 1 and 2 which are elements of CRS {1,2}, and the
bottom block consists of regions 3, 4, and 5 which are the
elements of CRS {3,4,5}. The relationship between regions
2 and 3 is weak and may be separated. We don’t know
whether the cylinder is glued to the block, or it is just on top
of the block.

‘With this knowledge, we can regard regions 1 and 2 as one
unit and regions 3, 4, and 5 as another unit in matching. Now
it is clear what the physical interpretation of CRS is and why
it will be useful in matching. As another example, Figure 8
represents the region boundary types of the regions shown in
Figure 6. Figure 9 represents the RBG of Figure 8.

There are four CRSs in Figure 9; they are,

{1,2,3,4}, {5,6,7,8},
{9,10,11,12,13}, and {14,15,16,17,18}.

The regions in each set make a separate object. Notice that
the CRS has no relationships with the convexity or concav-
ity of the parts described by the CRS. It is the relationships
between regions of the objects.

o Weighting of the CRS : In selecting the order of CRS
for matching, it is better 1o choose a CRS that has many
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regions, or that has more unigue regions. This can be made
by giving a weighting factor to each of the regions in a CRS.
Considering that planar regions are most abundant and have
less features than curved regions, a weighting factor of 1 is
given for each planar region. Cylindrical regions are more
abundant, thus we assigned 2 for cylindrical regions and 3
for spherical regions. The total weight of a CRS is the sum
of each of the region’s weighting factor.

5 Computation of CRS from Range
Image

In this section CRS calculation results are shown for the range
images that are made synthetically using a geometric mod-
eling system. The depth value is represented by 8 bits(0 to
255), but the parts of the objects occupy only a small range
of this depth value. For example, the radii of the cylindrical
regions in Figure 11 are 9, 13, and 18. Normal distribution
noise with standard deviation of 2.0 is added to the image.
After segmenting the range images, CRSs are made ac-
cording to the boundary relationships between pairs of re-
gions. From the results of region segmentation, the boundary
of each of the region is followed, and boundary points are
classified as convex, concave or jump in relation with other
regions. With this boundary point type and labels of neigh-
boring regions, boundary types between pair of regions are
decided. Boundary relationships between two regions are de-
termined by the strongest boundary type. Two regions can be
neighbors if they share non-zero number of boundary points.
The results of some of our many tests are shown here.
We named the range images as Image-A, Image-B, etc. In

Figure 10, (a) is the original range image, and (b) is the

segmented regions. In this case there are 5 planar regions, a
cylindrical region, and a spherical region connected smoothly
to the cylindrical region. There are four CRSs in this seg-
mented image. The non-black regions in (c), (d), (e), and (f)
show each of the CRS. (e) and (f) consist of only one region
for each of the CRS. Figure (g) shows the region boundaries,
region labels, and location of the spherical region center(big
cross line) and two end points(represented by ‘+”) of cylindri-
cal axis(line connecting two ‘+’s). Note that region labels are
not necessarily in sequence. The CRS shown in (c) has the
largest weighting among the CRSs, meaning the CRSs has
the most informative shape. (h) is the RBG of the segmented
regions, where solid lines represent convex boundaries, and
dotted lines represent concave boundaries. The small black
squares represent nodes which represent regions. The labels
of each node consist of two parts, like, (P 1), (C 7), (S 8)
etc. Here, a ‘P’ represents a planar region, a ‘C’ represents
a cylindrical region, and an ‘S’ represents a spherical region.
The numbers, 1, 7, 8 are the region labels.

In Figure 11, the object contains concave and convex cylin-
drical regions. In this figure also, (a) is the range image, and
(b) is segmented regions. (c) shows a CRS that has a convex
cylindrical region, a planar region, and a concave cylindrical
region. These three regions are connected by convex links



as shown in (h)( regions 3,7,8). (d) is another CRS with
a convex cylinder and a plane(regions 5 and 9). The CRS
shown in (e) has two planar regions(regions 4 and 6), and
(f) is the background region(region 1). (g) shows the region
boundaries and axes of cylindrical regions. Figures 12 and
13 show other examples.

6 Summary

A new method of grouping range image regions is presented,
and computational examples are given. The group of regions,
defined as a Convex Region Set(CRS), represents a part( or
object) such that those regions in a CRS are inseparable. The
CRS is made by analyzing boundary types, convex, concave,
and jump, between a pair of regions. If two regions share a
convex boundary, it is assumed that they are inseparable, and
they belong to the same CRS. This method can be applied to
any range image regions, convex or concave, or curved parts
where boundaries are defined.

This technique is very useful in analyzing 3-D scenes using
range data, and can be used as a preprocess for 3-D matching
where the unit of matching is a part of an object(or set of
regions) instead of one region. Thus greatly reducing the
computation of matching.

High level model driven analysis will be required if some
parts do not exist in model data. This could happen if two or
more parts merge together and appear to be a single part.

In order to calculate the pose of object, geometric pa-
rameters(rotation and translation) must be calculated. With
matched set of regions, this computation will be easy com-
pared to conventional region to region matching. More work
will be done for this transformation computation.
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Figure 10: CRS and RBG of Image-A.

Figure 11: CRS and RBG of Image-B.
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Figure 13: CRS and RBG of Image-D.

Figure 12: CRS and RBG
of Image-C.
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