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tained  for  the Fletcher-Reeves  conjugate  gradient  reset 
algorithm  with  ina.ccurate one-dimensional search. 

Let f : E,  --+ E1 be twice  continuously  differentiable and 
let  there exist, p ,  X > 0 such that plIyII 5 (y, &(z)y) 5 X 
lly112 for  all x, y E E,  where &(x) = a?j(x)/az2 is the 
Hessian  matrix. The problem  is to find the element z E E’, 
t,hat minimizes f(x) on E,. The Fletcher-Reeves  conjugate 
gradient  algorithm  with  reset  ‘for  finding z proceeds as 
follows. Choose an  arbitmry point x0 E E,, and  set p ,  = 
-g(xo), where g ( x )  is the gradient off at x. Then for i = 
O,1,2,. -, set 

xi+l = xi + aipi (1.1) 

Pf+l = -gsi+1 + P l P f ,  g,+1 = g(xz+1) (1.2) 
where ai is the  least positive  root of (g (x i  + :pi), p i )  = 
0, a.nd 

” = { ~ ~ g i + l ] ~ 2 / ~ ~ g i ~ ~ 2  otherwise.. (1.3) 

Note that t,he  definition of Pi is  equivalent, to “restarting” 
t.he  procedure after every q 2 n iterations.  Typically q is 
chosen to  be n.. However  since precise minimization of’ f 
along xi + a p ,  usually  requires  infinite  subprocedure com- 
putationally,  the  above algorithp must  be modified to be 
&npZenlentabZe. In  t.hc  sequel  two  ways t,o accomplish  t.his 
are proposed and  their properties  .shown. In Section I1 it. 
is shown that, %der the assumptions  made  above, the 
Fletcher-Reeves  method  with  reset  remains  convergent 
for  certain  finite t-crminatiok of the one-dimensional 
search. In Section I11 it is shown that with a+ additional 
assumption  n-step quadratic convergence ca.p be preserved 
for a finite  termination of increasing  accuracy. 

0 ifi+ 1 = 0 (moduloq), q 2 n 

11. A CONVERGENT TVPLEMENTATION OF THE COXJUGATE 
GRADIENT  RESET METHOD 

To describe  t.he process of conducting the one- 
dimensiona.1 search we suppose the existence of an algo- 
rithm  that  generates for  each i a sequence yio,yil,. a ,  

with the properties 

f(xi + ~i jpi )  I f(zi + Y~.,-IP~), j 2 1 (2.1) 

and y r j  + yi* where yi* is the least  positive  zero of 

Let S(xo) = { x E En:f(x) 5 f(xo)] be bounded and 8 
and c be  scalars  such that 0 < 8 < 1 and 0 < c < l/&. 
Furthermore,  let 

( d / d r ) f ( z i  + YPi) .  

a.nd 

Here 6$  gives a lower bound  for the st,ep size ai. Not,e that 
e t j  = 0 if one-dimensional segrch  is  performed  exactly. 

First, we nlodify the procedure to calculate the  step size 
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cyi as follows. The one-dimensional search is stopped when 
the following conditions are satisfied: 

YU 2 6i (2.4) 

f(xi + YijPi) 5 f ( ~  + &pJ (2.5) 

In  this case we set af = y t j .  Then = gij.  Thesc con- 
ditions  imply  t,hat  the  it.h  step size ar must  be at least  as 
large a.s 6i and  that  the one-dimensional search is stopped 
?&en I COS 4 1, where 4 is the angle  between p i  and g,,, 
becomes smaller than t 3 / ~ g i / ~ z / ~ ~ g f j ~ ~  IIpill. Note that (2.6) i s  
equivalent  t,o 

I ( -9 t+l ,Pi )  I = I (-g*,,PJ 1 I d 1 ! 7 f l  2, (2.7) 

which is  similar to  the proposal by Daniel [3]. This modi- 
fied algorithm  is well defined (e.g., [5, pp. 59-60]), and 
can be shown to be  convergent,. To do  this we first  need 
two  lemmas. 

Lemma 6.1: For i = 0,1,2,. . e ,  there exist  scalars 
h ,  B,. ka, and k4 in (0, ) such that 

( - 9 4 4  2 kllJ~r112 (2.8) 

k3Ilgill 5 IlPill i k4IlgtlJ. (2.10) 

8 .  1 -  < kp (2.9) 

-Proof: Let the index set. I ,  be I ,  = { i E { O,q,2q,. . e ]  1 . 
Then for i E I,, 

(-gt,pi) = IIgiIJ 2* (2.11) 

For i g I , ,  pi = - - S f  + P i - m - I .  

’*‘ (-giJpf) = 11gi1(2 + @i-*(-gi,pf-1) 

2 11gi112 - A-1@1/&-d2 by (2.7) 

= (1 - e)11giIl2. (2.12) 

Equations (2.11) and (2.12) imply that ( -g iJpr )  2 
k l ~ ~ g i ~ ~ 2 ,  kl = 1 - e .  Next’by construct.ion, f ( x i  + &pi) 
< f(x,). Therefore f ( ~ + ~ )  < f(xJ ++ i. By Taylor’s  theorem, 
then, 

0 > f(z*+d - f(xJ = f(.i + sip,) - f(%i> 

(2.13) 

1 L(zi,zi+t) denotes  the linear segment  connecting xi and ~ i + ~ .  
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Equations (2.13) and (2.14) imply that 
8* = c -  2 - ( - g d  &m2 

I I Pi1 I ( k 4 w  2' 
(2.18) 

(2.15) 
Then 

there exists an int.eger N > 0 such that. 

f(zJ - f(z) < e 'd i > N .  (2.20) 
w-hcrc io is the largest  number  not exceeding i tha.t is By  Taylor's  theorem, 
congruent to zero modulo q. But w ( j  + 1) is 0 if 
i + 1 E I ,  and is 1 otherwise, and f(Xi) = f(z) + ( g ( z ) ,  Zf - 2) + +(Ti - z,&(.$)(zt - z)) ,  

Iigi+lll < ( + 2 ,) f+l--X 5 (1 + 9)' by (2.15). 
llstll - 

Hence  Equations (2.20) and (2.211, then,  imply that 
e > +,lIz* - 2112 'd i > N ,  

If i + 1 = 0 (modulo q) ,  the result  is  immediate. The left- 
hand side of (2.10) is the immediate consequence of (2.5). 
Clearly k3 = kl = 1 - e. Q.E.D. 

It. is easy to shorn that &'(xo) is compa.ct from  the 
assumptions.  Hence f(z) achieves its minimum on &'(so). 
Let z be the unique minimizer. Then  the following lemma 
can  be  st,ated. 

Lemma 2.2: For i = 0,1,2,. . , 
/Istll 2 ,(/zi - 211 
11giJI2 > ,(f(xi) - f(z>> ++ zt E ~ ( x o ) .  0 

This holds for  all E. Hence zf converges to z. Q.E.D. 
Now we stat.e  a  t,hcorem on the  rate of convergence. 
Theorem 2.d-(Linea~r Convergence): The modified  con- 

jugate  gradient  reset  method converges to z at least 
linearly, i.e., there exist scalars Kl and K z  E (0, a ) and 
tl and t z  E (0,l)  such  t.hat for i = 0,1,2,. . , 

f(zt> - f(z) -I m 1 * ;  

This lemma. holds regardless of the accuracy of one- (Izr - 211 _< &hi. 0 
dimensional search. For a proof, see e.g., [5, pp. 37-33]. Proof: Let At = f(zi + alp,)  - f(zi). Then  by (2.3), 

Kow we state a convergence theorem for this  algorithm. (2.4), (2 .5) ,  and (2.19), 
Th.eorem 2.1: 
1) The sequence {f(zi)) converges downward to f(z). ~t I - -~( -gSt ,p t )~ /2 l lp<) l~  
2) The sequence {xi) converges to z. 0 

Proof: Suppose that f (z i )  does not converge to f(z). _< -ck121/grl12/2k42by (2.8) and (2.10). 
Then  by  Lemma 2.2, (IgilI is  bounded  away  from zero for Therefor,,, by L~~~~ 2.2, 
all i, i.e., there exists an rn > 0 such that Ijgill 2 nt 'd i. 

:.(-gt,pi) 2. (1 - e)llgil12 2 kid. (2.16) f ( ~ i + l )  - f(zt) _< -Ck1*p211zi - zl12/2kJ2. (2.22) 

Let J] = max { 11g(x)11 :x E S('o))f Clearly is bounded. Now frorn  theorem  and  the  assumption  on Q(z), 
From (2.10), then, it is ea.aily shown that 

llptll I k ~ g .  (2.17) PllXi - z / / '  I 2(f(zi) - f(z)) 5 hl!xi - ~ 1 1 ~ .  (2.23) 
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Equations (2.22) and (2.23), then, imply that f&> = f ( z t )  + (g(z0, - zo + 4 - 21, 

where Kz = 4- and tz = &. Q.E.D. 

Then for  each i E I, ,  we shall  denote  by zr, gr, pi ,  a,, and 
i 

Pr, j = 0,1,2,. - ,v(i) ,  the  quantities  constructed  by  the 
conjugated  gradient  reset a.lgorit.hm with the exact one- 
dimensional  search when applied to  the problem min (f&) : 

z E E,] with z, = zi and with v ( i )  determined so that 
c ( 9  g, = 0 and g r  # 0. Since q 2 n and f,( e )  quadratic, 

i v ( i )  v(i)  5 n and x, zt and gt = p ,  = 0 f o r j  > v( i ) .  i i  

We shall  denote  by Ok(.):E1 --t El, k = 1,2, . . . ,13,  
functions  with the property that for  each k, there exist an 
ek > 0 and a.n rli > 0 such that 

i i j i  

0 

v ( i )  -1 

(3.5) 

First  the following three lemmas are needed. 
111. AN fl-STEP QUADRATIC CONVERGENT IRIPLEMENTATION 3.1: For i = 0,1,3,, . . . , there exist  scalars c1 

OF THE CONJUGATE  GRADIENT RESET METHOD  through c7 in (0, ) such that 

The convergent  implementation of the previous  section 
has  the  very nice feat.ure t.hat  it maint.ains,  within a fixed 
limit,  the precision nit.h m-hich the minimization of 
I ( - g ( z i  + (~p,),p,}/lIg,1(~I is carried out at each  step. 
However, it can  only  be shoam to converge  linearly. If me 
wish to ensure a faster convergence, then we must,  make 
the one-dimensional search progressively more precise. In 
the sequel we propose one such modification. 

In addition t.0 the earlier  a.ssumptions, we assume that 
f(-) is three times  continuously  differentiable and we 
modify  t,he  conjugate  gradient  reset  method so that.  the 
one-dimensiona.1 sea.rch is  st.opped when t.he following con- 
ditions axe sat,isfied: 

(3.3) 

where 0 < et < min { l , !~pill) .  As before, when a j  is found 
satisfying (3.1)-(3.3), we set ai = yij and g f i  becomes gr+l. 
Note  that  these  are  very similar to (2.4)-(2.6). The only 
difference is the condition (3.3), in which et goes to zero as 
i goes to infinity. Again this method  is well defined. 

To establish an n-step quadratic convergence, n-e  use a 
procedure  similar to  that of Cohen's [ l ]  for the conjugate 
gradient  algorit,hm  with the exact one-dimensional search. 
Ba.sically, t.he approach  consists of establishing  t.he rate of 
convergence of our algorithm by means of a suitable 
comparison  with the  Nenton-Raphson  method,  a  pattern 
of proof first used by Daniel [2]. 

Dejnition.: Let {xi] be  a sequence  generated  by the 
modified conjugat,e  gradient  reset  method  with ai deter- 
mined by (3.1)-(3.3). For each i E I,, define the qua- 
dratic function fi(z) by 

B r  2 cz (3.7) 

Proof: Equations (3.6)-(3.8) are proved  exactly the 
same as before  by  replacing 8 by et. Now by (2.13) a.nd 
(3.8), we obt,ain 

Next., 

Finally, 

Lemma 3.2: For i E Zg a n d j  = 0,1,. -,n - 1, 

This is the immediat.e consequence of the inequa.lity 

(3.13) 
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PITOW f o r j  = 0,1,. . -,v(i) - 1, it is easily shown (e.g., [2]) 
that 

i+l i 

Next, 

But 

and 

where 

(3.32) 

Hence  from (3.28), (3.29), (3.30), and (3.32), we obtain 
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Then  But 

(3.40) 
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Proof: By Taylor’s  formula, 

g ( q )  = g(2 )  + &(Xi + t(r, - 2 )  dt. 1’ 
... \ /gil l  = XI(Xi - 211. (3.45) 

Since xi -+ z, /!gf(! - 0. Hrncc  by (3.S), I ! j n , l (  - 0. Therefore 
(3.21), (3.5), (3.S),  and (3.45) imply that,  there must 
exist an integer A’” > 0 and h’ E (0, m ) such that 

j i  

I J c r i + j p i + . ,  - a i ~ i l l  5 k ’ l l ~ ~  - zip (3.46) 

holds  for j E { 0,1, . . . ,n - 1) and  all i E I, greater  than 
or cqual to N ” .  The  rcmaindrr of thc proof  follon-s exactly 
that of [l, t,heorenl S, p. 671. 

IV. CONCLUSIOX 

Two modifications of the IM,cher-l2cevcs conjugate 
gradient reset, mct,hod wcrc proposrd that provide for 
finite  termination of the onc-dimensional search a t  each 
iteration. It. was s11owr1 that lincar convcrgncc is retained 
for t.hc first and n-step  quadratic  for the  scamd. Since. it 
is not possible, in general, to perform thc onr.-dimcnsional 
mininlization rxactly,  these rc.sults givc art indication of 
how onc can specify an  implcnwntablc  algorithm. 

Thcrcx arc two  apparent difficulties with the propos(d 
algorithm, thc  apparent need to know an uppw bound on 
thc HesRiau matrix of j ( ~ )  and  the need tu  evaluatc the 
gradient.  for cach trial  step sizc in the one-dinlcnsional 
search. 6L, howvcr, is used only to guarantee  suficicnt, 
reduction at each step to  assure convergvnc(~, and in Scc- 
tion 11, to assist. in detc~rmining a linear rate.  Its only 
function  in achiwing n-step quadratic convcrgcnce is to 
assure converger~cc. As noted  by one of the  rcviewrs, 
any  other method of assuring suficicnt  improrcment a t  
cach step would also suffice. There  are scveral  t.hat would 
work without  requiring knowledge of bounds on the 
Hessian. For cxamplr, a variat,ion of the method  by 
Armijo [9] will work. In  this case it. is possible to malic the 
comparison on of directly.  and paramctws can b(1 looselp 
choscn so that this will  seldom cause more of a restriction 
than (3.3). 

The need to  evaluate  the  gradient for each trial  step 
size is more serious. For high-dimensional problcnle this 
can  bc  very cost.ly, as usually  several trials  are  required t.0 
find an acceptable  step size. One ad hoc improvement 
would be to impose  some easily performed subsidiary test 
that must. be  met a t  cach  iteration before the  test of (3.3) 
is begun.  One possibility would be to  proceed u-ith a fixed 
number of trials first,  say  three.  Clearly, howvcr ,  this is 
an area in which further work is needed. 
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