

Distributed Ada: case study

R A. Volz, P Krishnan and R Theriault

I owe Prof. Volz a deep sense of gratitude for his valuable, generous guidance during my PhD
and also during the initial phases of my career. He has this amazing willingness to help me in all
aspects of my career. I have always valued his advice based on his deep insight fully knowing
that at all times he has my best interests in mind at all times. He has always been open to my
ideas and supported me in the decisions I made. His mentorship and encouragement enabled
me to embark on my academic career. I wish him the very best of health and happiness and
success in the years to come.

Paddy Krishnan

Distributed Ada: case study
R A Volz, P Krishnan and R Theriault

The paper describes the design and implementation of a distri-
buted Ada system. Ada is not well defined with respect to distribu-
tion, and any implementation for distributed execution must
make a number of decisions about the language. The objectives in
the implementation described here are to remain as close to the
current definition of Ada as possible, and to learn through exper-
ience what changes are necessary in future versions of the lan-
guage. The approach taken to distributing a single program is to
assign library units that compose it to nodes of the distributed
system. In a formal sense the semantics of a program is indepen-
dent of the distribution because the semantics is interpreted to
include all possible behaviours that result from different distribu-
tions. However, the functionality of the distributed program may
then depend on the distribution in the sense that program behav-
iour may be impacted by the time required for communication
among the distributed modules, or parts of the program may
continue to function in presence of failures. The implementation
technique converts each distributed module into a standalone
program that communicates with its correspondents; each of
these may then be compiled by an existing Ada compiler. Issues
discussed include the ram(t~'cations of sharing of data types,
objects, subprograms, tasks, and task types. The implementation
techniques used in the translator are described.

case stud),, distributed systems, Ada

The importance of distributed systems cannot be over-
emphasized, especially with the reduction in the cost of
high-speed connection between powerful processing ele-
ments. Distributed computing has made inroads into
many important areas, such as manufacturing, avionic
systems, and space systems. The cost of developing soft-
ware for such systems, however, is reaching astronomical
proportions ~. A major concern is the creation of software
tools to harness economically the increased computing
power.

Central to distributed software development is the lan-
guage used to program these distributed devices. Distri-
buted systems are still largely programmed by writing
individual programs for each computer in the system,
rather than programming the system as a whole using a
distributed programming language. The single distri-
buted program approach to programming closely coor-
dinated actions of multiple computers allows the
advantages of language-level software engineering de-
velopments, e.g., abstract data types (ADTs), separate
compilation of specifications and implementations,
extensive compile-time error checking, and large-scale

Dept of Computer Science, Texas A&M University, College Station,
TX 77843, USA

program development support, to be fully realised across
machine boundaries. This requires a single language cap-
able of expressing distributed computation.

Ada 2 is one of the few languages that explicitly admits
distributed execution. A principal shortcoming in the
definition of Ada, however, is that it does not specify
what parts of an Ada program may be distributed. The
language definition just states that distribution must not
change the effect of the program. The effect of a pro-
gram, however, is not formally defined (such as with
abstract operational semantics 3) by the language
designers. Thus the stance has to be adopted that the
semantics of a program is actually a class of meanings or
effects associated with the program. That is, the meaning
is defined purely by the set of constructs used and is not
dependent on the implementation (distributed or other-
wise). A particular effect or behaviour, which is an ele-
ment of this class of meanings, will be determined by the
implementation. That is to say that the program is asso-
ciated with a level of nondeterminism due to freedom in
implementation. This is over and above the nondetermi-
nism a program exhibits due to constructs in the lan-
guage such as the select statement. More precisely, the
'distributed meaning' of a program is not one element;
rather it is a class of meanings indexed by distribution
similar to Gurevich's definition 4. Given a program with a
specified distribution, a given implementation will
produce a given meaning (an element of the meaning
associated with the distribution). Given this definition of
distributed semantics, a system would be said to be cor-
rect if it produces an element in the class of meanings.

Due to the undefined nature of distributed execution,
all of the implementations of distributed Ada place res-
trictions of one kind or another on what may be distri-
buted. A number of experimental systems for distribut-
ing the execution of Ada programs has been developed 5-9.
As shall be seen, all these systems have been developed
only after imposing various restrictions on Ada. A
number of difficulties that these approaches must face if
they are to remain within the current Ada definition has
been described ~°.

The goal of the work described in this paper is to
understand the language and implementation issues that
arise when distributed execution is considered. There-
fore, the approach is taken that the language should be
changed as little as possible, work done within its current
definition, and then, when the study is complete,
changes recommended, if necessary. A consequence of
the above axiom is that the easy solution to problems
that arise of 'lets change the language' is no longer avail-

292 0950-5849/91/040292--09 © 1991 Butterworth-Heinemann Ltd information and software technology

able. It means finding a way to implement a distribution
of the language 'as it is'. This does not mean, however,
that the language will not undergo change. I f a solution
results in a significant loss in efficiency or requires an
overly contorted implementation mechanism, then
changes to the language are recommended. But that is
done after at tempting to remain within the current defi-
nition.

The approach to studying the languages issues of dis-
tribution consisted of two phases. The first was to
consider the problem in general and the second to choose
an approach that 'minimized the number of problems'
and actually construct a distributed Ada system. During
the course of doing this, problems have been identified in
both the language definition and translation rules and
solutions developed. The actual construction is a p roof
that these solutions indeed work. The work described in
this paper is principally an experimental device to help
identify the basic problems/issues in general and point
toward a solution for them.

GENERAL PROBLEM

The questions that must be faced in developing any dis-
tributed Ada are~°:

• What units of the language may be distributed?
• How is the distribution specified (more recently called

a partitioning activity)?
• How are the distributed units assigned to physical

units in the system (called a configuring activity)?
• Is the system heterogeneous?

All these issues must be addressed by any distributed
system. In other words, these problems are independent
of a particular approach to distribution.

As the principal objective is to study the implications
of distributing the current version of Ada, new restric-
tions, e.g., no shared variables, should not be imposed on
the language if such restrictions can be avoided. The first
question above, then, must be answered for the current
definition of Ada. It has been shown l° that for any rea-
sonable choice for unit of distribution in Ada, a number
of remote operations must be provided. These include:

• Declaring/allocating variables whose types are dec-
lared in remote packages.

• Reading and writing of data objects declared in remote
units.

• Access to procedures and functions declared in remote
units.

• Making entry calls on tasks declared in remote pack-
ages.

• Dynamically elaborating tasks whose types are dec-
lared in remote packages.

• Managing task termination for tasks elaborated across
machine boundaries.

These problems require more than a standard remote
procedure call n~ for solutions because of the presence of

tasks, the remote visibility of types, and a variety of more
subtle problems that arise when trying to implement a
system for distributed execution. These issues are elabor-
ated below.

Regarding partitioning and configuration, it is
assumed that the programmer provides information
about the logical distribution and subsequent mapping
onto physical hardware. Once the principal question of
the unit of distribution is answered, however, the stra-
tegy used must not impose any restriction on the nature
of partitioning and configuration. For instance, if tasks
are the unit of distribution, the programmer must be free
to place any task at any logical location. Further
research is necessary to support automatic partition and
reconfiguration. Here consideration is limited to homo-
geneous systems. There are sufficient issues to study in a
homogeneous system without the added complexity of
heterogeneity.

Distributed types

The principal issues in allowing potentially remote units
to share types are:

• Where are data objects declared from remote types
located?

• Where are the operations on the type located?

These problems are over and above the problems des-
cribed by Herlihy and Liskov t2, who discuss implemen-
tation issues about multiple representations. The
problem introduced by a distributable language with
separate compilation (such as Ada) is related to the fact
that types can be in one module (hence onsite), the ope-
rations on it in another module (hence another site),
while the object on which the operation is to be per-
formed could be in a third module (hence third site).

The location of all objects of a type on the site where
the type was declared is counter-intuitive. Normally, the
location of an object would be identical to the location of
the unit where the object is declared. I f this is done,
however, where are the operations of the type placed? I f
they remain only with the unit declaring the type, all
operations would have to be remote, and that would be
particularly awkward for basic and implicit operations,
such as allocation, subfield identification, etc.

On the other hand, placing an object declared on the
site holding the unit in which the type is declared also
creates difficulties. For example, though an object is syn-
tactically local to a procedure, any access to the object by
the procedure, while appearing to be local, in reality
would be remote. This is unacceptable, in general, but
more specifically in real-time systems where it would be
preferable for the performance to be identifiable from the
syntax of the program.

Remote object accessing

The characteristics of data objects (in an imperative lan-
guage in general, e.g., Ada) that cause difficulty in deve-

vol 33 no 4 may 1991 293

loping a general and yet efficient mechanism for handling
references to remote objects are:

• The objects may be composite and may have concate-
nated names.

• Parts of a fully concatenated name may contain
pointers that point to objects on other machines.

The first issue manifests itself when a composite object
(as opposed to a simple object) must be copied from one
site to another. For example, suppose that site 2 uses a
record R on the right hand of an assignment statement
and that R is located on site 1. The translated code must
convert R to a bit string for transmission. It would
usually be desirable that the part of the system that
performs the conversion be unaware of the structure of
the object. If the object contains a memory address as
part of its structure (such schemes are useful when vari-
able length arrays are used), however, the result received
could be meaningless.

While some translation schemes might avoid this
problem through careful handling of storage allocation,
any scheme that relies on using existing compilers can-
not. To overcome this problem, the routine that does the
final message transmission must have knowledge of the
structure so that the values themselves may be transmit-
ted, and not just the address. Herlihy and Liskov ~2
describe a scheme to overcome this by using a universal
representation. They also describe the need for routines
that deal with interchanging of formats between internal
representation and the universal representation. A prin-
cipal difference in their work and the problem in lan-
guages like Ada arises with objects involving operations
such as '.' (the selector operation given a constructor) or
'()' (the selector given a sequence or array). If these
operators (along with routines that handle allocation/
initialization, namely, the basic/implicit operators) are
treated as part of an ADT definition, it would force the
object to be created on the site where the type was dec-
lared. As described above, however, this is counter-intui-
tive. In short, while there {s need to define a universal
representation scheme and conversion procedures t2 for
all types, it cannot handle all operations.

Consider the following example. Given a composite
object (R) on site 1, let site 2 contain a statement such as
X := R.C. How is an address for R.C constructed, or
how is it described in a general way what element is to be
returned? That is, how to send a message asking to receive
the object R.C which is different from sending a message
containing R and C to the operator '.' as with ADTs. The
problem here is that the object is remote. The problem
can be thought of as requiring a message containing '.'
and C be sent to R. This is because the syntax 'R.C' exists
only on site 2, and the only information available there
from the specification of the package containing A is the
logical record structure of R, not its physical structure,
which is on site 1. Again, representation (by that unit)
dependent knowledge of the rules used for construction
of the universal structure of records is necessary.

If an access component, D, was now added to the type

of R, and if the value of R.D was to point to another
record stored on site 3, a second issue arises. The method
to calculate the address of the item to be retrieved must
not only contain implementation-dependent knowledge,
but it must be distributed as well.

Object initialization issues

Another problem that arises is in the use of initialized
objects in declaring types shared across sites. It appears
obvious that sharing of types can be achieved by replicat-
ing the definition. A simple replication cannot be used,
however, when the type definition uses an initialized
object. This is because the function to initialize the object
may cause side effects and replication could alter the
semantics of the original program.

Anomalies in tasking

The problems discussed above are general as all impera-
tive languages have the notion of objects whose values
can be altered. That is, the above problems pertain to
identifying an object and altering parts of it. The
problem related to tasking, while specific to Ada, sheds
light on how to define concurrency in languages.

Translation of distributed task types depends on the
answer to the following question: Where is the placement
of elaborated tasks: the site of elaboration or site of task
type declaration?

The placement of tasks on the site of task type declara-
tion is counter-intuitive and might render the program-
mer's load-balancing and fault-tolerant algorithms use-
less. On the other hand, if the task is placed on the site of
elaboration another set of difficulties arise, which is dis-
cussed in the section 'Tasks'.

Termination

Any strategy to distribute task types (or any other struc-
ture involving task types) is not complete unless algor-
ithms to detect termination of tasks created from such
types are designed. Given the complexity of task termi-
nation, any strategy developed for task types should
necessarily yield a simple termination algorithm.

To recap, issues have been identified that arise when a
given Ada program is to be distributed. These problems
are general and independent of approach. Certain
problems may be eliminated by restricting the use of
Ada, e.g., cannot share objects across machine boundar-
ies. The posture is adopted here that the language should
not be restricted on an ad hoc basis. Rather, all issues in
the current definition should be addressed before sug-
gesting changes.

OVERVIEW OF APPROACH

This section describes the authors' approach to address
the general issues raised above. They have discussed the
issues related to the memory architecture and units of
distribution ~3. The main conclusion is that the choice of

294 information and software technology

the unit of distribution depends on the memory architec-
ture. The notion of a virtual node is introduced to char-
acterize a tightly coupled shared memory system. Tasks
are recommended as the unit of distribution within a
virtual node. As memory is shared among the processors,
distribution is simply a matter of scheduling the tasks on
the processors, as all objects within a virtual node are
locally accessible.

A loosely coupled system can be considered to be a set
of virtual nodes, lntra-virtual node access is local (as the
memory is shared), while an inter-virtual node access is
remote (as the memory is not shared). Volz 13 shows that
the choice of Ada library elements as the unit of distribu-
tion is to a large extent concomitant with the notion of
virtual node. At this time the implementation is restricted
to homogeneous systems. Future design will address the
issues related to heterogeneity.

The process of achieving a distribution of the program
is divided into two parts. In the first, library packages
and library subprograms are assigned to logical sites via
a pragma SITE t°. This is accomplished manually by the
programmer. At this juncture manual specification is
viewed as acceptable as the programmer has a better
understanding of the coupling (such as inter-unit
accesses) between the various units in the system and the
system of implementation is independent of the specific
distribution (as long as some distribution is specified). It
is conceivable that a tool that computes the coupling and
suggests a distribution scheme can be built. However,
this is out of the scope of this research. The second aspect
of distributed computat ion is that of binding of logical
sites to physical sites, and this is done at the time of
program load.

Other design decisions made about the more detailed
issues raised above include:

• Data items whose type is defined in a remote package
are to be located on the processor elaborating the
object declaration. Basic and implicit operations are to
be replicated on the processor elaborating the object
declaration. This leads to a more efficient system as it
obviates the need to send a message to select a particu-
lar component of a local object. User-defined ope-
rations, however, are not to be replicated.

• The only restriction to be placed on declarations
allowed in the specification of a distributed package is
that initializations from functions having side effects
are disallowed. Shared variables across machines are
thus allowed.

• Access to procedures and functions declared in remote
units is permitted.

• Task objects elaborated from task types declared in a
remote package are to be located on the processor
creating the task. Hence task dependencies are either
on library units, in which case the task is not required
to terminate, or they are all on a single virtual node
and the existing termination techniques can be used,
i.e., there are no cross processor task dependencies
involving tasks that are required to terminate.

Based on these design decisions, a translation strategy

Single ~/~
so u roe
program

Translator

1
Source
for
machine 1

Translator
for
machine 1

) Objectc°de / ~/~
for • " "
machine 1

~,~ Source
for
machine N

Translator
for
machine N

Object code
for
machine N

Figure 1. Translation of distributed Ada program into set
o f Ada programs

for translating a distributed Ada program has been
under development and is nearly comple te

Overview of translation strategy

At the time the work was begun, the source code for an
existing Ada compiler was not available for modifica-
tion. Thus a decision was made to translate a single Ada
program into a set of individual Ada programs that
could each be compiled separately (see Figure 1). In the
process, communication routines are added and refer-
ences to remote objects or operations appropriately
modified. This approach has the dual goals of being a
simpler experimental mechanism and using existing work
where possible.

As the type of remote services that can be requested
from a package or subprogram are known from the
specification, a well defined interface between units
remotely requesting service and the package or subpro-
gram providing the service can be created. The units that
constitute the interface are called agents. A trio of agents
are created for each library unit that may be accessed
from remote sites; they are called remote agents, local
agents, and common agents. Underlying these is a mail
system called postal that is called by the agents whenever
it is necessary to send information from one site to
another.

For purposes of illustration, suppose there is a library
package A that is to be accessible from remote sites. The
remote agent for A is replicated on each site containing
units that reference A. Suppose that a unit B makes

vol 33 no 4 may 1991 295

Site 1

With A; I
procedure B

A_REM_AGENT I

I Postal system
(Digital "~ j [c°mmunicati°n t 1

I- [network J

Site2

Package A [

; l
A_LOC_AGENT I

; l
Postal I
system

Figure 2. Use of local and remote agents to establish
communication between packages assigned to different
sites

references to A. The translator replaces all references in
B to remote objects in A with appropriate calls to the
remote agent of A (which resides on the same site as B),
which in turn uses postal to convey the service request to
the local agent of A. The local agent performs the necess-
ary functions, returning any objects requested. A is
essentially unchanged by the pretranslator. Both the
local and remote agents can be generated only from the
specification of A.

Common agents are placed on both sites and serve to
propagate object accesses involving access variables
pointing to other sites to the appropriate sites. Common
agents are required only if such access variables are used.
The organization of remote and local agents is shown in
Figure 2.

Another key component to the translation strategy is a
generalized mechanism for referencing objects, be they
local or remote. The mechanism must be capable of
dynamically processing a fully concatenated name, as the
concatenated name may appear in a unit on one site and
refer to an object on another.

TRANSLATION STRATEGY

As remote object referencing is used by some of the
agents, the mechanism for dynamically handling fully
concatenated names is described before discussing the
agent structure.

Remote data object access

Central to the operation of the agent structure is the
capability for handling reference to remote objects. An
addressing scheme has been designed that uses the logical
structure of the object rather than using physical struc-
ture constructed by the compiler, as it is more in keeping
with the philosophy of using existing compilers where
possible with minimal knowledge of their internals.

One of the principal problems in developing a general
object accessing method is the processing of fully eonca-

tenated names (described above). The following con-
structs deal with this problem:

• An enumerated type, OBJ_ENUM_T, whose values
are indicative of every data object declared in the
package for which an agent is being generated.

• Enumerated types for all record types defined, which
specify the field of the record.

• A collection of G E T P U T procedures, one for each
data, record, or array type defined, whose function is
either to retrieve or to set the value of an object.

From the perspective of the local agent, a remote data
object access begins with the local agent main task
receiving a message from the postal system. One of the
fields in this record contains a value of type OBJ_
ENUM_T that indicates the name of the object being
referenced. The local agent's main task then performs a
case statement on this value. Each case calls a G E T P U T
procedure and passes it the message, the object named,
and a count (DEPTH) of the number of name compo-
nents to the fully concatenated name sought (including
array arguments).

If the object passed is a scalar object, the count will be
zero and the request can be satisfied directly by the
G E T P U T procedure by simply copying a value between
the appropriate field in the message record and the
object.

If DEPTH is not zero, then either an array element is
being sought, or the final object designated by the fully
concatenated name has not yet been reached. In the
former case, the indices for the array element (or slice)
are contained in the path array of the message record and
the G E T P U T can select the appropriate element(s) of the
array. These either directly satisfy the request or recurse
to the appropriate field in the composite object. That is,
if the G E T P U T is handling a record type, and DEPTH is
not zero, the next element of the path array will contain
an enumerated value that specifies the desired field of the
record. The G E T P U T contains a case statement con-
ditioned on this field enumerator and an appropriate
G E T P U T is called, passing to it the message record and
record field.

If one of the fields was an access variable, it would
have been replaced by a record (as described in the
common agent section below), and the action for the
corresponding case would be identical to other field
types. The G E T P U T procedure for these access type
records first checks to see if the requested object is on the
current site or elsewhere. If local, then the call to GET-
PUT would be made as shown above. If elsewhere, then
an appropriate message would be propagated to the
common agent on the indicated site.

Agent structure

To motivate the discussion of the three kinds of agents,
consider the following simple example:

pragma SITE(i); pragraa SITE(2);

296 information and software technology

package A is
type DT i s . . . ;
procedure P:
task T is

entry E;
end;

end A;

with A;
package B is

end;

One of the basic design decisions was that the data types
and corresponding basic operations in A are to be repli-
cated on each unit referencing A. To accomplish this, a
package A_TYPES corresponding to A containing only
the data types declared in A, namely, DT, is automati-
cally generated.

A translation of B will among other things insert a with
A_ TYPES before B. Similarly, A_TYPES will be
included with each package or subprogram that refer-
ences A. B may also need to issue a remote procedure call
to P or a remote entry call to T.E. Hence a remote agent
for A to be used by B and a local agent associated with A
that services the requests from B is automatically con-
structed. The agents can be considered to be generalized
form of RPC stubs 14.

Remote agents
As B is remote with respect to A, B's references to A are
altered to refer to A's remote agent, which is denoted A_
REM. The form of A REM is sufficiently simple that its
specification can be generated from the specification of
A.

Remote agents are collections of procedures and func-
tions (P and E in the above example) that effect remote
calls. In the case of subprogram calls, they present an
interface to the calling package identical to that of the
original source package. The procedures and functions in
A REM each format an appropriate message record and
dispatch it to the appropriate site via the postal service.
The value returned from the call is received from the
local agent and returned to the calling unit. F rom the
perspective of the calling unit, the facts that the action is
remote and that there are (at least) two agents in between
it and the called unit are transparent, except for the
longer time required. Thus no translation of subprogram
or (simple) task calls is required in the calling unit, unless
they use arguments residing remotely.

In the case of remote data object references, a trans-
parent interface is not possible. This is because while it is
possible to use the same name for a subprogram/entry
call but change the behaviour of the call, it is not possible
to use the same object name to alter behaviour. For
example, if x is an object, the use of x refers to the object
and value returned is the value associated with the
object. However, if x is a procedure x (i.e., a procedure
call) can be used and the given body altered to take a
different action than before. Thus the original program
text (namely, x) need not be altered when x is a subpro-
gram, but needs to be altered when x is a remote object.

Therefore, a set of procedures to access or update
values of remote objects of various types is generated.
Again these procedures (G E T P U T described in the
section 'Remote object accessing') are generated from

the specification (of the object) of the library package
being referenced.

Local agents
Local agents are packages consisting of three major com-
ponents, a procedure called ROUTER, a queue manager
task, and a number of call manager task instances. The
main procedure created for each site contains a loop that
first does a rendezvous with the underlying postal system
to receive an inbound message, and then passes this
message to the appropriate agent package by calling the
R O U T E R procedure within the agent package.

When the reference indicated by the message is to a
data object, the R O U T E R procedure takes action
depending on the request, ensuring that a deadlock is not
introduced due to its blocking.

procedure ROUTER(M: MESS TYPE) is
begin

case M.OBJECT ENUMERATOR is

when OBJ_K_ENUM = > GETPUT OBJ_I_
TYPE(M, OBJ_I); return;

end case;
DEPOSIT_CALL(M); - message indicates a call

end;

When a message arrives requesting a call to a callable
object, the message is placed on a queue managed by a
queue manager task (QMGR). The local agent then veri-
fies that there is an instance of a call agent task ready to
rendezvous with the queue manager task. I f there is not,
one is instantiated. The call agent (described below)
retrieves the queued message and executes the call.

A call agent task instance executes a call to one of the
callable objects in the package and represents, locally,
the thread of control on the remote processor for the
duration of the call. The name of the actual object to be
called is present in the message.

When a call agent has finished executing a call for a
remote client, it does not terminate, but is queued up on
the extract entry of the queue manager task and is thus
able to execute subsequent calls. A local agent therefore
defines one static task and instantiates N call agents,
where N is the maximum number of simultaneously
active calls to callable objects in the package, encoun-
tered during execution.

Common agents
The model of distribution permits access variables to
point to dynamically created data and task objects on
machines other than the one holding the access variable.
Since access variables, as defined within a local Ada
program, clearly cannot contain both the machine iden-
tity and an address, whenever an access type definition is
encountered in the source package, it is replaced by a
record structure containing two fields: a site number and
the original access type. This new record type is then used
in place of the access type. When a reference is made to
an object via an access variable, the site number is always

vol 33 no 4 may 1991 297

checked against the current site number, to determine
whether the object being pointed to is on the local site or
on a remote site. If local, the object reference is handled
as usual; otherwise, a call is made to a remote common
agent to follow the pointer chain across processors to
find the object and manage the operation.

Because access variables can be passed from one
machine to another, it is possible for a processor to hold
an access variable pointing to an object on a remote site.
Moreover, the package that contains the remote object
need not be otherwise referenced by any other package
on the current site and may not even have a local agent.
For these reasons, common agent packages are gener-
ated and placed on all sites that might use access types
defined by the program unit.

Tasks

There are two difficulties to consider with tasks: remote
conditional and timed entry calls, and creating task
objects from a remote task type. The former requires a
clarification in the wording of the RM and has been
discussed ~6. It is not considered further here.

To illustrate the difficulties with creation of task
objects from remote task types, consider the following
package body skeleton, which defines the body of a task
type.

with C;
package body A is

S: SOME_TYPE;
task body T_TYPE is

begin
- - reference S;

reference X;

end T_TYPE;

end A;

- - suppose a variable X for C is used.

- - a shared variable.

Recall now that when an instance of the task is created
from this task body, the body must be replicated on the
site on which the task object is to reside. Two problems
are evident. First, the created task object must be able to
reference the data object S. Second, the reference to X
may be either local or remote, depending on whether the
task object is created on the same site that holds C or a
different one; the problem is that as package body A may
be compiled before the unit that creates the task object, it
is not possible to know whether the reference to X is local
or remote at the time package body A is submitted for
compilation. Of course, X may be local for some
instances of the task and remote for others. The same is
true of all other variables declared in packages refer-
ences.

The first problem is one of the visibility of S. This is
handled by pulling S (and its type declaration, if necess-
ary) out of the body of A and creating a new package A_
HID with S declared in its specification. Every package
that creates an instance of the task from T T Y P E is then
translated to include a with A HID. While this does

make internal variables visible, they are only visible to
entities created by the translation process, not to the
programmer. Thus this is not considered a violation of
Ada visibility rules.

The second problem is handled by storing the code for
task body T TYPE in an auxiliary file. Whenever some
other unit containing code that would create an instance
of it is presented for compilation, an instance of T_
TYPE is compiled for the specified site. Thus the number
of compilations of T TYPE is linear in the number of
sites.

It is worth noting that, although the situation is not
described further here, the same problem and solution
arise with respect to compilation of generic units.

Automatic generation of agents, compilation,
and visibility issues

The translations required for the methods outlined above
involve numerous steps and introduce a number of auxi-
liary packages. The process of managing the auxiliary
packages and compilation phases correctly is quite com-
plex. Rather than require the user to do this manually, a
utility has been prepared to simplify use of the pre-
translator.

The translation and compilation procedure consists of
the following steps:

(1) Determination of the order of pretranslation of
source files*

(2) Pretranslation of source files
(3) Building main procedures and agents for all sites
(4) Determination of the order of compilation of trans-

lated sources (including agents) for target sites
(5) Compiling and linking of individual site programs

Several utilities have been written to facilitate some of
these steps. A precompilation utility (ADAUTIL) trans-
lates the network of package dependencies implicit in a
set of source files to a set of file dependencies in Unix
'makefile' format. The list of relevant source files and one
or more targets (main programs) must be specified.

A second utility performs step 3. During step 3, all
agent packages are constructed from saved symbol table
information generated during the pretranslation process.
Main programs for each site are also generated during
step 3.

A third utility, (DAPLINK), builds a script to effect
steps 4 and 5. If any non-Ada object modules need to be
linked into any site, they may be specified by options to
this utility. As a script (DAP) has also been written to
effect steps 1-3, the user interface to the distributed com-
pilation system reduces to two commands: DAP and
DAPLINK. For example, let the current directory con-
tain all and only the source files with names ending in

*Although the order in which sources must be pretranslated is the same
as the order in which they would be compiled by an Ada compiler, all of
the compilers used by the authors are inadequate in the area of deter-
mining this compilation order, when presented with a set of source files,
especially if these source files are present in different directories.

298 information and software technology

' .a ' . Let these be the complete set of source files compris-
ing a distributed Ada program. Let sites 1, 2, and 3 be
used and let M A I N be the name of the main program.
The user only needs to execute DAP M A I N *.a and
D A P L I N K M A I N 1 2 3.

RELATION TO PAST WORK

The lessons learned during this research are primarily
applicable to imperative languages. The general scheme
is not directly relevant to functional or logic languages as
their implementation techniques are vastly different.
However, solutions to issues related to sharing of types
may be used in such languages.

I f a distributed system based on imperative principles
(e.g., Emerald ~7) is considered, a more relevant compari-
son can be performed. The principal difference between
the approach in Emerald and the authors ' approach is
the movement of objects. In Emerald (and AmbertS),
objects (including executable objects) can be moved from
one site to another. In the authors ' system, objects are
not moved as the primary domain is loosely coupled
systems. This is because Ada allows call by value-result
(which is different from reference) without 'altering the
behaviour ' of the program. If Ada allowed only call by
reference, every access to a remote object would have to
be converted to a remote operation, which, needless to
say, could be horrendously expensive. An alternative
strategy is to ship the object to the site and thus perform
local access. The issues related to moving objects have
been discussed tT,~. When dealing with simple objects a
value can be sent to the remote site, all operations on it
are performed locally, and the final result is sent back to
be assigned to the object. However, this simple scheme
will not work for executable objects such as tasks. The
authors transform task objects to pointers to the object
and ship the pointer. When a call using the pointer is
made, the pointer is deferenced and a call is made to the
site where the object was resident. The strategy is more
efficient and was designed with real-time applications in
mind. However, automatic load-balancing cannot be
performed.

Other paradigms for distributed systems, such as
Linda% do not fit the Ada model. Linda has the notion
of tuple space and each process in the system writes/read
into/from the tuple space. This creates a view of 'shared
memory ' . However, Ada has an asymmetric calling tech-
nique and there is no direct notion of tuple space. Thus
the authors admit that they are unaware of the relevancy
of their techniques to paradigms such as Linda. In
summary, the authors ' work is directly relevant to lan-
guages such as DP 2°, Occam 21, etc.

As mentioned earlier, a number of experimental
systems for distributing the execution of Ada programs
has been developed. Tedd e t a l . 6 describe an approach
that is based on clustering resources into tightly coupled
nodes (shared bus) with digitial communications among
the nodes. They then limit the language definition for
inter-node operations (e.g., no shared variables on cross
node references). Cornhill has introduced the notion of a

separate partitioning language 7 that can be used to
describe how a program is to be partitioned after the
program is written. This language has been described in
greater detail =. Again, neither of these approaches rec-
ognises the full problem space involved in the distributed
execution of programs. A technique in distributed Ada
based on treating packages and tasks as the unit of
distribution has been described 8. While the issue of
remote entry calls is discussed, the other issues of sharing
types, task types, etc. are not addressed. Diadem 23
describes a technique using remote entry calls to effect
remote communication. However, it imposes various res-
trictions such as sharing of only types across sites, being
unable to call subprograms, etc. Hence it is primarily the
effecting of communication rather than distributing Ada.

STATUS A N D C O N C L U S I O N S

At the present time, the distributed translation system is
operational for distributed packages with remote access
available to all items described here.

While the system is operational on a network of Sun
computers, there is still work to be accomplished before
the distribution of library packages and subprograms is
complete. Although the strategy has been determined ~6,
work has not yet begun on handling timed/conditional
task entry calls. The addition of exceptions alters the
agent structures slightly as care has to be taken that tasks
which terminate due to exceptions are recreated. This is
because of the Ada tasking semantics, which states that a
task is no longer active once an exception has been raised
in it. The scheme to handle exceptions across sites is
described elsewhere 24.

Based on the authors ' experiences with building the
experimental translation system, a number of conclu-
sions can be drawn. The first is that a construct that can
be replicated on various sites is required to allow types to
be shared across machines. I f there is no such construct
explicitly within the language, one must effectively be
created within the code produced by the compiler. This
need is not satisfied by the concept of a package type as
then state information such as mutable objects would
also be replicated. Hence a stateless unit that can be
replicated across sites is necessary.

Another issue that complicated the translation was the
presence of hidden remote accesses in objects created
from task types. Such task objects depend on the body of
the unit encapsulating the task type. Hence it is not
possible to generate versions from the specification
alone. There was an increase in the complexity of a valid
compilation order 25. To avoid this problem, the creation
of tasks from remote task types should be disallowed. In
its place, a higher-level typing mechanism on a unit that
encapsulates the task is required.

It has also been shown that it is possible to take a given
program in language L and produce a set of programs
for distributed execution in L itself. These can be tied
into the networking software to achieve distributed
execution. This enables existing software to be used for

vol 33 no 4 may 1991 299

single site programs. Of course, for this technique to
work a sufficiently powerful language is needed.

So far only one point in the problem space has been
addressed: homogeneous, loosely coupled systems with
static distribution. Additional representation mecha-
nisms are needed to describe limitations dependent on
architectural considerations, to describe binding mecha-
nisms, and to describe processor types (so that implicit
data conversions can be accomplished). Moreover, it is
necessary to require greater use of representational speci-
fications on data types shared among multiple pro-
cessors, particularly when those processors are hetero-
geneous. The authors are confident that other work ~2.26
can be used with their approach as a solution for hetero-
geneous systems.

In conclusion, Ada is not adequately defined with
respect to distributed execution. The construction of any
system for distributed execution requires the implemen-
tation to make a number of decisions. However, as
shown in this paper, with some modest language changes
a reasonable distributed system can be built. Also note
that the authors' research has concentrated on distribut-
ing a given program. The onus of configuration has been
left to the programmer. To build a distributed system
easily an associated configuration language should also
be developed 27.

ACKNOWLEDGEMENTS

This work was supported by General Dynamics under
contract no DEY-605028, General Motors under con-
tract no GM/AES (1986-87), the Air Force under con-
tract no F33615-85-C-5105, and NASA under contract
no NCC 2-601.

REFERENCES
1 Booeh, G Software engineering with Ada Benjamin/Cum-

mings (1987)
2 ANSI 'Ada programming language' ANS1/M1L-STD-

1815A Washington, DC, USA (January 1983)
3 Plotkin, G D 'An operational semantics for CSP' in Bjorner,

D (ed) Proe. IFIP TC2 Working Conf. Formal Description o f
Programming Concepts II North Holland (1982) pp 199-
225

4 Gurevich, Y 'Logic and the challenge of computer science'
in Borger, E (ed) Current trends in theoretical computer
science Computer Science Press (1987)

5 Jessop, W H 'Ada packages and distributed systems' SIG-
P L A N Notices (February 1982)

6 Tedd, M, Crespi-Reghizzi, S and Natali, A Ada for multi-
microprocessors Cambridge University Press (1984)

7 Cornhill, D 'Partitioning Ada programs for execution on

distributed systems' in Proc. 1984 Computer Data Engineer-
ing Conf. (1984)

8 Bishop, J M, Adams, S R and Pritchard, D J 'Distributing
concurrent Ada programs by source translation' Soft.
Pract. Exper. Vol 17 No 12 (December 1987) pp 859-884

9 Hutcheon, A D and Wellings, A J Supporting Ada in a
distributed environment ACM SIGAda (May 1988)

10 Volz, R, Mudge, T, Buzzard, G and Krisbnan, P 'Translation
and execution of distributed Ada programs: is it still Ada?'
IEEE Trans. Soft. (Special issue on Ada) (March 1989)

11 Birrell, A D and Nelson, B J 'Implementing remote pro-
cedure calls' A C M Trans. Computer Syst. Vol 2 No 4
(February 1981) pp 39 59

12 Herlihy, M and Liskov, B 'A value transmission method for
abstract data types' A CM Trans. Prog. Lang. Syst. Vol 4
No 4 (October 1982) pp 527-551

13 Voiz, R 'Virtual nodes and units of distribution for distri-
buted Ada' in Proc. 3rd Int. Workshop on Real Time Ada
Issues (June 1989)

14 Jones, M B and Rashid, R F 'Matchmaker: an interface
specifications language for distributed processing' ACM
Trans. Computer Syst. (1984) pp 225-235

15 Birrell, A D and Nelson, B J 'Implementing remote pro-
cedure calls' ACM Trans. Computer Syst. Vol 2 No 1
(February 1984) pp 39-59

16 Volz, R A and Mudge, T N 'Timing issues in the distributed
execution of Ada programs' IEEE Trans. Computer Vol 36
No 4 (April 1987) pp 449459

17 Black, A P, Hutchinson, N C, Jul, E, Levy, H and Carter, L
'Distribution and abstract types in Emerald' IEEE Trans.
Soft. Eng. Vol 13 No 1 (January 1987) pp 65 76

18 Chase, J S, Amador, F G, Lazowska, E D, Levy, H M and
Littlefield, R J 'The Amber system: parallel programming
on a network of multiprocessors' in Proc. 12th Symp. Oper-
ating System Principles (1989) pp 147-158

19 Gelernter, D 'Generative communication in Linda' ACM
Trans. Prog. Lang. Syst. Vol 7 No 1 (January 1985) pp 80-
112

20 Hansen, P B 'Distributed processes: a concurrent program-
ming concept' Commun. ACM Vol 21 No 11 (November
1978) pp 934-947

21 Pountain, R A tutorial introduction to OCCAM program-
ming lnmos Corp. (1985)

22 Honeywell Systems Researeh Center The Adaprogramparti-
tioning language Honeywell Systems Research Center, Min-
neapolis, MN, USA (September 1985)

23 Atkinson, C and Goldsack, S J 'Communication between
Ada programs in DIADEM' in Proe. 2rid Int. Workshop on
Real-Time Ada Issues (June 1988)

24 Krishnan, P, Volz, R and Theriault, R 'Distributed excep-
tions in Ada' in preparation (1990)

25 Krisbnan, P, Volz, R and Theriault, R 'Implementation of
task types in distributed ada' in Proc. 2nd Int. Workshop on
Real-Time Ada Issues (June 1988)

26 Gibbons, P B 'A stub generator for multi-language RP's in
heterogeneous environments' IEEE Trans. SoJ?. Eng. Vol
13 No 1 (January 1987) pp 77-87

27 Magee, J, Kramer, J and Sloman, M 'Constructing distri-
buted systems in Conic' IEEE Trans. Soft. Eng. Vol 15 No 6
(June 1989) pp 663-675

300 information and software technology

	Dedication - w border.pdf
	Paper - Krishnan

