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I. INTRODUCTION

N RECENT years the problem of minimizing functions

of n variables by conjugate gradient methods has
been recciving much attention, and the convergence and
rate of convergence of these methods have been extensively
studied (e.g., see [1], [2], [5], [7], and [S]). Recently
Klessig and Polak have further shown [6] that the Polak-
Ribiere conjugate gradient reset algorithm converges n-
step quadratically even if the one-dimensional search is not
performed exactly. It is the purpose of this paper to
illustrate that n-step quadratic convergence is also ob-

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on March 31,2010 at 13:55:53 EDT from IEEE Xplore, Restrictions apply.



KAWAMURA AND VOLZ: CONJUGATE GRADIENT RESET METHOD

tained for the Fletcher-Reeves conjugate gradient reset
algorithm with inaccurate one-dimensional search.

Let f: E, — E, be twice continuously differentiable and
let there exist u, A > 0 such that p.”y”2 < (y, Q(x)y) <A
lll|? for all z, y € E, where Q(z) = 8%(z)/dz? is the
Hessian matrix. The problem is to find the element z € £,
that minimizes f(z) on %,. The Fletcher-Reeves conjugate
gradient algorithm with reset for finding z proceeds as
follows. Choose an arbitrary point z, € E,, and set p, =
—g(x,), where g(z) is the gradient of f at . Then for i =

0,1,2,.--, set
Tiy1 = Ty + Py (1.1)
Dip1 = — G + By, G = G(Xs1) (1.2)

where a; is the least positive root of {g(z; + ap.), p)) =
0,and

fi4+1=0 (modulo q),
otherwise.

_ 0 g=zn
b= {Ilgmllﬁ/llgfllﬁ (1.3)

Note that the definition of 8, is equivalent to ‘“restarting”
the procedure after every ¢ > n iterations. Typically ¢ is
chosen to be n. However since precise minimization of f
along z; + ap, usually requires infinite subprocedure com-
putationally, the above algorithm must be modified to be
implementable. In the sequel two ways to accomplish this
are proposed and their properties shown. In Section IT it
is shown that, under the assumptions made above, the
Fletcher-Reeves method with reset remains convergent
for certain finite terminatiohs of the one-dimensional
search. In Section I1II it is shown that with an additional
assumptlon n-step quadratic convergence can be preserved
for a finite termination of i 1ncreasmg aceuracy.

I1. A CONVERGENT IMPLEMENTATION OF THE CONJUGATE
GrapienT RESET METHOD

To describe the process of conducting the one-
dimensional search' we suppose the existence of an algo-
rithm that generates for each ¢ @ sequence yuw,va,- ",
with the properties

f: + vap) <z + Vis—1P1),
and vi; ~ ~;* where ~,* is the least positive zero of
@/dv)f(z: + vpy).

Let S(xo) = {o € E,:f(z) < f(xs)} be bounded and ©

and ¢ be scalars such that 0 < 9 < 1and 0 < ¢ < 1/}\
Furthermore, let

Jz1 21

€; = m—%‘ﬁ, G = g(xi -+ 'Yt'jpi) (22)
and
Bi = ( Ji pi) (23)
el

Here 6, gives a lower bound for the step size «;. Note that
e;; = 0 if one-dimensional search is performed exactly.
First, we modlfy the procedure to calculate the step size
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a, as follows. The one-dimensional search is stopped when
the following conditions are satisfied:

Yij =5, (2-4)

f@: + i) < flz + 8:ip4) (2.5)
8llgd|*

€& < T 2.6

'S ol el &0

In this case we set a; = 7. Then gy = ¢45. These con-
ditions imply that the ith step size «, must be at least as
large as §; and that the one-dimensional search is stopped
when fcosdaf where ¢ is the angle between p; and gy,
becomes smaller than 0||gdl#/|lg:! ||pd|. Note that (2.6) is
equlvalent to

, (—gui,pd| = [{(—gesp2) l < 9”91” g

which is similar to the proposal by Daniel {3]. This modi-
fied algorithm is well defined (e.g., [5, pp. 59-60]), and
can be shown to be convergent. To do this we first need
two lemmas.

Lemma 2.1: For 7 = 0,1,2,--
ki, ko, ks, and k4 in (0, ) such that

(2.7)

-, there exist scalars

(—gups) 2 Tnl[gd[2 (2.8)
B: < ke (2.9)
Eallgd] < llpdl < Edlgd]- (2.10)
‘Proof: Let the indexset I, be I, = {¢{ & {0,¢,2¢, - -}}.
Then for 7 & I,
(~gup2 = llgd|% (2.11)
For¢ & I, p: = —gi + Biapi.
(—gups) = “giHZ + 514(—91;201—1}
2 [lgdl* — Be6llgel® by @7)
= (1~ 0)lg[ (2.12)

Equations (2.11) and (2.12) imply that (—g.,p)
kxllg¢|[2, k1 = 1 — 6. Next by construction, f(x; + 8:ps)
< f(z;). Therefore f(z.41) < f(z:)¥ <. By Taylor’s theorem,
then,?

0> flzu) — fla)) = flx, + aups) — flzs)

= a; {g,p) + 322 @,QEID), &€ Lx,vu)
> —algdl llpd] + 3eullpd]®.
Hence
< 2o (2.13)
u lIpdl
Now by Taylor’s formul_a,

1
Gr1 = g1+ j; Q@; + tap:)ap, di.

1 L(x:2:11) denotes the linear segment connecting z; and i1
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”gi+1” < ”g:H + )\ai”pi”- (2.14)
Equations (2.13) and (2.14) imply that
llganl| < (1 + )llgill (2.15)

2
.’-Bi_<_k2=(1+g3).
I

Finally definc w(?): Ey — E; such that w(®) = 0if 7 € I,
and w(7) = 1 otherwise.

Then
”pi+1” S l|gz+1|l + 3”171“ = “gH-l“

+ w(z + 1) Hﬁ]”"lll 24l
< e
<ol [+ 5 (1Lt + ) 2]

where 4y is the largest number not exceeding ¢ that is
congruent to zero modulo ¢. But H§-= sw(y + 1) is 0 if
14+ 1 & I, and is 1 otherwise, and

2N\ P H1-E 2A\¢
(1 + —) < (1 + —) by (2.15).
H i

22\¢
k4=1+<1+:>q.

If 7 4+ 1 = 0 (modulo g), the result is immediate. The left-
hand side of (2.10) is the immediate consequence of (2.8).
Clearly ks = by =1 — 0. Q.E.D.

It is easy to show that S(z,) is compact from the
assumptions. Hence f(z) achieves its minimum on S(z).
Let z be the unique minimizer. Then the following lemma
can be stated.

Lemma 2.2: For ¢ = 0,1,2,- - -,

ll 9i+1“
Todl =

Hence

”pi+1” < k4”gi+1”)

lgd] = wllz: — ]
lgdl* > w(i@) — f@) ¥ =: € So). O

This lemma holds regardless of the accuracy of one-
dimensional search. For a proof, see e.g., [5, pp. 37-38].
Now we state a convergence theorem for this algorithm.
Theorem 2.1:
1) The sequence {f(z;)} converges downward to f(z).
2) The sequence {z;} converges to z. J
Proof: Suppose that f(z;) does not converge to f(2).
Then by Lemma 2.2, ||g{| is bounded away from zero for
all 4, i.e., there exists an m > O such that ||| > m ¥ 4.

A=gopd 2 (1= O)lg|* = kom. (2.16)
Let M = max {[lg(x)||:2 € S(z5)}. Clearly M is bounded.
. From (2.10), then,

llpdl < ke (2.17)
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Substituting (2.16) and (2.17) into (2.3), we get

(=g, ckym?
6{ = ot . 2.
Y ERCYIE @18
Then
5 2
fx: + 8p0) = f(x:) + 8. {gups) '|‘__2i P, Q(E) DY),
£ € L(zix: + 8:p1)
< fl@) - 30: (—gup2)
< flz;) — 3R, R = ck®mt/k2M2 (2.19)

5 f@ea) £ flxs + 8py) < f(z) — 3R
which implies that f(z;) = — « as7— «. Thisis a con-
tradiction. Hence f(z;) — f(2).
Next, since f(z;) converges to f(z), given any ¢ > 0,
there exists an integer N > 0 such that
fle:) — feY < e ¥i> N,
By Taylor’s theorem,

flz) = f(2) + {g(e), = —

(2.20)

2) + 3@ — 2,Q(8) (@ — 2)),
£ & Lx;,2)
> f@) + 34|z — z” 2, (2.21)
Equations (2.20) and (2.21), then, imply that
e> 3|z — 4|2 >N,

ie.,
2 .
llz: — 2| <‘/——e ¥ i>N.
N

This holds for all . Hence z; converges to 2. Q.E.D.
Now we state a theorem on the rate of convergence.
Theorem 2.2—(Linear Convergence): The modified con-

jugate gradient reset method converges to z at least

linearly, i.e., there exist scalars K; and K, € (0,«) and

& and £ € (0,1) such that for ¢ = 0,1,2,- . -,

fx) — fz) < Kb
lz; — 2| < Kuts'. U

Proof: Let A; = f(z; + op;) — f(z;). Then by (2.3),
(2.4), (2.5), and (2.19),

A; < —C(—gi,pf>2/'2||pi”2
< —cki¥|gd|2/2ks2 by (2.8) and (2.10).
Therefore, by Lemma 2.2,
F@w) — flz) £ —chy

Now from Taylor’s theorem and the assumption on Q(z),
it is easily shown that

d? < 2(f(z) — £ < Nl — |2

2|z — 2f|2/2k2 (2.22)

wle = (2.23)
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Equations (2.22) and (2.23), then, imply that
@) — fxe) < —ck®?(f(m:) — f(2))/keN

= —t(fiz) — f@2)),
= Cklz,uz/kfk.

[

(2.24)
Hence
flz) — f(z) < Kl (2.25)

where K; = f(zo) — f(2), and #; = 1 — ¢. It is easily shown
that & € (0,1). Finally (2.25) and (2.23) imply that

Hxi - 2”2 < — (f(xi) - f@) < K1¢1i-
Hxi — 7| £ Kuoty?, (2.26)
where Ky = V2K /u and &, = V4. Q.E.D.

III. AN 2-STEP QUADRATIC CONVERGENT IMPLEMENTATION
oF THE CoNJUGATE GRADIENT REsET METHOD

The convergent implementation of the previous section
has the very nice feature that it maintains, within a fixed
limit, the precision with which the minimization of
H—g(z: + apy),p/| gfﬂzl is carried out at each step.
However, it can only be shown to converge linearly. If we
wish to ensure a faster convergence, then we must make
the one-dimensional search progressively more precise. In
the sequel we propose one such modification.

In addition to the earlier assumptions, we assume that
f(-) is three times continuously differentiable and we
modify the conjugate gradient reset method so that the
one-dimensional search is stopped when the following con-
ditions are satisfied:

Yo = 8 (3.1)

flx: + vupd) < fl@: + 8.:p0) (3.2)
edlgi]®

€& S T noT 3.3

*= ol ol &3

where 0 < 0, < min {1,]|p]|}. As before, when a j is found
satisfying (3.1)-(3.3), we set @; = 7v;; and ¢;; becomes g,1;.
Note that these are very similar to (2.4)—(2.6). The only
difference is the condition (3.3), in which 8; goes to zero as
% goes to infinity. Again this method is well defined.

To establish an n-step quadratic convergence, we use a
procedure similar to that of Cohen’s [1] for the conjugate
gradient algorithm with the exact one-dimensional search.
Basically, the approach consists of establishing the rate of
convergence of our algorithm by means of a suitable
comparison with the Newton—-Raphson method, a pattern
of proof first used by Daniel [2].

Definition: Let {xi} be a sequence generated by the
modified conjugate gradient reset method with «; deter-
mined by (3.1)-(3.3). For each ¢ & I, define the qua-
dratic function f;(z) by
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fi@) = flz) + {gled, z — 2z + 5 {x — =,

Qz)(x — ).

Then for each ¢ € I,, we shall denote by agi, 5,, gj;,, é,, and

M

Bi 7 = 0,1,2,- .- 9(s), the quantities constructed by the

conjugated gradient reset algorithm with the exact one-

dimensional search when applied to the problem min { fi(2):
0

2 EFR } with z;, = #; and with »(¢) determined so that
v(l) m ! # 0. Smce q > n and f,(-) quadratic,

(3.4)

= 0and g
v(z) < nand x,_. :v, and §; = p; = 0 forj > v(3).

We shall denote by 0.(-):E, — By, &k = 1,2,--.,13,
functions with the property that for each %, there exist an
& > 0 and an r, > 0 such that

[0.(0)/t| < 7 for all |£] < e, (3.5)

First the following three lemmas are needed.
Lemma 3.1: For ¢ = 0,1,2,-.., there exist sealars ¢
through ¢; in (0, ) such that

(—gups) = allg]]? (3.6)
B: < e (3.7)
allgd] < llpdl < edlgdl (3.8)
a; < 6 (3.9)
lgeall < il (3.10)
[penl| < allpd- 0O @iy

Proof: Equations (3.6)—(3.8) are proved exactly the
same as before by replacing © by 0,. Now by (2.13) and
(3.8), we obtain

Next,

”gf+1“ < |lgim — 94| + ”gt“ < 057\”1”” + i”pf” = cﬁ”pf”'
Finally,

[pesd] < llgendll + dlpd] < cllpdl + ellpdl = allpdl.
QED.

Lemma 3.2: Fori &I, andj = 0,1,---,n — 1,
j+1 AN G
o < (1 + ) I
“
This is the immediate consequence of the inequality

ol < (1 2) o

0 312

(3.13)
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Lemma 3.3: Let Q, = f¢ Q(x; + tap;) dt. Fori €I,
andj = 0,1,---,n — 1,

”Q(xi-l-j) - Q(xz)” < 01(”?—"{”) (3-14)
Qs — Q)| < 0ulpd]) (3.15)
i+1 7 7it+1
”p1+1‘+1 - pi” < 03(”p;~+,- - Pi”) + 04(”9z'+j+1 - gt”)
+ 0slllgses — i) + 0ullpdl)  (3.16)
J+1 J
lgersn — gt” < lges — gd| + 0:(|pd|®
+ N atwpirs — 33){[! (3.17)
Hat+jpz+j - ;i;)i” < 08(||9t+j - Q;z”)
+ 0o(||pses — 2d) + Ou(pd]® (3.18)
lgees — gdl < 0ulllpd|? (3.19)
[pes — 2] < Oulllpd]?) (3.20)
leesipers — apd| < Ouipdln. [ (3:20)

The proof is similar to that in Polak’s book [8, pp. 263~
267]. First note that since f is three times continuously
.differentiable and the sequence {z,} converges strongly to
2, there exists a scalar B in (0,« ) such that

Hg”(xi+k + tai+kpi+k)” <B (3.22)

for 2 = 0,1,2,---, and all ¢ in [0,1], where g”(-) is the
second derivative of g(-) with respect to ¢

Now the first inequality (3.14) can be proved by using
(3.11), (3.22), and the two inequalities

”Q(xiH) - Q(ﬂ?z)” < 1§:|IQ($2+1¢+1) - Q(xz+k)” (3.23)
and
Qi) ~ Qanl| < dllpedll.  (3.24)
Next, (3.15) can be proved by (3.11), (3.14), and the in-
equality
Qs — Qe < dllpes]- (3.25)

Equation (3.16) is the most complicated. First note that
foricI,j=n—landgq = n,

1Deen — 2l = | =gs4n + g4l (3.26)

And for cither ¢ > nand ;7 & {1,2,~~-,n — 1} org=n
andj € {0,1,2,---,n — 2},

i+1 it+1 )
”Pt+j+1 - Pi” < ” — @1+ gi” + Hﬁi+:‘pi+j - /3:'271.”-
(3.27)

Now forj = 0,1,--- »(f) — 1, it is easily shown (e.g., [2])
that
i+1 7 )

{gs + gi;Q(xf)Pi>'

r r (3.28)
(ps, Qx)ps)

;
B:=1+
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Next,
llgersal|2
B p—vq
o ”91+:'”2
— (Gersr — Gi+ir gi+j+1!>2+ <gt+j+1, gt+j>. (3.29)
”giﬂ'll
But
Grijt1 = G5 + o Qi Purs
and
@y = Gerinr = Grs, Pers)l Dirsy Qurs Pivs)
Therefore,
et — gi+j2’ Firi1) = Su, — U,
”gm”
Ger 1, Qirs Divs)
+ o, (3.30)
Dexsy Qivs Pirs)
where
Sus & {girs, Qivs Pivs) (gi+j+ly D)/
llgi+1'“2 Dirs Quys Dirs)
Uiss 2 Birja (Girir1, Qirs PirXGers Peri—1)/
'[gi+j||2 {Pirs, Quj Piri)y (3.31)
and
(Gerstt, Gors) _ (Gitsr Qirs Pevs)
e S 1+ oy [ | TP
”91+j|| H91+j“
{Gir s Qs Pivs)
= Lo Sy — Uy + oozt B
7 e <pi+.‘l) Qivs Pivs)
(3.32)
where
S'ehs & Gors Qivi Doy Gissr1, Divs)/

l Igi+jl l 2(Pitsr Qurs Pevs)
U'vi; 2 Bivim1 Gurs, Quns PevidGivsy Pivs1)/

lgidl|2 @ers, Qurs Pers).  (3.33)
Hence from (3.28), (3.29), (3.30), and (3.32), we obtain

7 i 7
Ii!/3i+j Pivi — I3ip1“ < ,lilpi+j - Pi” + H (Sirs + S,i+j)pi+j“
+ l!(Ui+i + U’i+,») pi+]‘“ + HVHJ'“: (3.34)
where

V... & Girprr + Goriy Qurs Pevs)
™ Potsr Qivg Divs)

7
j+1 J i
{g: + gs, Q)ps)
T3 i P
<pi; Q(xi) pz)
Using (3.3), (3.10), and (3.11), we can then show that

1Ses Peralls |18 e4s Possll H Uiss Pissll, and U4 Purs|| are
all bounded above by di|p,|* for some d; < . As for

7 J
” Vi+jl|: let Couy = (Pi+j_; Quts PersXDs, R(21) P

(3.35)
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Then
1 J
|Verd| < :‘j [”(g¢+j+1, Qirs(Pers — 1))
'(I;h Qxs) Z;s>27z'+1”
+ ”(9¢+1+1, Qi+.7;71>(;’1‘ Dits, @ (xi)pt>Pz+J”

+ H<g1+,+1 - gl, Qmp,xpw, Q@PIpess|
+ H<gf, Ques PN Q(xa(p,
+ ll<gf, @its — Q@) PHDessy Q@D Perpes]
+ o @@ pixmﬂ, Q@) = Qurd) Purapu]
116 0@ ipiss Qs Perders — 2o

+ s @ess vy — PIXPs Qo) Pps]

+ H<91+j, Qz+.7 Pt)(Pz — Pitsp Q(QJ;) pi)pz+1”

PP ¢+1l [

+ ”(gz+1 - gu Qs P ><P1+1, Q(.'l::) pi>pz+1”
+ ”(g;, Qiys Pl)(pm; Q(fci) (Pi - Pz+:)>p1+3”

+ H(gi, Qs — Q(xi))m(’pm, Q) pi+:i>pi+.'l“
+ |95, @) PYDirsy Q@) — Qurs) Pirs))Pes]

+ “(;/,-, Q(x,) ;%-)(ZHH; Qirs Pors)Pits — 2171')“ 1
(3.36)

i
Noting that Ciss > #%|pe|? || pd|? and using (3.10), (3.11),
and Lemma, 3.2, we obtain

i i+l

“Vi+j” < d2npi+j — | + | gers1 ~ gi”
+ d|Qus — Q)| ”271'+j“ + dsl|gers — gd]. (3.37)
Hence (3.16) holds for alli € I, and j = 0,1, - -v(s) — 1.

Forj = »(@), »(®) + 1,---n — 1, 2;1 = ¢; = 0. Hence

(3.16) becomes
|2erssl] < Osllpessll) + 0s(lgassnall)

2).
This obviously is true since from (3.11), we have
Hpi+5+1“ < 03(”pi+1”)'
Hence (3.16) holds for al 2 &€ I, and j = 0,1,-- -, — 1.

The proof of (3.17) follows exactly that of [8, lemma 4,
p. 265]. Next, forj = 0,1, - -,0(z) — 1,

|l @irs pats — apd| < |lasd + 654!, (3.38)
where
Qips 2 (Goepr, Peas)/ Doy, QuesPirs)) Pors
bis = ({— gi+!7 z+:>/ (pi+J: Q1+7Pz+1>)pt+:i

(G gf, pz>/<:nf, Q(x:) p&)pf (3.39)
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But

”gt+.‘i” ”pi+5”
wlpess

by (3.10) and (3.11) and, by proceeding similarly as in

lawdl <

[ped| < dillpd] (3.40)

(3.36), we obtain

pdl + dolgens — ad] + a0ulld) 124
(3.41)

N0erd] < il|pirs —
Equations (3.38), (3.40), and (3.41), then, imply (3.18).
Forj = v(¥),v(®) + 1,..-,n — 1, (3.18) becomes
Os([|gerdl) + Os(llperdll) + Ouwll[pd]?.

This obviously holds since from (3.9), we have

f I ai+.1p’l+:l”

”ai+j pi+j“ < 09(“1014..1”).

Therefore (3.18) holds forall¢ & I,andj = 0,1,-..,n — 1.
Inequalities (3.19)—(3.21) can now be proved by induc-
tion. Clearly they hold for j = 0 and for any ¢ &€ I, from
(3.18) and because g0¢ = g,and ggi = Py
Now suppose that (3.19)-(3.21) hold for any
77 €1{0,1,.-.-,n ~ 2} and ¢ € I,. Then, replacing j/ by
7"+ 1in (3.17), we get

41 i
lgisss1 — 9d| < gsrs — 91’” + 0«(||pd[»

i 5
+ Magypuy — apd|. (342)

Equation (3.42) with (3.19) and (3 21) forj =3 1mphes
that (3.19) must be true forj = j/ 4 1.
Next, using (3.16) for§ = 5/, we get

i'+1 i 741
|Bisses — P < 0s|pars — 2d) + Olllgersa — 9]

+ 0u(lgess — gd) + 0ulllpd]2

Making use of (3.20) for 7 = j’ and of (3.19) forj = 7' and
7 =3+ 1, wefind that (3.43) implies (3.20) forj = 7' 4 1.
Finally, setting 7 = 7/ + 1 in (3.18) and making use of
(3.19) and (3.20) for j = j/ + 1, we find that (3.21) must
be true for j = 7' + 1. Q.E.D.

Now we can state a theorem on the rate of convergence.

Theorem 8.1—(n-Step Quadratic Convergence): Suppose
that the function f(.) is three times continuously differ-
entiable and that the spectrum of Q(.) = 9%(-)/dx? is
bounded below and above by u > 0 and A respectively.
Consider the sequence {xi} generated by the modified
conjugate gradient reset method with «; determined by
(3.1)~(3.3) when applied to the problem min{ HOBA= E’n}
Then there exists an integer N’ > 0 and 2 &(0,«) such
that

(3.43)

HxH.n - Z“ S h”ilh — 2“2 (34:4)
foralli > N', i € I, ]
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Proof: By Taylor’s formula,
1
se) = o0& + [ QG+ tlw— A

~lgdl = Nz — 4. (3.45)

Sinee x; — 2, ||gd| = 0. Henee by (3.8), [|p.]| = 0. Therefore
(3.21), (3.5), (3.8), and (3.45) imply that there must
exist an integer N7 > 0 and &’ € (0, « ) such that

(3.46)

i .
lleeers pers — ampd| < lles — 2|2

holds for 7 E{O,l, I 1} and all 7 € I, greater than
or equal to N”. The remainder of the proof follows exactly
that of [1, thcorem §, p. 67].

IV. ConcLusioN

Two modifications of the Iletcher-Rceeves conjugate
gradient reset method were proposed that provide for
finite termination of the one-dimensional scarch at each
iteration. Tt was shown that lincar convergenece is retained
for the first and n-step quadratie for the sccond. Sinee it
is not possible, in general, to perform the one-dimensional
minimization exactly, these results give an indication of
how one ean speeify an implementable algorithm.

There are two apparent difficulties with the proposed
algorithm, the apparent need to know an upper bound on
the Hessian matrix of f{(x) and the need to evaluate the
gradient for cach trial step size in the once-dimensional
scarch. §;, however, is used only to guarantee sufficient
reduction at cach step to assure convergence, and in Sce-
tion II, to assist in determining a lincar rate. Its only
function in achicving n-step quadratic convergence is to
assure convergenee. As noted by one of the reviewers,
any other method of assuring suflicient improvement at
cach step would also suffice. There are several that would
work without requiring knowledge of bounds on the
Hessian., For cxample, a variation of the method by
Armijo [9] will work. In this case it is possible to make the
comparison on «; directly, and paramcters can be loosely
chosen so that this will seldom cause more of a restriction
than (3.3). '

The nced to evaluate the gradient for each trial step
size is more serious. For high-dimensional problems this
can be very costly, as usually several trials are required to
find an aceceptable step size. One ad hoc improvement
would be to impose some easily performed subsidiary test
that must be met at cach iteration before the test of (3.3)
is begun. One possibility would be to proceed with a fixed
number of trials first, say three. Clearly, however, this is
an area in which further work is needed.
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