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This paper describes a new algorithm for estimating the posi- 
tion and orientation of objects. The problem is formulated as an 
optimization problem using dual number quaternious. The advan- 
tage of using this representation is that the method solves for the 
location estimate by minimizing a single cost function associated 
with the sum of the orientation and position errors and thus is 
expected to have a better performance on the estimation, both in 
accuracy and in speed. Several forms of sensory information can 
be used by the algorithm. That is, the measured data can be a 
combination of measured points on an object’s surfaces and mea- 
sured unit direction vectors located on the object. Simulations 
have been carried out on a Compaq 386/20 computer and the 
SiIIIUkItiOU reSUltS are analyzed. 0 1991 Academic press, inc. 

1. INTRODUCTION 

Object location parameter estimation is an important 
part of computer vision tasks, which usually leads to the 
computation of a 4 x 4 homogeneous transformation ma- 
trix T between the object coordinate frame and a refer- 
ence coordinate frame, 

r= [o : 0 :I. 
(1) 

where the matrix R is a 3 x 3 rotation matrix which 
specifies the orientation of the object and the t is a 3 X 1 
translation vector which specifies the position. 

Techniques which combine redundant sensed features, 
whether or not they are of the same type, to determine 
the object location can improve the accuracy of localiza- 
tion. Least squares optimization techniques are fre- 
quently used to find the best estimate of the transforma- 
tion matrix from those redundant features. Two 
approaches for using optimization techniques to find the 
best estimate of the transformation matrix have been in- 

troduced [ 1, 3, 61. In one method, an optimal orientation 
of the object is determined first, which is then used as a 
basis to find the position of the object. That is, the trans- 
lation vector is a function of an optimal rotation matrix R 
and other measured quantities. Many object localization 
algorithms use this method [l, 4-6, 9, 111. The problem 
with this approach is the possibility of the existence of 
accumulated errors in calculating the translation vector 
due to errors from previous calculations and measure- 
ments. For example, in [11’s SVD algorithm the transla- 
tion vector t is computed from R, pi, pi, e.g., t = f(R, pi, 
pi), where @i and pi are sets of measured points and corre- 
sponding modeled points in 3-D space respectively. Be- 
cause both pi and R have errors, the error of the resulting 
translation vector will be compounded due to error prop- 
agation. The second approach is to compute two optimal 
solutions separately, one for the orientation and another 
for the position [3], which is not very efficient. The com- 
mon characteristics of these two methods are that both 
approach the problems of determination of orientation 
and position separately. That is not surprising, because 
the transformation matrix itself can be easily decom- 
posed into two parts: a rotation submatrix and a position 
vector. The difference between these two approaches lies 
in the way the optimization is done: the first optimizes 
only the rotational part of the homogeneous transforma- 
tion matrix and the translational part is then derived from 
it, while the second method optimizes both rotational and 
translational parts separately. 

In this paper, we present an efficient algorithm which is 
based on the use of dual number quaternions [2]. The 
method solves for the orientation and the position of an 
object by minimizing a single cost function associated 
with the sum of the orientation and position errors. The 
performance, both in accuracy and in speed, compared 
with that of the previous methods will be discussed. The 
required input data for the algorithm is a combination of 
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measured points on the surfaces of an object, measured 
unit direction vectors from that object, and their corre- 
sponding modeled features. Examples of point features 
might be any combinations of the corner points (vertices) 
of an object, masked points, or the center of a sphere. 
Examples of unit vector features include the surface nor- 
mals, edge direction vectors, the axis direction vectors, 
or surface normals. 

A brief description of the concept and properties of 
dual numbers is given in Appendix I. More detailed dis- 
cussion can be found in [12, 131. In the following sec- 
tions, we begin with the introduction of the definition of 
dual number quaternions. We show how they are used to 
represent object location, why they are a valid represen- 
tation of location, and their correspondence with the 
more familiar homogeneous transforms. Then we give a 
brief description of the important properties of the dual 
number quaternions. Next, we formulate the object local- 
ization problem as a dual number quaternion optimiza- 
tion problem and an algorithm is derived to solve the 
problem. Simulation results are shown in section 4. 

2. DUAL NUMBER QUATERNIONS 

This section begins with the definition of dual number 
quaternions, their properties, and their physical interpre- 
tation. It concludes by showing how to convert back and 
forth from the dual number quaternion representation of 
location to the homogeneous transformation representa- 
tion. 

Table 1 lists and defines the symbols used in this paper. 

2.1. Properties of Dual Number Quaternions 

Quaternions are four-element vectors, which are 
thought of as consisting of a 3 x 1 vector component and 
a scalar component. For example, the quaternion q is 

4’ 

41 

q2 [I L 

9 
= 

43 q4 

q4 

(2) 

In our notation, each quaternion is represented by a bold- 
face italic character, such as q; and each 3 x 1 vector is 
represented by a boldface roman character, such as q. 

Quaternions have been used extensively as a method 
of parameterizing orientation [7, 8, IO]. 

In this application, the components of the quaternion 
have the following interpretation: 

sin(W2)n 
!I= [ 1 cos(N2) * 

(3) 

TABLE 1 
A List of Symbols Appearing in This Paper 

Symbol(s) Description 

Quatemion: q, e, a, b, r, s, I, n, p, n,, pi, ny, pp, cii, PC 
e unit quatemion 
I translation quatemion 
r real part of a dual quatemion 
s dual part of a dual quatemion 
n direction quaternion 
P position quaternion 

0 n, modeled direction quaternion 
0 

PI modeled position quaternion 
n, transformed model direction quatemion 
Pi transformed model position quaternion 
Iii measured direction quatemion 
Pi measured position quaternion 

Vector: t, 9, a, n, p, r, pi, pP, I%, nP 
t translation vector 
n rotation axis unit direction vector 
P position vector 

II 
PJ modeled position vector 
Pl measured position vector 
PC transformed model position vector 
ny modeled direction vector 

4 x 4 matrix: T, I, A, Cl, C2, C3, Q, W 
T homogeneous transformation matrix 
QW quaternion matrices 

3 x 3 matrix: R, K 
R rotation matrix 
K skew-symmetric matrix 

Scalar: 8, d, e, A,, h2, ff,, /3, 
% rotation angle 
d distance between two vectors 
e errors from least squares optimization 
Al, J42 Lagrange multipliers 
%r P! weighting factors 

Dual quantities: 4, ij, ii, 6 
fi dual quatemion 
II dual vector of rotation 
i dual angle of rotation 

The components of this quaternion are called the Euler 
Symmetric Parameters. As illustrated in Fig. 1, the vec- 
torn is the unit vector about which the coordinate system 
has rotated and 8 is the amount of rotation about n. The 
corresponding rotation matrix R can be expressed as 

R = (4: - qTqY + 2qqT + 2@(q), 

where K is the skew-symmetric matrix 

(4) 

0 -43 q2 

KG-41 = 43 0 

L I 

-41 . 

-92 41 0 

(5) 

The extension of this equation to include the represen- 
tation of position and orientation is made by simply 
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FIG. 1. Illustration of rotation for a real quaternion. 

changing all of the quantities in the equation to dual quan- 
tities [2, 141: 

(6) 

Note that whether an item is a 3 x 1 vector or a quater- 
nion, if its components are dual numbers, this is signified 
by placing a hat over it as in the above example. A brief 
description of the concept of dual numbers and their im- 
portant properties can be found in Section 1 of the Ap- 
pendix. 

There are two parts of a dual quaternion, 

4 = r+ ES, (7) 

where r and s are both real quaternions and are called the 
real part and the dual part, respectively. 

The dual quaternions have a similar interpretation as 
the real quaternion, 

Q= 
sin(fU2)fi c I cos(812) ’ 

(8) 

where the dual vector ii represents a line in 3-D space 
about which the coordinate system has rotated and trans- 
lated and $ is the dual angle of rotation and translation. 
The dual vector ri and dual angle 6 are 

fi=n+&pxn (9) 

and 

where n is a unit vector which specifies the direction of 
the rotation axis and also the direction of translation; the 
rotation is about the line having direction n passing 
through the point p with a rotation angle of 8; and d is the 
distance of translation along the direction specified by n 
(see the Appendix for the discussion of n and p). The 
geometrical intepretation of the representation can be ex- 
plained as follows: 

Traditionally, the transformation of a coordinate frame is speci- 
fied by a translation vector t, a rotation axis n, and a rotation angle 
8. A new coordinate frame is formed by first translating the origi- 
nal coordinate frame along t and then rotating it with respect to n 
by an angle 8. Of course, the sequence of translation and rotation 
can be reversed. 

With dual quaternion representation, the same transformation can 
be formed by first translating the original coordinate frame along 
the direction of n by a distance of d and then rotating it by an angle 
of 0 with respect to a line having a unit vector n as its direction and 
passing through a point p. 

See Fig. 2 for an illustration of the interpretation. It can 
be proven that for each (n, p, d, 19) transformation repre- 
sentation, we can always find a unique corresponding (t, 
n, 6). On the other hand, for each (t, n, 6) transformation 
representation, there exists a set of corresponding (n, p, 
d, 0)‘s. (See Section 2.2 and the Appendix for a detailed 
description). 

If we place Eqs. (9) and (IO), e.g., expressions for ti 
and 6, into Eq. (8), expand and simplify that equation by 
using the properties of dual numbers, and compare the 
results with Eq. (7), we have the following equations: 

sin(fN2)n 
r= [ I cos(8/2) 

(11) 

and 

(d/2) cos(8/2)n f sin(8/2)(p x n) 
s= 1 ’ -(d/2) sin(B/2) 

(12) 

/ , 

I!? = 19 + cd, (10) FIG. 2. Illustration of rotation and translation for a dual quatemion. 
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TABLE 2 2.2.1. Computing the Homogeneous Transform Given 
Properties of Quatemion Matrices the Dual Quaternion 

QWQW = Q(a)QW = dal 

W(u) W(a) = W(u) W(u) T = a rul 

Q(u)6 = W(6)a 

Q(u)~u = W’(U)~U = (du)e 

Q(QW4 = Q@)Q@) 
W(W(u)Q) = W(u) W(b) 

QWWW = WVQ(a) 
a and 6 are arbitrary quatemions 

e is the unit quaternion = [0001]7 

Equation (11) shows that the real part r of the dual 
quaternion has exactly the same form as that defined in 
Eq. (3). As a result, the rotation matrix R can be written 
in terms of the components of the dual quaternion in the 
familiar way 

R = (rf - rTr)l + 2rrT + 2r&(r) (17) 

or 

RO I I OT 1 
= W(r)TQ(r). (18) 

The position vector can be written in terms of the com- 
A dual quaternion has eight elements, whereas the ponents of the dual quaternion (see Section 2 of the Ap- 

minimum number of independent variables to represent a pendix for the detailed derivation) as 
3-D object transformation is six, which means that two of 
the eight elements in dual quaternion representation are t = W(r)Ts, (19) 
not independent. In fact, it can be shown from Eqs. (11) 
and (12) that the components of any dual quaternion, if where t is the translation quaternion for the translation 
they are defined by Eqs. (@-(lo), satisfy the following vector t and is defined as 
two constraints: 

rTr= 1 

rTs = 0. 

(13) 

(14) 

1 t 
t=5 Ll 0' 

(20) 

Two important matrix functions of quaternions are the 
matrices Q(r) and W(r), which are defined as 2.2.2. Computing the Dual Quaternion Given the 

Homogeneous Transform 

(13 Given a homogeneous transform T specified by a rota- 
tion matrix R and a translation vector t, one can compute 
the corresponding r and s. 

r4 = (l/2) %‘Rrr + RZZ + R33 + 1, (21) 

where K(r) is the skew-symmetric matrix as defined in 
Eq. (5). 

where Rij denotes the ijth element of the matrix R. A 

Useful properties of the Q and W matrices which are 
value of t-4 equal to zero represents a rotation of 180 

utilized in the derivation of the localization algorithm are 
degrees. If r4 is not zero, then 

given in Table 2. All these properties can easily be veri- 
fied by direct substitutions. 

. (22) 

2.2. Relation to Homogeneous Transforms 

A common method of representing the position and If r4 is zero, then 
orientation of a coordinate system is with homogeneous 
transforms. Since homogeneous transforms are more rrT = (1/2)(R + I). (23) 
common in use than dual number quaternions, the fol- 
lowing is provided as a reference to show how to convert So r can be determined from any nonzero column of 
from one to the other. (1/2)(R + I), call it a. Thus, 
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Either sign will work since the rotation angle is 180 de- 
grees. 

r having been determined, the value of s can be com- 
puted from Eq. (19) as 

s = W(r)t. (25) 

Thus a homogeneous transformation matrix and a cor- 
responding dual quaternion can be converted from one to 
another. 

3. PROBLEM FORMULATION AND SOLUTION 

This section begins with the formulation of the problem 
as an optimization problem. The following section 
presents the solution to the problem. 

3.1. Problem Formulation 

If these modeled points are represented by position 
quatemions pp and pi and a dual quatemion is used to 
represent the transformation parameters, from Eqs. (18) 
and (19), Eq. (28) will become 

pi = W(r)Ts + W(r)TQ(r)pp. (2% 

For the same reason, for the modeled direction quaterni- 
ons ni and ny, we have the relation 

ni = W(r)TQ(r)n?. (30) 

The approach for computing the position and orienta- 
tion of the object is to determine r and s which minimize 
the error between the @i and pi and the iii and ni . That is, 
we select the r and s to minimize the error function 

E = $ aih - 4)’ + $ Pi(Pi - pi)*, (31) 

As we have mentioned, two types of sensor measure- 
ments are considered: the position of points on an object where the ai and pi are constant positive weighting fac- 

and the unit vector on the object such as the unit normal, 
tars 

. 
edge direction vector, etc. To facilitate the analysis we We consider each of these terms individually: 

define quaternion representations of these quantities. Let 
p be the position vector of a point on the object surface. (ni - &)* = 2(1 - rTQ(~JTW(n%) (32) 

We define the position quatemion as (pi - pi)* = STS + hT(W(p7) - Q(pi))r 

1 P 
P=z [I 0’ 

Let n be a unit vector extracted 
define the direction quaternion as 

n 
n= II 0’ 

(26) 

-2rTQ(fii)W’(p~)r + ((pp)TpP + p?bi). (33) 

Thus, the error function can be written as a quadratic 
function of r and s, 

from the object. We 
E = rTClr + srC2s + sTCg + constant, (34) 

(27) 
where 

To determine the position and orientation of an object, 
we make measurements of k unit vectors for which we 
have a correspondence to the models and store them in 
the direction quaternions, iii. The tilde denotes measured 
values. Similarly, we make measurements of 1 points on 
the object and store them in the position quaternions, pi. 

Cl = -2 $ aiQ(fii)TW(nP) 
i=l 

- 2 g PiQ(Pi)‘W(PO) (35) 

Corresponding to each measured point pi, there is a 
database description of that point pp which is described 
with respect to the object coordinate system. If t and R 

(36) 

are the translational and rotational parts of the transfor- 
mation matrix which is to be determined, the modeled 
point will be transformed into position Pi, 

C3 = 2 2 piOf’ - Q@>> 
i=l 

I I 

(37) 

pi = t + Rpy. (28) 
constant = 2 2 ’ W + 2 &((pP)TpP + S$i>* (38) 

i=l i=l 
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We compute r and s to minimize this error function sub- solution is identified by referring back to the original er- 
ject to the constraints ror equation (34). 

Multiplying Eq. (41) by rT gives 
rrr= 1 

sTr= 0 

3.2. Problem Solution 

(39) 

(40) 
rTClr = (l/2)rT(C1 + C[>r = -(l/2)sTC3r - AI. (48) 

Multiplying Eq. (42) by sT gives 

The optimal dual number location quaternion is ob- 
tained by adjoining the constraint equations to the error 
equation and then minimizing the resulting function with- 
out constraints, 

sTC2s = (l12)sT(C2 + C,‘)s = -(l/2)sTC3r. (49) 

Substituting these into Eq. (34) gives 

B = rTCIr + sTCzs + sTCq + constant 

+ Al(rTr - 1) + A2(sTr>, 

where Al and A2 are Lagrange multipliers. Taking the 
partial derivatives gives 

$ = (C, + CT)r + CTs + 2hlr + h2s = 0 (41) 

$ = (C2 + CT)s + CJr + h2r = 0. (42) 

Thus, the solution of Eqs. (39), (40), (41), and (42) for r 
and s gives the optimal solution for the position and ori- 
entation of the object. 

E = constant - AI. (50) 

Thus, the error is minimized if we select the eigenvector 
corresponding to the largest positive eigenvalue. 

Having computed r, we can now substitute back into 
Eq. (45) to obtain s to complete the solution for the posi- 
tion and orientation of the object. 

To give a clearer picture of the above derivation pro- 
cess, in the following the optimal dual number quaternion 
localization algorithm (DQ algorithm) will be summa- 
rized . 

From the algorithm we can see that the execution times 
for steps 2-4 are basically constant and the execution 
time for step 1 has a linear relationship to the number of 
measured vectors. Therefore, the algorithm is an O(n) 
algorithm in time complexity. 

To solve these equations, we begin by solving for AZ. 
Multiplying Eq. (42) by r and solving for A2 gives 

A2 = -rTCxr. (43) 

Since C3 is skew symmetric, 

DQ LOCALIZATION ALGORITHM. 
Inputs: a set of k measured points $0, 1 measured unit 

vectors ii:; the corresponding modeled points pi and vec- 
tors ni, as well as weighting factors ai and pi chosen 
heuristically to reflect the reliability of the data points. 

Output: an estimate of the transformation matrix T. 

A2 = 0. (44) 

We can now solve for s as a function of r from Eq. (42), 

s = -(C2 + C:)-lCJr. (45) 

Substituting Eqs. (44) and (45) into Eq. (41) gives 

Step 1. Compute matrices Ci , C2 and C3: 

CI = -2 i (YiQ(iii)TW(nP) - 2 i piQ(~i)Tl+‘(p~) 
i=l i=l 

where 

Ar = A,r, (46) 

C2 = (i Pi) 1 
i=l 

C3 = 2 i PiOf’ - Q@i>)- i=l 

A = ; (C:(C, + CT)-‘C3 - C, - CT). (47) 
Step 2. Compute the 4 x 4 symmetric matrix A: 

A = (1/2)(C$(C2 + CT)-‘C3 - Cl - CT). 

Thus, the quaternion r is an eigenvector of the matrix A 
and hi is the corresponding eigenvalue. In general there 
will be four solutions to this equation. Since A is real and 
symmetric, all of the eigenvalues and eigenvectors are 
real and the eigenvectors will be orthogonal. The desired 

Step 3. Compute the eigenvector r corresponding to 
the largest positive eigenvalue of matrix A and derive s 
from r. 

Step 4. Compute the matrix T from s and r. 
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FIG. 3. The object “Feeder.” 

4. SIMULATION RESULTS 

To examine the performance of the DQ algorithm, the 
accuracy and the speed, computer simulations have been 
carried out on a Compaq 386/20 with an 80387-20 math 
processor. The simulation data are from a modeled 
“Feeder” (see Fig. 3) which has 32 vertices, 50 surfaces 
and 48 edges. The size of the Feeder is 322 x 84 x 151 
units. The SVD algorithm is selected as a sample algo- 
rithm to compare its accuracy and performance with our 
DQ algorithm. 

Because the SVD algorithm accepts only 3-D points as 
its inputs, the sole inputs for the two algorithms are the 
sampled points in order to have a fair comparison of their 
accuracy. The algorithms were tested using 5, 10,20, and 
30 points as input data. Each of these tests was repeated 
for 25 different choices of points, e.g., 25 different sets of 
5, 10, 20, and 30 points were run, and each of these was 
run 20 times with random errors (see discussion below) 
added to the sample values. In our simulation, the re- 
quired number of 3-D points pp are randomly selected 
from a Feeder’s vertices at the beginning of each trial. 
The corresponding measured points pi are then generated 
by first rotating an angle of 36” around an axis through the 
origin with direction vector (3.0, 4.0, 6.0) followed by a 
translation of (7, 8, 13), and finally by adding to each 
coordinates of the resulting points Gaussian random 
noise with mean zero and standard deviation of 0.5. 
These measured data and modeled data are used to com- 
pute the estimated orientation and translation parame- 
ters. To simplify the simulation, all the weighting factors 
ai and pi are set to 1. The standard deviations for the 
resulting orientation and translation parameters are cal- 
culated from these twenty trials. Table 3 lists the simula- 
tion results. All the algorithms are written in Turbo Pas- 
cal. The Mathpak 87 subroutine package from Precision 
Plus Software was used to carry out all the matrix com- 
putation, as well as SVD and eigenvalue calculations. 

TABLE 3 
Comparison of Standard Deviation 

of Transformation Parameters 

Method used 

SVD Dual number 
Number of point 
correspondences x Y I 9 x Y 2. 0 

5 1.434 3.013 1.190 0.147 0.461 0.277 0.509 0.147 

10 1.133 2.373 0.843 0.046 0.133 0.215 0.169 0.046 

20 0.2% 0.607 0.254 0.040 0.102 0.187 0.108 0.040 

30 0.171 0.246 0.125 0.037 0.115 0.115 0.087 0.037 

From Table 3 we see that the two algorithms produce 
the same rotation errors no matter how many points are 
used during the simulations, which is expected. For the 
translation errors, the DQ algorithm exhibits better per- 
formance than the SVD algorithm in all the cases. Even 
in the case of 30 points, which is supposed to provide a 
good estimate, the DQ algorithm provides average accu- 
racy improvement of 20% for the translation parameter 
calculation compared with the SVD algorithm. 

Figure 4 shows the solution times. Except for the case 
of three samples, which uses three points, the minimum 
number of required points, all the samples consist of an 
equal number of points and vectors. From this figure we 
see that the computation time is approximately linear in 
the number of samples taken, which confirmed our analy- 
sis about the algorithm’s time complexity. The computa- 
tion time increases at about a rate of 1.0 msec/sample 
when a math processor is used. 

5. CONCLUSION 

A new algorithm has been presented for solving the 
object location problem using dual number quaternions, 
4 = r + ES. Th e primary result is the recognition that the 
localization problem can be cast into an optimization 
problem involving r and s. This can be compared to pre- 
vious results which directly obtain the position vector p 

10 20 30 40 50 60 70 60 

Number of Samples 

FIG. 4. Solution times for the DQ algorithm on a Compaq 386/20 
computer. 
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rather than the position component of the dual quater- 
nion, s. By solving for s instead of p we obtain a quadratic 
cost function which can be easily solved using standard 
eigenvalue-eigenvector math packages. 

The method is computationally efficient and very accu- 
rate in the result. The required measurements are quite 
general. The inputs to the algorithm could be feature 
points and feature unit vectors. 

This paper has not discussed the selection of the 
weighting factors. Intuitively, the weighting factors are 
closely related to the reliability of corresponding match- 
ing features. Let us take the extraction of two surface 
normals as an example. If two surface normals extracted 
from two planar surfaces are used as part of the algo- 
rithm’s inputs, one surface is toward the sensor, and an- 
other surface is near parallel to the sensor’s optical axis, 
it is obvious that the extracted surface normal obtained 
from the first one is more reliable than that of the second 
one. A quantitative analysis is needed and will certainly 
further improve the accuracy of the algorithm. 

APPENDIX: DUAL QUATERNIONS AND THEIR 
APPLICATIONS IN REPRESENTING POSITION 

AND ORIENTATION 

1. The Concept and Properties of Dual Numbers 

A dual number 6 = a + Eb can be defined as a combina- 
tion of two ordered real numbers a and b with a special 
multiplication rule for E given by E* = 0. The two real 
numbers a and b can be said to belong to the real part and 
the dual part of the dual number, respectively. 

Addition, subtraction, and multiplication of dual num- 
bers are defined by the formulae 

(Q + eb) + (c + cd) = (a + c) + c(b + d) 

(a + Eb) - (c + Ed) = (a - c) + &(b - d) (51) 

(a + eb)(c + sd) = UC + &(ud + bc). 

Dual numbers were first considered by the famous Ger- 
man geometer E. Study (1862-1930) in the beginning of 
this century [12]. In his study he used the dual number to 
represent the dual angle which measures the relative po- 
sition of two skew lines in space. That is, a dual angle 
was defined as 

8 = 8 + Ed, (52) 

where the d is a distance between two lines in three- 
dimensional space and the f3 is the angle between their 
directions. 

Some important properties of dual numbers are 

1. The product of a dual number ri and its conjugate 
~?=a-ibis 

&j = (32. 

2. The modulus of a dual number 

(53) 

Id) = a (54) 

which can be negative. 
3. Due to the fact that E* = 0, the dual number function 

has a very simple form of Taylor series expansion: 

f(u + eb) = f(u) + &bf’(u). 

4. For the dual angle 6, we have 

sin(b) = sin(8 + Ed) = sin(o) + Ed cos(8) (56) 

and 

cos(6) = cos(8 + Ed) = cos(8) - Ed sin(O). (57) 

In the above, the properties (53) and (54) can be de- 
rived directly from the definition of multiplication of two 
dual numbers. To show property (55), we only need to 
know a function of a dual number f(a + Eb), like the 
usual functions over the field of complex numbers, can be 
expanded into a formal Taylor series. That is, according 
to the theorem of Taylor series expansion, if a function 
f(ci) is analytic within a circle [ci - cl < R (R > O), where 
c is the center of the circle, then f(S) can be expanded 
into a Taylor series within that circle, 

f-w = fIo u,@ - cl”, (58) 

where un = f(“)(c)ln! and the series is unique. If we ex- 
pand f(ci) at point a, the Taylor series will have the form 

f(a + eb) = f(a) + ebf’(u) + F* z f”(u) + . * . . 

(59) 

Because E* = 0, all the terms with the power of E greater 
than one in the Taylor series will be zero. To get the last 
property, we simply expand sin(&) and cos(8) into their 
corresponding Taylor series at 8. 

The idea of dual quantities can be extended to define 
dual vectors, dual quaternions, and dual matrices. These 
dual quantities enable two different quantities to be com- 
bined into one in many ways. For example, a dual vector 
can be defined to form any line in 3-D space. The direc- 
tion and position of the line can be specified as 

ii=n+EpXn, (60) 
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FIG. 5. Illustration of the transformation of an object coordinate 
system. 

where n is a unit direction vector of the line and p is a 
position vector of any point on the line. As another exam- 
ple, a dual quaternion can be defined to represent any 
transformation between two coordinate frames which has 
been shown in Eq. (8). 

2. Position Vector Expressed in Terms of the 
Components of the Dual Quaternion 

The derivation of Eq. (19), 

t = W(r)Ts. 

Consider an object coordinate system which is trans- 
formed into a new location, where the transformation is 
done by first translating the coordinate system in the di- 
rection of the unit vector n by a distance d and then 
rotating it by an angle 8 with respect to a line having a 
unit vector n as its direction and passing through a point p 
(Fig. 5). The position vector p as shown in Fig. 5 will be 
transformed into vector p’. The translation vector t can 
thus be expressed as 

t=p+dn-p’ 

= p + dn - Rp 

= (I - R)p + dn. 

(61) 

The rotation matrix R, when defined by a rotation an- 
gle 19 and a rotation axis n, has the form 

R = cos BI + (1 - cos B)nnT + sin MT(n), (62) 

where the K(n) is the often mentioned skew-symmetric 
matrix. 

Because nnT = I + K(n)K(n), Eq. (62) can be changed 
into 

R = cos BI + (1 - cos O)(I + K(n)K(n)) + 

= I + (1 - cos B)K(n)K(n) + sin OK(n) 

= I + 2 sin2(8/2)K(n)K(n) + sin t9K(n). 

sin OK(n) 

(63) 

Replacing Eq. (63) into Eq. (61), we have 

t = (-2 sin2(8/2)K(n)K(n)p - sin BK(n))p + dn 

= 2 sin2(8/2)n x (p x n) + sin O(p x n) + dn. 
(64 

On the other hand, from Eqs. (11) and (12) we have 

r4s - s4r = (d/2)n + sin(8/2) cos(8/2)p X n 

= (dn + sin 8p x n)/2 (65) 

and 

r x s = [sin(8/2)n] x [d/2 cos(W2)n + sin(8/2)p x n] 

= sin2(f3/2)n x (p x n) (66) 

because n x n = 0. Therefore 

t = 2(r4s - s4r + r X s). (67) 

On the other hand, 

[ 

r41 + K(r) -r s 
W(r)Ts = 

rT I[ 1 r4 s4 

[ 
(r41 + K(r))s - s4r 

= 
rTs 1 

1/2t 
= [ 

r4s - s4r + K(r).9 
= 

0 1 [ I 0 - 

If we define the translation quaternion t for the transla- 
tion vector t as 

t 
t = (l/2) [J 0 

(68) 

then we have the formula 

t = W(r)Ts. (69) 

3. Finding a Transformation Tuple (n, 8, d, p) from a 
Given Dual Quaternion 

Given a dual quaternion, the rotation submatrix can be 
derived as previously described, and the rotation axis n 
and angle 8 can be extracted from the matrix. The trans- 
lation distance d can be derived from Eq. (12), 

d=?.??- 
sin(W2) ’ (70) 



Equation (12) can also be used to derive p. From Eq. (12) 
we have 

s = (d/2) cos(U2)n + sin(8/2)(p X n). (71) 

This equation can be written as 

p x n = s - (d/2) cosW2)n 
sin(H2) ’ (72) 

Because p x n = K(-n)p, we have 

K(-n)p = s - (d/2) cosW)n 
sin(N2) ’ (73) 

where the only unknown is p. 
The rank of matrix K(-n) is 2 and thus the dimension 

of null space of the matrix is 1. Equation (73) has a gen- 
eral solution in the form 

p = p0 + ffn, (74) 

where po is any vector in null space. 
That is, the solution for p is not unique. Usually, we 

select one of the vectors which are perpendicular to n as 
the desired solution. 

One possible solution is 

[ 

0 - 

,A 
n1 

-123 

n-2 _ 

where n1 # 0. 
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