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Distributed Ada: case study 
R A Volz, P Krishnan and R Theriault 

The paper describes the design and implementation of  a distri- 
buted Ada system. Ada is not well defined with respect to distribu- 
tion, and any implementation for distributed execution must 
make a number of  decisions about the language. The objectives in 
the implementation described here are to remain as close to the 
current definition of  Ada as possible, and to learn through exper- 
ience what changes are necessary in future versions of  the lan- 
guage. The approach taken to distributing a single program is to 
assign library units that compose it to nodes of  the distributed 
system. In a formal sense the semantics of  a program is indepen- 
dent of  the distribution because the semantics is interpreted to 
include all possible behaviours that result from different distribu- 
tions. However, the functionality of  the distributed program may 
then depend on the distribution in the sense that program behav- 
iour may be impacted by the time required for communication 
among the distributed modules, or parts of the program may 
continue to function in presence of  failures. The implementation 
technique converts each distributed module into a standalone 
program that communicates with its correspondents; each of  
these may then be compiled by an existing Ada compiler. Issues 
discussed include the ram(t~'cations of  sharing of  data types, 
objects, subprograms, tasks, and task types. The implementation 
techniques used in the translator are described. 

case stud),, distributed systems, Ada 

The importance of  distributed systems cannot be over- 
emphasized, especially with the reduction in the cost of 
high-speed connection between powerful processing ele- 
ments. Distributed computing has made inroads into 
many important areas, such as manufacturing, avionic 
systems, and space systems. The cost of developing soft- 
ware for such systems, however, is reaching astronomical 
proportions ~. A major concern is the creation of software 
tools to harness economically the increased computing 
power. 

Central to distributed software development is the lan- 
guage used to program these distributed devices. Distri- 
buted systems are still largely programmed by writing 
individual programs for each computer in the system, 
rather than programming the system as a whole using a 
distributed programming language. The single distri- 
buted program approach to programming closely coor- 
dinated actions of  multiple computers allows the 
advantages of  language-level software engineering de- 
velopments, e.g., abstract data types (ADTs), separate 
compilation of  specifications and implementations, 
extensive compile-time error checking, and large-scale 
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program development support, to be fully realised across 
machine boundaries. This requires a single language cap- 
able of  expressing distributed computation. 

Ada 2 is one of  the few languages that explicitly admits 
distributed execution. A principal shortcoming in the 
definition of Ada, however, is that it does not specify 
what parts of an Ada program may be distributed. The 
language definition just states that distribution must not 
change the effect of  the program. The effect of a pro- 
gram, however, is not formally defined (such as with 
abstract operational semantics 3) by the language 
designers. Thus the stance has to be adopted that the 
semantics of a program is actually a class of meanings or 
effects associated with the program. That is, the meaning 
is defined purely by the set of constructs used and is not 
dependent on the implementation (distributed or other- 
wise). A particular effect or behaviour, which is an ele- 
ment of  this class of  meanings, will be determined by the 
implementation. That is to say that the program is asso- 
ciated with a level of  nondeterminism due to freedom in 
implementation. This is over and above the nondetermi- 
nism a program exhibits due to constructs in the lan- 
guage such as the select statement. More precisely, the 
'distributed meaning' of a program is not one element; 
rather it is a class of  meanings indexed by distribution 
similar to Gurevich's definition 4. Given a program with a 
specified distribution, a given implementation will 
produce a given meaning (an element of  the meaning 
associated with the distribution). Given this definition of 
distributed semantics, a system would be said to be cor- 
rect if it produces an element in the class of meanings. 

Due to the undefined nature of  distributed execution, 
all of  the implementations of distributed Ada place res- 
trictions of one kind or another on what may be distri- 
buted. A number of experimental systems for distribut- 
ing the execution of Ada programs has been developed 5-9. 
As shall be seen, all these systems have been developed 
only after imposing various restrictions on Ada. A 
number of  difficulties that these approaches must face if 
they are to remain within the current Ada definition has 
been described ~°. 

The goal of the work described in this paper is to 
understand the language and implementation issues that 
arise when distributed execution is considered. There- 
fore, the approach is taken that the language should be 
changed as little as possible, work done within its current 
definition, and then, when the study is complete, 
changes recommended, if necessary. A consequence of 
the above axiom is that the easy solution to problems 
that arise of  'lets change the language' is no longer avail- 
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able. It means finding a way to implement a distribution 
of the language 'as it is'. This does not mean, however, 
that the language will not undergo change. I f  a solution 
results in a significant loss in efficiency or requires an 
overly contorted implementation mechanism, then 
changes to the language are recommended. But that is 
done after at tempting to remain within the current defi- 
nition. 

The approach to studying the languages issues of  dis- 
tribution consisted of two phases. The first was to 
consider the problem in general and the second to choose 
an approach that 'minimized the number  of  problems'  
and actually construct a distributed Ada system. During 
the course of  doing this, problems have been identified in 
both the language definition and translation rules and 
solutions developed. The actual construction is a p roof  
that these solutions indeed work. The work described in 
this paper  is principally an experimental device to help 
identify the basic problems/issues in general and point 
toward a solution for them. 

GENERAL PROBLEM 

The questions that must be faced in developing any dis- 
tributed Ada are~°: 

• What  units of  the language may be distributed? 
• How is the distribution specified (more recently called 

a partitioning activity)? 
• How are the distributed units assigned to physical 

units in the system (called a configuring activity)? 
• Is the system heterogeneous? 

All these issues must be addressed by any distributed 
system. In other words, these problems are independent 
of  a particular approach to distribution. 

As the principal objective is to study the implications 
of  distributing the current version of Ada, new restric- 
tions, e.g., no shared variables, should not be imposed on 
the language if such restrictions can be avoided. The first 
question above, then, must be answered for the current 
definition of  Ada. It has been shown l° that for any rea- 
sonable choice for unit of  distribution in Ada, a number 
of remote operations must be provided. These include: 

• Declaring/allocating variables whose types are dec- 
lared in remote packages. 

• Reading and writing of data objects declared in remote 
units. 

• Access to procedures and functions declared in remote 
units. 

• Making entry calls on tasks declared in remote pack- 
ages. 

• Dynamically elaborating tasks whose types are dec- 
lared in remote packages. 

• Managing task termination for tasks elaborated across 
machine boundaries. 

These problems require more than a standard remote 
procedure call n~ for solutions because of  the presence of 

tasks, the remote visibility of  types, and a variety of  more 
subtle problems that arise when trying to implement a 
system for distributed execution. These issues are elabor- 
ated below. 

Regarding partitioning and configuration, it is 
assumed that the programmer  provides information 
about the logical distribution and subsequent mapping 
onto physical hardware. Once the principal question of 
the unit of  distribution is answered, however, the stra- 
tegy used must not impose any restriction on the nature 
of  partitioning and configuration. For instance, if tasks 
are the unit of  distribution, the programmer  must be free 
to place any task at any logical location. Further 
research is necessary to support automatic partition and 
reconfiguration. Here consideration is limited to homo- 
geneous systems. There are sufficient issues to study in a 
homogeneous system without the added complexity of  
heterogeneity. 

Distributed types 

The principal issues in allowing potentially remote units 
to share types are: 

• Where are data objects declared from remote types 
located? 

• Where are the operations on the type located? 

These problems are over and above the problems des- 
cribed by Herlihy and Liskov t2, who discuss implemen- 
tation issues about multiple representations. The 
problem introduced by a distributable language with 
separate compilation (such as Ada) is related to the fact 
that types can be in one module (hence onsite), the ope- 
rations on it in another module (hence another site), 
while the object on which the operation is to be per- 
formed could be in a third module (hence third site). 

The location of all objects of  a type on the site where 
the type was declared is counter-intuitive. Normally, the 
location of an object would be identical to the location of 
the unit where the object is declared. I f  this is done, 
however, where are the operations of  the type placed? I f  
they remain only with the unit declaring the type, all 
operations would have to be remote, and that would be 
particularly awkward for basic and implicit operations, 
such as allocation, subfield identification, etc. 

On the other hand, placing an object declared on the 
site holding the unit in which the type is declared also 
creates difficulties. For example, though an object is syn- 
tactically local to a procedure, any access to the object by 
the procedure, while appearing to be local, in reality 
would be remote. This is unacceptable, in general, but 
more specifically in real-time systems where it would be 
preferable for the performance to be identifiable from the 
syntax of the program. 

Remote object accessing 

The characteristics of  data objects (in an imperative lan- 
guage in general, e.g., Ada) that cause difficulty in deve- 
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loping a general and yet efficient mechanism for handling 
references to remote objects are: 

• The objects may be composite and may have concate- 
nated names. 

• Parts of a fully concatenated name may contain 
pointers that point to objects on other machines. 

The first issue manifests itself when a composite object 
(as opposed to a simple object) must be copied from one 
site to another. For  example, suppose that site 2 uses a 
record R on the right hand of an assignment statement 
and that R is located on site 1. The translated code must 
convert R to a bit string for transmission. It would 
usually be desirable that the part of  the system that 
performs the conversion be unaware of  the structure of  
the object. If  the object contains a memory address as 
part of  its structure (such schemes are useful when vari- 
able length arrays are used), however, the result received 
could be meaningless. 

While some translation schemes might avoid this 
problem through careful handling of  storage allocation, 
any scheme that relies on using existing compilers can- 
not. To overcome this problem, the routine that does the 
final message transmission must have knowledge of  the 
structure so that the values themselves may be transmit- 
ted, and not just the address. Herlihy and Liskov ~2 
describe a scheme to overcome this by using a universal 
representation. They also describe the need for routines 
that deal with interchanging of  formats between internal 
representation and the universal representation. A prin- 
cipal difference in their work and the problem in lan- 
guages like Ada arises with objects involving operations 
such as '.' (the selector operation given a constructor) or 
'()' (the selector given a sequence or array). If these 
operators (along with routines that handle allocation/ 
initialization, namely, the basic/implicit operators) are 
treated as part of  an ADT definition, it would force the 
object to be created on the site where the type was dec- 
lared. As described above, however, this is counter-intui- 
tive. In short, while there {s need to define a universal 
representation scheme and conversion procedures t2 for 
all types, it cannot handle all operations. 

Consider the following example. Given a composite 
object (R) on site 1, let site 2 contain a statement such as 
X := R.C. How is an address for R.C constructed, or 
how is it described in a general way what element is to be 
returned? That is, how to send a message asking to receive 
the object R.C which is different from sending a message 
containing R and C to the operator '.' as with ADTs. The 
problem here is that the object is remote. The problem 
can be thought of  as requiring a message containing '.' 
and C be sent to R. This is because the syntax 'R.C' exists 
only on site 2, and the only information available there 
from the specification of the package containing A is the 
logical record structure of R, not its physical structure, 
which is on site 1. Again, representation (by that unit) 
dependent knowledge of  the rules used for construction 
of  the universal structure of  records is necessary. 

If an access component,  D, was now added to the type 

of R, and if the value of  R.D was to point to another 
record stored on site 3, a second issue arises. The method 
to calculate the address of  the item to be retrieved must 
not only contain implementation-dependent knowledge, 
but it must be distributed as well. 

Object initialization issues 

Another problem that arises is in the use of  initialized 
objects in declaring types shared across sites. It appears 
obvious that sharing of  types can be achieved by replicat- 
ing the definition. A simple replication cannot be used, 
however, when the type definition uses an initialized 
object. This is because the function to initialize the object 
may cause side effects and replication could alter the 
semantics of  the original program. 

Anomalies in tasking 

The problems discussed above are general as all impera- 
tive languages have the notion of objects whose values 
can be altered. That  is, the above problems pertain to 
identifying an object and altering parts of  it. The 
problem related to tasking, while specific to Ada, sheds 
light on how to define concurrency in languages. 

Translation of  distributed task types depends on the 
answer to the following question: Where is the placement 
of elaborated tasks: the site of  elaboration or site of  task 
type declaration? 

The placement of  tasks on the site of  task type declara- 
tion is counter-intuitive and might render the program- 
mer's load-balancing and fault-tolerant algorithms use- 
less. On the other hand, if the task is placed on the site of  
elaboration another set of difficulties arise, which is dis- 
cussed in the section 'Tasks'. 

Termination 

Any strategy to distribute task types (or any other struc- 
ture involving task types) is not complete unless algor- 
ithms to detect termination of  tasks created from such 
types are designed. Given the complexity of task termi- 
nation, any strategy developed for task types should 
necessarily yield a simple termination algorithm. 

To recap, issues have been identified that arise when a 
given Ada program is to be distributed. These problems 
are general and independent of  approach. Certain 
problems may be eliminated by restricting the use of  
Ada, e.g., cannot share objects across machine boundar- 
ies. The posture is adopted here that the language should 
not be restricted on an ad hoc basis. Rather, all issues in 
the current definition should be addressed before sug- 
gesting changes. 

OVERVIEW OF APPROACH 

This section describes the authors' approach to address 
the general issues raised above. They have discussed the 
issues related to the memory architecture and units of 
distribution ~3. The main conclusion is that the choice of 
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the unit of  distribution depends on the memory  architec- 
ture. The notion of a virtual node is introduced to char- 
acterize a tightly coupled shared memory system. Tasks 
are recommended as the unit of  distribution within a 
virtual node. As memory  is shared among the processors, 
distribution is simply a matter  of  scheduling the tasks on 
the processors, as all objects within a virtual node are 
locally accessible. 

A loosely coupled system can be considered to be a set 
of  virtual nodes, lntra-virtual node access is local (as the 
memory is shared), while an inter-virtual node access is 
remote (as the memory  is not shared). Volz 13 shows that 
the choice of  Ada library elements as the unit of  distribu- 
tion is to a large extent concomitant  with the notion of 
virtual node. At this time the implementation is restricted 
to homogeneous systems. Future design will address the 
issues related to heterogeneity. 

The process of achieving a distribution of  the program 
is divided into two parts. In the first, library packages 
and library subprograms are assigned to logical sites via 
a pragma SITE t°. This is accomplished manually by the 
programmer.  At this juncture manual specification is 
viewed as acceptable as the programmer  has a better 
understanding of the coupling (such as inter-unit 
accesses) between the various units in the system and the 
system of implementation is independent of  the specific 
distribution (as long as some distribution is specified). It 
is conceivable that a tool that computes the coupling and 
suggests a distribution scheme can be built. However, 
this is out of  the scope of this research. The second aspect 
of distributed computat ion is that of  binding of logical 
sites to physical sites, and this is done at the time of 
program load. 

Other design decisions made about  the more detailed 
issues raised above include: 

• Data items whose type is defined in a remote package 
are to be located on the processor elaborating the 
object declaration. Basic and implicit operations are to 
be replicated on the processor elaborating the object 
declaration. This leads to a more efficient system as it 
obviates the need to send a message to select a particu- 
lar component  of  a local object. User-defined ope- 
rations, however, are not to be replicated. 

• The only restriction to be placed on declarations 
allowed in the specification of a distributed package is 
that initializations from functions having side effects 
are disallowed. Shared variables across machines are 
thus allowed. 

• Access to procedures and functions declared in remote 
units is permitted. 

• Task objects elaborated from task types declared in a 
remote package are to be located on the processor 
creating the task. Hence task dependencies are either 
on library units, in which case the task is not required 
to terminate, or they are all on a single virtual node 
and the existing termination techniques can be used, 
i.e., there are no cross processor task dependencies 
involving tasks that are required to terminate. 

Based on these design decisions, a translation strategy 

Single ~/~ 
so u roe 
program 

Translator 

1 
Source 
for 
machine 1 

Translator 
for 
machine 1 

) Objectc°de / ~/~ 
for • " " 
machine 1 

~,~ Source 
for 
machine N 

Translator 
for 
machine N 

Object code 
for 
machine N 

Figure 1. Translation of  distributed Ada program into set 
o f  Ada programs 

for translating a distributed Ada program has been 
under development and is nearly comple te  

Overview of translation strategy 

At the time the work was begun, the source code for an 
existing Ada compiler was not available for modifica- 
tion. Thus a decision was made to translate a single Ada 
program into a set of  individual Ada programs that 
could each be compiled separately (see Figure 1). In the 
process, communication routines are added and refer- 
ences to remote objects or operations appropriately 
modified. This approach has the dual goals of being a 
simpler experimental mechanism and using existing work 
where possible. 

As the type of remote services that can be requested 
from a package or subprogram are known from the 
specification, a well defined interface between units 
remotely requesting service and the package or subpro- 
gram providing the service can be created. The units that 
constitute the interface are called agents. A trio of  agents 
are created for each library unit that may be accessed 
from remote sites; they are called remote agents, local 
agents, and common agents. Underlying these is a mail 
system called postal that is called by the agents whenever 
it is necessary to send information from one site to 
another. 

For purposes of  illustration, suppose there is a library 
package A that is to be accessible from remote sites. The 
remote agent for A is replicated on each site containing 
units that reference A. Suppose that a unit B makes 
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Site 1 

With A; I 
procedure B 

A_REM_AGENT I 

I Postal system 
( Digital "~ j [  c°mmunicati°n t 1 

I- [network J 

Site2 

Package A [ 

; l 
A_LOC_AGENT I 

; l 
Postal I 
system 

Figure 2. Use of  local and remote agents to establish 
communication between packages assigned to different 
sites 

references to A. The translator replaces all references in 
B to remote objects in A with appropriate calls to the 
remote agent of A (which resides on the same site as B), 
which in turn uses postal to convey the service request to 
the local agent of A. The local agent performs the necess- 
ary functions, returning any objects requested. A is 
essentially unchanged by the pretranslator. Both the 
local and remote agents can be generated only from the 
specification of A. 

Common agents are placed on both sites and serve to 
propagate object accesses involving access variables 
pointing to other sites to the appropriate sites. Common 
agents are required only if such access variables are used. 
The organization of remote and local agents is shown in 
Figure 2. 

Another key component to the translation strategy is a 
generalized mechanism for referencing objects, be they 
local or remote. The mechanism must be capable of  
dynamically processing a fully concatenated name, as the 
concatenated name may appear in a unit on one site and 
refer to an object on another. 

TRANSLATION STRATEGY 

As remote object referencing is used by some of the 
agents, the mechanism for dynamically handling fully 
concatenated names is described before discussing the 
agent structure. 

Remote data object access 

Central to the operation of  the agent structure is the 
capability for handling reference to remote objects. An 
addressing scheme has been designed that uses the logical 
structure of  the object rather than using physical struc- 
ture constructed by the compiler, as it is more in keeping 
with the philosophy of using existing compilers where 
possible with minimal knowledge of  their internals. 

One of  the principal problems in developing a general 
object accessing method is the processing of  fully eonca- 

tenated names (described above). The following con- 
structs deal with this problem: 

• An enumerated type, OBJ_ENUM_T, whose values 
are indicative of  every data object declared in the 
package for which an agent is being generated. 

• Enumerated types for all record types defined, which 
specify the field of the record. 

• A collection of  G E T P U T  procedures, one for each 
data, record, or array type defined, whose function is 
either to retrieve or to set the value of an object. 

From the perspective of  the local agent, a remote data 
object access begins with the local agent main task 
receiving a message from the postal system. One of  the 
fields in this record contains a value of type OBJ_ 
ENUM_T that indicates the name of the object being 
referenced. The local agent's main task then performs a 
case statement on this value. Each case calls a G E T P U T  
procedure and passes it the message, the object named, 
and a count (DEPTH) of  the number of  name compo- 
nents to the fully concatenated name sought (including 
array arguments). 

If the object passed is a scalar object, the count will be 
zero and the request can be satisfied directly by the 
G E T P U T  procedure by simply copying a value between 
the appropriate field in the message record and the 
object. 

If DEPTH is not zero, then either an array element is 
being sought, or the final object designated by the fully 
concatenated name has not yet been reached. In the 
former case, the indices for the array element (or slice) 
are contained in the path array of  the message record and 
the G E T P U T  can select the appropriate element(s) of the 
array. These either directly satisfy the request or recurse 
to the appropriate field in the composite object. That  is, 
if the G E T P U T  is handling a record type, and DEPTH is 
not zero, the next element of  the path array will contain 
an enumerated value that specifies the desired field of the 
record. The G E T P U T  contains a case statement con- 
ditioned on this field enumerator and an appropriate 
G E T P U T  is called, passing to it the message record and 
record field. 

If one of the fields was an access variable, it would 
have been replaced by a record (as described in the 
common agent section below), and the action for the 
corresponding case would be identical to other field 
types. The G E T P U T  procedure for these access type 
records first checks to see if the requested object is on the 
current site or elsewhere. If local, then the call to GET- 
PUT would be made as shown above. If elsewhere, then 
an appropriate message would be propagated to the 
common agent on the indicated site. 

Agent structure 

To motivate the discussion of  the three kinds of  agents, 
consider the following simple example: 

pragma SITE(i); pragraa SITE(2); 
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package A is 
type DT i s . . .  ; 
procedure P: 
task T is 

entry E; 
end; 

end A; 

with A; 
package B is 

end; 

One of  the basic design decisions was that the data types 
and corresponding basic operations in A are to be repli- 
cated on each unit referencing A. To accomplish this, a 
package A_TYPES corresponding to A containing only 
the data types declared in A, namely, DT, is automati-  
cally generated. 

A translation of  B will among other things insert a with 
A_ TYPES before B. Similarly, A_TYPES will be 
included with each package or subprogram that refer- 
ences A. B may also need to issue a remote procedure call 
to P or a remote entry call to T.E. Hence a remote agent 
for A to be used by B and a local agent associated with A 
that services the requests from B is automatically con- 
structed. The agents can be considered to be generalized 
form of  RPC stubs 14. 

Remote agents 
As B is remote with respect to A, B's references to A are 
altered to refer to A's remote agent, which is denoted A_ 
REM. The form of A REM is sufficiently simple that its 
specification can be generated from the specification of 
A. 

Remote agents are collections of  procedures and func- 
tions (P and E in the above example) that effect remote 
calls. In the case of  subprogram calls, they present an 
interface to the calling package identical to that of  the 
original source package. The procedures and functions in 
A REM each format  an appropriate  message record and 
dispatch it to the appropriate  site via the postal service. 
The value returned from the call is received from the 
local agent and returned to the calling unit. F rom the 
perspective of  the calling unit, the facts that the action is 
remote and that there are (at least) two agents in between 
it and the called unit are transparent, except for the 
longer time required. Thus no translation of  subprogram 
or (simple) task calls is required in the calling unit, unless 
they use arguments residing remotely. 

In the case of  remote data object references, a trans- 
parent interface is not possible. This is because while it is 
possible to use the same name for a subprogram/entry 
call but change the behaviour of  the call, it is not possible 
to use the same object name to alter behaviour. For 
example, if x is an object, the use of  x refers to the object 
and value returned is the value associated with the 
object. However, if x is a procedure x (i.e., a procedure 
call) can be used and the given body altered to take a 
different action than before. Thus the original program 
text (namely, x) need not be altered when x is a subpro- 
gram, but needs to be altered when x is a remote object. 

Therefore, a set of  procedures to access or update 
values of  remote objects of  various types is generated. 
Again these procedures ( G E T P U T  described in the 
section 'Remote  object accessing') are generated from 

the specification (of the object) of  the library package 
being referenced. 

Local agents 
Local agents are packages consisting of three major  com- 
ponents, a procedure called ROUTER,  a queue manager 
task, and a number  of  call manager task instances. The 
main procedure created for each site contains a loop that 
first does a rendezvous with the underlying postal system 
to receive an inbound message, and then passes this 
message to the appropriate  agent package by calling the 
R O U T E R  procedure within the agent package. 

When the reference indicated by the message is to a 
data object, the R O U T E R  procedure takes action 
depending on the request, ensuring that a deadlock is not 
introduced due to its blocking. 

procedure ROUTER(M: MESS TYPE ) is 
begin 

case M.OBJECT ENUMERATOR is 

when OBJ_K_ENUM = > GETPUT OBJ_I_ 
TYPE(M, OBJ_I); return; 

end case; 
DEPOSIT_CALL(M); - message indicates a call 

end; 

When a message arrives requesting a call to a callable 
object, the message is placed on a queue managed by a 
queue manager  task (QMGR).  The local agent then veri- 
fies that there is an instance of  a call agent task ready to 
rendezvous with the queue manager task. I f  there is not, 
one is instantiated. The call agent (described below) 
retrieves the queued message and executes the call. 

A call agent task instance executes a call to one of  the 
callable objects in the package and represents, locally, 
the thread of  control on the remote processor for the 
duration of  the call. The name of  the actual object to be 
called is present in the message. 

When a call agent has finished executing a call for a 
remote client, it does not terminate, but is queued up on 
the extract entry of  the queue manager  task and is thus 
able to execute subsequent calls. A local agent therefore 
defines one static task and instantiates N call agents, 
where N is the maximum number of  simultaneously 
active calls to callable objects in the package, encoun- 
tered during execution. 

Common agents 
The model of  distribution permits access variables to 
point to dynamically created data and task objects on 
machines other than the one holding the access variable. 
Since access variables, as defined within a local Ada 
program, clearly cannot  contain both the machine iden- 
tity and an address, whenever an access type definition is 
encountered in the source package, it is replaced by a 
record structure containing two fields: a site number  and 
the original access type. This new record type is then used 
in place of  the access type. When a reference is made to 
an object via an access variable, the site number is always 
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checked against the current site number, to determine 
whether the object being pointed to is on the local site or 
on a remote site. If  local, the object reference is handled 
as usual; otherwise, a call is made to a remote common 
agent to follow the pointer chain across processors to 
find the object and manage the operation. 

Because access variables can be passed from one 
machine to another, it is possible for a processor to hold 
an access variable pointing to an object on a remote site. 
Moreover, the package that contains the remote object 
need not be otherwise referenced by any other package 
on the current site and may not even have a local agent. 
For  these reasons, common agent packages are gener- 
ated and placed on all sites that might use access types 
defined by the program unit. 

Tasks 

There are two difficulties to consider with tasks: remote 
conditional and timed entry calls, and creating task 
objects from a remote task type. The former requires a 
clarification in the wording of the RM and has been 
discussed ~6. It is not considered further here. 

To illustrate the difficulties with creation of  task 
objects from remote task types, consider the following 
package body skeleton, which defines the body of  a task 
type. 

with C; 
package body A is 

S: SOME_TYPE; 
task body T_TYPE is 

begin 
- -  reference S; 

reference X; 

end T_TYPE; 

end A; 

- - suppose a variable X for C is used. 

- -  a shared variable. 

Recall now that when an instance of  the task is created 
from this task body, the body must be replicated on the 
site on which the task object is to reside. Two problems 
are evident. First, the created task object must be able to 
reference the data object S. Second, the reference to X 
may be either local or remote, depending on whether the 
task object is created on the same site that holds C or a 
different one; the problem is that as package body A may 
be compiled before the unit that creates the task object, it 
is not possible to know whether the reference to X is local 
or remote at the time package body A is submitted for 
compilation. Of  course, X may be local for some 
instances of  the task and remote for others. The same is 
true of  all other variables declared in packages refer- 
ences. 

The first problem is one of  the visibility of S. This is 
handled by pulling S (and its type declaration, if necess- 
ary) out of the body of  A and creating a new package A_ 
HID with S declared in its specification. Every package 
that creates an instance of the task from T T Y P E  is then 
translated to include a with A HID. While this does 

make internal variables visible, they are only visible to 
entities created by the translation process, not to the 
programmer. Thus this is not considered a violation of 
Ada visibility rules. 

The second problem is handled by storing the code for 
task body T TYPE in an auxiliary file. Whenever some 
other unit containing code that would create an instance 
of  it is presented for compilation, an instance of T_ 
TYPE is compiled for the specified site. Thus the number 
of compilations of  T TYPE is linear in the number of 
sites. 

It is worth noting that, although the situation is not 
described further here, the same problem and solution 
arise with respect to compilation of generic units. 

Automatic generation of agents, compilation, 
and visibility issues 

The translations required for the methods outlined above 
involve numerous steps and introduce a number of auxi- 
liary packages. The process of  managing the auxiliary 
packages and compilation phases correctly is quite com- 
plex. Rather than require the user to do this manually, a 
utility has been prepared to simplify use of  the pre- 
translator. 

The translation and compilation procedure consists of 
the following steps: 

(1) Determination of  the order of pretranslation of 
source files* 

(2) Pretranslation of source files 
(3) Building main procedures and agents for all sites 
(4) Determination of  the order of  compilation of  trans- 

lated sources (including agents) for target sites 
(5) Compiling and linking of  individual site programs 

Several utilities have been written to facilitate some of 
these steps. A precompilation utility (ADAUTIL)  trans- 
lates the network of  package dependencies implicit in a 
set of  source files to a set of  file dependencies in Unix 
'makefile' format. The list of relevant source files and one 
or more targets (main programs) must be specified. 

A second utility performs step 3. During step 3, all 
agent packages are constructed from saved symbol table 
information generated during the pretranslation process. 
Main programs for each site are also generated during 
step 3. 

A third utility, (DAPLINK),  builds a script to effect 
steps 4 and 5. If any non-Ada object modules need to be 
linked into any site, they may be specified by options to 
this utility. As a script (DAP) has also been written to 
effect steps 1-3, the user interface to the distributed com- 
pilation system reduces to two commands: DAP and 
DAPLINK.  For example, let the current directory con- 
tain all and only the source files with names ending in 

*Although the order in which sources must  be pretranslated is the same 
as the order in which they would be compiled by an Ada compiler, all of  
the compilers used by the authors  are inadequate in the area of  deter- 
mining this compilation order, when presented with a set of  source files, 
especially if these source files are present in different directories. 
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' .a ' .  Let these be the complete set of  source files compris- 
ing a distributed Ada program. Let sites 1, 2, and 3 be 
used and let M A I N  be the name of  the main program. 
The user only needs to execute DAP M A I N  *.a and 
D A P L I N K  M A I N  1 2 3. 

RELATION TO PAST WORK 

The lessons learned during this research are primarily 
applicable to imperative languages. The general scheme 
is not directly relevant to functional or logic languages as 
their implementation techniques are vastly different. 
However, solutions to issues related to sharing of  types 
may be used in such languages. 

I f  a distributed system based on imperative principles 
(e.g., Emerald ~7) is considered, a more relevant compari-  
son can be performed. The principal difference between 
the approach in Emerald and the authors '  approach is 
the movement  of  objects. In Emerald (and AmbertS), 
objects (including executable objects) can be moved from 
one site to another. In the authors '  system, objects are 
not moved as the primary domain is loosely coupled 
systems. This is because Ada allows call by value-result 
(which is different from reference) without 'altering the 
behaviour '  of  the program. If  Ada allowed only call by 
reference, every access to a remote object would have to 
be converted to a remote operation, which, needless to 
say, could be horrendously expensive. An alternative 
strategy is to ship the object to the site and thus perform 
local access. The issues related to moving objects have 
been discussed tT,~. When dealing with simple objects a 
value can be sent to the remote site, all operations on it 
are performed locally, and the final result is sent back to 
be assigned to the object. However, this simple scheme 
will not work for executable objects such as tasks. The 
authors transform task objects to pointers to the object 
and ship the pointer. When a call using the pointer is 
made, the pointer is deferenced and a call is made to the 
site where the object was resident. The strategy is more 
efficient and was designed with real-time applications in 
mind. However, automatic load-balancing cannot be 
performed. 

Other paradigms for distributed systems, such as 
Linda% do not fit the Ada model. Linda has the notion 
of tuple space and each process in the system writes/read 
into/from the tuple space. This creates a view of 'shared 
memory ' .  However, Ada has an asymmetric calling tech- 
nique and there is no direct notion of tuple space. Thus 
the authors admit that they are unaware of  the relevancy 
of their techniques to paradigms such as Linda. In 
summary,  the authors '  work is directly relevant to lan- 
guages such as DP 2°, Occam 21, etc. 

As mentioned earlier, a number  of  experimental 
systems for distributing the execution of Ada programs 
has been developed. Tedd e t  a l .  6 describe an approach 
that is based on clustering resources into tightly coupled 
nodes (shared bus) with digitial communications among 
the nodes. They then limit the language definition for 
inter-node operations (e.g., no shared variables on cross 
node references). Cornhill has introduced the notion of a 

separate partitioning language 7 that can be used to 
describe how a program is to be partitioned after the 
program is written. This language has been described in 
greater detail =. Again, neither of  these approaches rec- 
ognises the full problem space involved in the distributed 
execution of programs. A technique in distributed Ada 
based on treating packages and tasks as the unit of  
distribution has been described 8. While the issue of  
remote entry calls is discussed, the other issues of  sharing 
types, task types, etc. are not addressed. Diadem 23 
describes a technique using remote entry calls to effect 
remote communication. However, it imposes various res- 
trictions such as sharing of only types across sites, being 
unable to call subprograms, etc. Hence it is primarily the 
effecting of  communication rather than distributing Ada. 

STATUS A N D  C O N C L U S I O N S  

At the present time, the distributed translation system is 
operational for distributed packages with remote access 
available to all items described here. 

While the system is operational on a network of Sun 
computers,  there is still work to be accomplished before 
the distribution of library packages and subprograms is 
complete. Although the strategy has been determined ~6, 
work has not yet begun on handling timed/conditional 
task entry calls. The addition of exceptions alters the 
agent structures slightly as care has to be taken that tasks 
which terminate due to exceptions are recreated. This is 
because of  the Ada tasking semantics, which states that a 
task is no longer active once an exception has been raised 
in it. The scheme to handle exceptions across sites is 
described elsewhere 24. 

Based on the authors '  experiences with building the 
experimental translation system, a number  of  conclu- 
sions can be drawn. The first is that a construct that can 
be replicated on various sites is required to allow types to 
be shared across machines. I f  there is no such construct 
explicitly within the language, one must effectively be 
created within the code produced by the compiler. This 
need is not satisfied by the concept of  a package type as 
then state information such as mutable objects would 
also be replicated. Hence a stateless unit that can be 
replicated across sites is necessary. 

Another issue that complicated the translation was the 
presence of hidden remote accesses in objects created 
from task types. Such task objects depend on the body of 
the unit encapsulating the task type. Hence it is not 
possible to generate versions from the specification 
alone. There was an increase in the complexity of  a valid 
compilation order 25. To avoid this problem, the creation 
of tasks from remote task types should be disallowed. In 
its place, a higher-level typing mechanism on a unit that 
encapsulates the task is required. 

It has also been shown that it is possible to take a given 
program in language L and produce a set of  programs 
for distributed execution in L itself. These can be tied 
into the networking software to achieve distributed 
execution. This enables existing software to be used for 
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single site programs. Of course, for this technique to 
work a sufficiently powerful language is needed. 

So far only one point in the problem space has been 
addressed: homogeneous, loosely coupled systems with 
static distribution. Additional representation mecha- 
nisms are needed to describe limitations dependent on 
architectural considerations, to describe binding mecha- 
nisms, and to describe processor types (so that implicit 
data conversions can be accomplished). Moreover, it is 
necessary to require greater use of  representational speci- 
fications on data types shared among multiple pro- 
cessors, particularly when those processors are hetero- 
geneous. The authors are confident that other work ~2.26 
can be used with their approach as a solution for hetero- 
geneous systems. 

In conclusion, Ada is not adequately defined with 
respect to distributed execution. The construction of  any 
system for distributed execution requires the implemen- 
tation to make a number of  decisions. However, as 
shown in this paper, with some modest language changes 
a reasonable distributed system can be built. Also note 
that the authors'  research has concentrated on distribut- 
ing a given program. The onus of configuration has been 
left to the programmer. To build a distributed system 
easily an associated configuration language should also 
be developed 27. 
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