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Abstract—Robots have been used successfully in structured set-
tings, where the environment is controlled; this research is inspired
by the vision of robots moving beyond structured, controlled set-
tings. The work focuses on the problem of teaching robots force-
based assembly skills from human demonstration. To avoid posi-
tion dependencies, force-based discrete states (contact formations)
are used to describe qualitatively how contact is being made with
the environment. Sensorimotor skills are modeled using a hybrid
control model, which provides a mechanism for combining contin-
uous low-level force control with higher-level discrete event con-
trol. A change in qualitative, discrete state constitutes an event and
triggers a new control command to the robot, which moves the as-
sembly toward a new contact formation. In this way, the skill exe-
cution is not dependent on absolute position but rather responds to
changes in the force-based qualitative state. Experimental results
are presented which validate the approach and show how skill ac-
quisition can be accomplished even with an imperfect demonstra-
tion.

Index Terms—Assembly, contact formation, discrete event sys-
tems, robot programming.

I. INTRODUCTION

ROBOTS have been used successfully in manufacturing
settings, where the environment is very structured and the

tasks performed are repetitive and relatively simple. As long as
the environment is controlled and the workpieces are confined
to precise positions and orientations, the robot can continue
to execute its task. Our research is inspired by the vision of
robots moving beyond structured, controlled settings, and still
performing successful assembly operations.

Although many challenging problems still exist, it is realistic
to think of robots being used as intelligent tools and assistants
which make the job easier for the human worker. Depending
on the nature of the work, the robot may be asked to perform
repetitive or nonrepetitive tasks. If it is a new task not performed
previously, the robot may need some quick instruction or task
refinement (i.e., programming), most likely done at the work
site with instruction provided by the actual user rather than a
specialized robot engineer.
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As a means of providing a fast, interactive method of
programming force-based assembly skills, we have been
investigating robot programming by demonstration (PbD). To
deal with uncertainties in position and orientation, as well
as inconsistent training data, we have used an event-based
approach, utilizing discrete event control as suggested in [1]
and [2]. Unlike the approach used in [1], however, we do not
use detailed geometric information. The research discussed
here addresses the problem of learning force-based assembly
skills by studying sensory patterns of demonstrated tasks, con-
centrating on the part of the assembly operation which involves
making contact with the environment. Sensorimotor skills
are modeled using force-based discrete states, which describe
qualitatively how contact is being made with the environment.

Two characteristics distinguish our work from similar work
(e.g., [2]). First, our hybrid control model combines reference
velocity commands with force control. Second, our interactive
PbD interface does not require a perfect task demonstration for
skill acquisition to take place.

II. RELATED WORK

As background material, we describe related work in PbD of
assembly skills, in three specific areas: vision-based, simula-
tion-based, and force-based systems.

A. Vision-Based Systems

Vision has been proposed as a passive modality to observe
a human demonstrator performing tasks in a natural setting.
Kuniyoshi et al. track the demonstrator’s hand and extract a
high-level task plan [3]. Ikeuchi and Suehiro use vision to rec-
ognize object configurations before and after the demonstrated
assembly [4]. Face contact relations between the grasped object
and its environment are analyzed. Contact transitions are repre-
sented as a directional graph.

Resolution limitations in the sensing make it difficult to
extract the fine motion plan needed to perform assembly op-
erations. Paul and Ikeuchi use thresholds to make assumptions
about contact points, and then compute the motion path in
C-space [5], [6]. However, the motion plan is based on position
information, and, in order to succeed, requires accuracy in the
robot motion and in obtaining object positions.

More recently, Miura and Ikeuchi have extended the work on
face contact relations to support four degrees of freedom (three
translations and one rotation) [7]. The contact transitions are
categorized according to whether they need visual feedback or
only passive compliance. It is assumed that the robot can per-
form passive compliant motions. A laser range finder is used to
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achieve adequate resolution for the contact transitions requiring
visual feedback.

B. Simulation-Based Systems

A virtual environment can also be used, allowing the demon-
stration to be performed in an interactive, simulated world. Onda
et al use a simulated environment to learn assembly strategies by
extracting a sequence of contact states (i.e., contact formations)
[8]. The contact state is determined by the collisions of the geo-
metric models that occur as the demonstrator moves the virtual
workpieces. The approach creates a symbolic representation of
the assembly process; the operator can also refine the plan by
pruning out contact states deemed unnecessary. However, prob-
lems can still occur when the plan is executed in a real robot
environment, unless the workpiece positions are known accu-
rately. Preprogrammed skill primitives which move the robot
from one contact state to another are offered as a solution to this
problem.

Lloyd et al.propose a simulated demonstration environment
which incorporates contact dynamics [9]. The demonstrated
path is deformed to create a smoother path, repelled by some
contact surfaces and attracted to others as desired. The approach
assumes good registration between the physical environment
and the virtual environment (acquired by vision) and also
assumes an execution monitor that verifies contact states using
force monitoring.

C. Force-Based Systems

Force information has been used in PbD as a means of gener-
ating more robust programs in contact situations. In [10], Asada
and Izumi use teaching data to generate a program for placing
an object at the corner of a rectangular box. The human directs
the robot with a hand controller, demonstrating translational tra-
jectories for hybrid position/force control. Constraint surfaces
are restricted to being planes and must be perpendicular to each
other.

Kosugeet al. use the same task and extract two levels of
control strategies from the teaching data as follows: 1) a high-
level sequence of discrete states (i.e., contact formations) and 2)
the compliant motion strategies used to move between discrete
states (modeled as damping control) [1]. The sequence of con-
tact formations is knowna priori and identified from the moni-
tored force profile, using detailed geometric information [11].

Hovlandet al.use discrete events to capture an assembly op-
eration, where the events are changes in contact state [2]. They
use a discrete event controller and assume the existence of a
process monitor that identifies contact changes [12]. A hidden
Markov model (HMM) is used to model assembly motions; the
Markov states correspond directly to the discrete states (i.e.,
contact formations). The goal is to learn the velocity command
which allows the robot to achieve the next desired discrete state.
Thus, different task strategies can be demonstrated and learned
within the same framework; if one strategy fails because of po-
sition or orientation uncertainties, another strategy can be deter-
mined on-line. However, the HMM requires the velocity com-
mands to be discretized, which may be impractical if extended
beyond the planar task used.

Delson and West teach a compliant motion program by using
a virtual trajectory to model the human demonstrator’s task
strategy [13]. Wang and De Schutter incorporate an auto-pilot
into the demonstration system to make it easier for the operator
to demonstrate “perfect” skills [14]. However, in both cases,
only one strategy is learned by the robot, and the task execution
will fail if the orientation of the environment is significantly
different from that at demonstration time. Delson and West
address this problem in part by reorienting the environment and
repeating the demonstration using the same task strategy [15].

Asada proposed a three-layer neural network (NN) to learn
the nonlinear mapping of measured force to corrected motion
(velocity commands) [16]. The approach was demonstrated on
a planar assembly task, using simulated data to train the neural
network.

Whalen implemented this NN approach for a planar edge-
mating task [17] and showed that it was successful when using
simulated training data, but failed when using actual human
demonstrated data. One possible reason for its failure might be
that human demonstrators can generate inconsistent motions un-
intentionally. As a result, the training sets may contain greatly
varying output data for similar inputs, which are particularly dif-
ficult to use for NN training. Examples of such inconsistent mo-
tion are shown in Section IV.

Koeppeet al.proposed a modified NN for learning compliant
motion strategies from human demonstrations [18]. Velocities
and force signals are input to the network in the form of fuzzy
variables (e.g., small, medium, large or negative, zero, posi-
tive). Koeppe showed that velocities should be included to solve
the correspondence problem (i.e., delay) between the human’s
haptic perception and the motion correction. The results in a
simulated environment have been promising; however, the exe-
cution environment must be identical to the demonstration en-
vironment.

Kaiseret al. also use NNs for sensorimotor skill acquisition
from human demonstrations [19]. To overcome unintentional
inconsistency demonstrated by the human teacher, the training
data is first preprocessed. Inconsistent sample (input, output)
pairs are removed, and a smoothing algorithm is applied. Also,
reinforcement learning is used for skill refinement after the net-
work has been trained. The method shows promise but has a
lengthy training process. More recently, Friedrichet al.have pro-
posed an interactive programming environment that captures
user intention, such as object selection, by object related rela-
tions [20].

Although not usually reported in the PbD literature, the as-
pects dealing with force control bear some relation to the use
of compliance mechanisms to complete assembly operations
[21]. The force control mechanisms used in PbD typically have
the goal of accommodating uncertainties in object positions.
Passive compliance techniques [21] also have the goal of ac-
commodating minor uncertainties in the relative position of ob-
jects. Programming by demonstration, however, may address
motions over large portions of the workspace, whereas com-
pliance mechanisms are normally focused on the fine motions
during the final stages of an assembly operation. From the active
compliance perspective [22], our use of force sensing in PbD
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Fig. 1. Hybrid control model of an assembly skill.

can be viewed as imposing a higher-level strategy and control
on traditional active compliance control.

III. SKILL MODEL

The mathematical framework used for our robot skill model
is the hybrid control model proposed by Brockett [23], in which
symbol processing interacts with signal processing. The model,
with special application toward modeling force-based assembly
skills, is shown in Fig. 1. It consists of the following four parts:
1) the robot; 2) the robot controller; 3) the state classifier; and
4) the supervisory controller. Symbolic processing is done at
the supervisory controller level, where both the inputs and out-
puts are in the form of symbols. The input to the supervisory
controller is generated by the state classifier, which converts a
time-varying signal into a symbolic representation of a qualita-
tive state. The times at which this occurs are driven by an event
trigger, which indicates that the system has changed to a new
qualitative state.

Let be the position of the robot end effector,be the reading
from the robot’s force sensor, andbe the force control com-
mand. Then , , and are vector-valued functions of time,
which take on values in the subsets of Cartesian spaces, ,
and , respectively. Following Brockett’s convention, we let
be a monotone increasing triggering signal, a function of time,
and write to denote the largest integer less than or equal to

. Then may be viewed as an event index. Let be
the symbolic controller command (representing the reference
velocity command), and be the symbolic input to the
supervisory controller (representing the qualitative state in the
assembly process). The symbolic variables,, and take on
values in the sets and , respectively, where is the set of
reference velocity commands and is the set of force-based
qualitative states. Letbe the sampling time period for the robot
controller and be the integer sampling increment. The fol-
lowing equations describe the model:

The position is dependent on the symbolic controller com-
mand and the values for the position, force sensor reading, and
force control command at the last sampling period. The force
sensor reading is dependent on the position, the force control
command, and the symbolic controller command. The subscript

on emphasizes that the force sensor readings will also depend
on the robot’s environment. The rate equationwhich describes
the increase in the triggering signalacts as an event trigger
and indicates when the system has changed to a new qualitative
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Fig. 2. Test workpiece showing descriptive SECF names.

state. The rate equation is constrained so that no more than one
event may occur during the sampling period. The qualitative
state is dependent on the force reading.

The qualitative state drives the assembly skill; it takes the
form of a single-ended contact formation (SECF). Contact
formations [24] provide a qualitative description of how two
or more objects contact each other (e.g., edge 1 of one object
touches side B of another object). In contrast, single-ended
contact formations provide a one-sided description of how
a grasped object touches its environment (e.g., edge 1 of a
grasped object touches any side in the environment). Descrip-
tive names are given to each SECF to provide a meaningful link
to the human demonstrator (e.g.,bottomsurface orright front
edge, as shown in Fig. 2). Two sensor-based methods which
can be used for SECF classification are described in previous
work [25]. The mapping is performed by the state classifier
every time the event trigger detects a change in SECF state.

As shown in Fig. 1, there are two levels of control. At the
higher, symbolic level, SECF transitions are used to establish
a nominal plan. A supervisory controller drives the assembly,
using a finite state machine (FSM), represented as a directed
graph. The states stored in the FSM correspond to the SECFs
that describe the qualitative condition in the assembly process.
The FSM stores the sequence of SECFs which are used by the
human demonstrator in the assembly skill. The skill model also
includes the controller output function, which generates (rela-
tive) reference velocity commands that describe how to transi-
tion to the next desired SECF (as discussed in Section IV).

At the lower level, force control is included to facilitate com-
pliant motion. The robot controller regulates the robot using a
position control loop; an outer force control loop is used to en-
force force and moment limits. If a force exceeds the threshold
value, then the robot controller attempts to control the force to a
set value using an impedance controller based upon the under-
lying position control. This has the effect of providing local con-
trol as deflections from the nominal trajectory, to accommodate
an unstructured environment. Compliant motion is not explicitly
programmed but occurs naturally as a result of the force con-
trol accommodating environment uncertainties. Overlaid on the
force control is a guarded move mechanism in which, if motion
cannot continue without excessive forces, then a force guard is
triggered. Encountering a force guard, in turn, triggers the SECF
classifier and the higher-level supervisory controller. Transi-
tions between SECFs essentially result from guarded move trig-
gers.

The skill model is designed to support six-degree-of-freedom
(DOF) motion but does assume that a reliable SECF classi-
fier is available. SECFs may be vertex-to-surface, edge-to-sur-
face, surface-to-surface, or combinations thereof. The operator
demonstrates an assembly skill by showing a nominal SECF se-
quence. The motion to proceed from one SECF to the next de-
sired SECF can be either translation (sliding) or rotation (piv-
oting) or a combination. However, we have observed that it is
generally easier for the operator to demonstrate a motion that
is either mostly translation or mostly rotation, as the operator
tends to use the constraints of the environment to aid in the as-
sembly operation.

Because we are not making any assumptions about the po-
sition and orientation of the robot’s environment,1 we are also
not making guarantees that the desired goal condition will be
reached. However, we can increase the likelihood for success,
in spite of position uncertainties, by demonstrating more than
one SECF sequence and incorporating each into the assembly
plan graph. Each sequence results in the same goal SECF, and
the sequences are merged at this goal state, as described in Sec-
tion IV-C. A skill may, in fact, contain several SECF sequences
that will result in a successful task completion. The actual se-
quence used during execution will be dependent on the posi-
tion and orientation of the environment workpieces. The critical
issue is to include in the assembly graph the possible SECFs
that may be encountered, given position uncertainties; including
more SECF sequences will provide robustness in spite of addi-
tional environment displacement. Ausuti and McCarragher have
shown that the system will in fact converge to the goal state if all
desired contact transitions are enabled and if the resulting graph
has no loop [26]. This assessment, of course, requires analysis
based on the task geometry.

IV. SKILL LEARNING

As modeled here, the learning of an assembly skill involves
the learning of the following three functions: 1) the mapping of
force sensor signals to SECFs; 2) the sequence(s) of SECFs; and
3) the transition velocity commands which move the robot from
the current SECF to the next desired SECF. The first function is
acquired using supervised learning. The operator demonstrates
each SECF while force data is collected, and the data is used to
train a state classifier. The operator then demonstrates a skill,
and the classifier is used to extract the sequence of SECFs and
transition velocities which comprise the rest of the skill.

In previous work, we focused on learning the first function,
the mapping of the force sensor signals to SECFs. Two methods
of classification were presented; one method uses fuzzy set
theory [27], and one uses a neural network [28]. In this paper,
we focus on learning the remaining two functions, illustrating
the process with an example of an actual skill demonstration.

One advantage of this two-step approach is that we have a par-
tial skill model when the task demonstration is performed, and
this information can be used during the demonstration. Feed-
back is provided to the operator by classifying and displaying
the SECF sequence in real-time; the symbolic representation of

1Indeed, the assumption here is that we donot know the position and orien-
tation of objects in the environment.
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Fig. 3. The PHANToM, as used by the operator for skill demonstration.

the SECF is useful for providing meaningful and easily recog-
nizable feedback. This additional feedback can be used to in-
crease the efficiency of the skill acquisition, because the oper-
ator knows what sequence is being learned as the demonstration
is performed. If the sequence is not the desired one, then correc-
tions can be made immediately.

One underlying assumption is that the pose of the grasped ob-
ject (w.r.t. the force sensor frame) is the same for both the SECF
classifier training and the demonstration of the skill, which in
turn must agree with the pose used in the execution of the skill.
For example, if the orientation of the grasped object changes sig-
nificantly after the SECF classifier has been trained, the classi-
fier will no longer correctly identify the SECF state. This issue
has been addressed in a previous paper [30], in which we de-
scribe a method of retraining the classifier to accommodate a
new object pose. A small sample of force signals is collected for
2 SECFs in the set, a transformation is calculated, and the pre-
vious training data are transformed to achieve training for the
new pose. Alternatively, each new force reading can be trans-
formed and used with the original classifier. Another possible
solution is to use a geometry-based approach for the SECF clas-
sification (e.g., [31]) and use position information to accommo-
date changes in object pose.

We describe the remainder of the skill acquisition process
by describing our experimental procedure. The workpiece is a
plastic, square block, as shown in Fig. 2. The classifier has been
trained to identify 17 SECF classes. After training, the classifier
performs at a 97% success rate with static data.

The demonstration of the skill was performed using the
PHANToM haptic interface, shown in Fig. 3, as a force-re-
flecting hand controller to teleoperate an American Robot
merlin manipulator in 6-DOF motion. A JR3 force sensor
provided force signals. The operator was located in front of the
robot, with full view of the workspace.

The environment is an open, rectangular wooden box, made
of soft, bare wood. Although it has been sanded, it has a rel-
atively high coefficient of friction. This was intended, as we

Fig. 4. The SECF steps for sequence A.

specifically wanted to include the effects of friction in the ex-
periments. The attached board can be clamped to the worktable
in a variety of positions and orientations to generate different
starting conditions.

A. Learning a Sequence of Single-Ended Contact Formations

Snapshots of the sequence, which we will callSequence A, are
shown in Fig. 4. Starting from ano contactstate, the intended
sequence isright front edge, right side, andright bottom. The
sequence was demonstrated three times, and the final demon-
stration was used to learn the SECF sequence and transition tra-
jectories.

The force and moment profiles for the skill demonstration are
shown in Fig. 5, with data logged at a frequency of 40 Hz. The
sequence of SECF states was identified as described in [27],
with results shown in Fig. 5. For graphing purposes, an index is
assigned to each SECF. Theno contactclass is shown with an
index of 0. The unclassified cases are shown with an index of

1.
A filtering algorithm is applied to the classification results,

yielding new results as shown in Fig. 5. Transitory classes
are filtered out, which has the effect of eliminating undesired
human-generated actions. Human factors studies have shown
that the bandwidth for human limb motion is at most 5 Hz for
internally generated trajectories and around 10 Hz for reflex
actions [32]. In this illustration, we have filtered out transitory
states occurring faster than 10 Hz. The filtering algorithm
also eliminates the unclassified cases. For the points of no
classification, we assume that the SECF has not changed, and
these points are graphed as the previously identified SECF.

The resulting sequence is an accurate representation of the
demonstration; however, this is not the sequence that was
intended. Thebottom surface was encountered accidentally
(shown as index#1 in Fig. 5), and there were several instances
of oscillation between SECFs, such as the changes between
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Fig. 5. Sequence A demonstration.

right bottomand theright side. Also, there were periods of
no contactthat we might prefer to avoid in order to achieve
a smoother skill execution. As a result, this is not yet the
sequence that we want the robot to duplicate.

This illustration provides an example of an imperfect skill
demonstration. If we could assume that every demonstrated
skill sequence was perfect, then the method presented would
be adequate. However, perfect skill demonstrations can be
difficult to achieve. Often, it is easier for the operator to look
at the results of an imperfect demonstration and modify those
results directly.

For this purpose, an interactive, programming environment is
suggested, in which the operator can observe the learned SECF
sequence and refine it if necessary. An operator can look at the
sequence and determine which SECF steps are essential and
which steps are unnecessary. This has been done, and Fig. 5
identifies the selected sequence by showing the selected force
events with vertical hash lines.

B. Learning Transitions between SECFs

The final function to be learned, as part of the skill model,
is the transition velocity information which will move the robot
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from the current SECF to the next desired SECF. The profiles
in Fig. 5 show that the motion generated by the human demon-
strator is not necessarily smooth. We do not want to duplicate in-
consistent or unintended actions, but to extract an action which
will drive the system to the next desired SECF state. For this
purpose, we approximate the trajectory as a series of linear seg-
ments. The selected force events, which define the change in
SECF, can be used as reference points in segmenting the demon-
strated skill. The result is a piecewise linear trajectory which
drives the system toward the next desired state. Because force
events are used as reference points instead of position informa-
tion, the trajectory generation is not dependent on absolute po-
sition.

The translational component of the reference velocity com-
mand is generated from the demonstrated position profile. Let

and be the times at which force eventsand occur
in the demonstrated position profile. Then the distances,, ,
and , traveled in the , , and directions, are calculated as
follows:

These distances are then normalized as shown: ,

, and where .
The normalized distances define a relative direction. As-

suming a constant speed, the normalized distances are used to
generate the translational component of the reference velocity
from SECF state to state . The process is
illustrated in Fig. 5, where the linear segments are shown for
the z translation component.

The rotational component of the reference velocity command
is generated in a similar manner. Let , , and be the
rotational profiles for the , , and orientations, respectively.
Then the rotational distances,, , and are calculated as
follows:

Again assuming a constant rotational speed, the rotational
distances can be used to generate the rotational component of
the reference velocity. Fig. 5 provides an illustration for the
rotational component. While this strategy provides a relatively
simple method for generating the reference velocity commands,
no concept of speed is learned.

C. Merging Multiple Assembly Strategies

To provide robust execution of the assembly skill in a
nonstructured environment, we must accommodate position
and orientation variations. That is, we need a strategy for
reaching the goal state, even if the execution environment is

Fig. 6. Merged FSM with sequence A and sequence B.

positioned differently from that used for demonstration. For
example, in the sequence shown in Fig. 4, if the environment
fixture was moved to the right, and the same initial trajectory
was used, the grasped workpiece might touch thebottomsurface
first instead of the intendedright front edge. To accommodate
this possibility, we include additional SECFs in the FSM, along
with their corresponding transition commands. In this way, the
robot learns a more complete skill model and is able to reach
the desired goal even without a structured environment. The
SECF sequence paths are merged at the goal state, which is
common for all sequences. Although one sequence is arbitrarily
assigned as the primary path, if a node from another path
is encountered during execution, then control shifts to this
secondary path.

For our experiments, a second sequence,Sequence B,
is demonstrated as follows:no contact, bottom, right front
bottom, and right bottom. Sequence Bprovides a successful
skill strategy for the cases where the workpiece contacts
the bottom surface first, instead of the right front edge. The
sequence was again demonstrated three times and the third
demonstration was used for skill acquisition. Following the
procedure outlined in the previous sections, the SECF sequence
and transition commands were extracted.

Sequence AandSequence Bare then merged into one FSM,
as shown in Fig. 6. WhileSequence Ais arbitrarily considered
to be the primary sequence, control can shift toSequence Bif
thebottomSECF is encountered. Likewise, if any other SECF
is encountered out of order, the FSM is still able to drive the
control through a successful skill sequence.

To accommodate a greater variety of starting positions and
orientations, additional sequence strategies can be demonstrated
and merged into the FSM. We are assuming that another mech-
anism (e.g., vision) is used to position the grasped workpiece
close to the area of interest so that contact will be made. The ac-
tual mechanism used will determine the effective position and
orientation uncertainties, which will, in turn, determine what ad-
ditional SECFs should be added.
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Fig. 7. Test run force profile.

V. EXECUTION OF THELEARNED SKILL

In this section, we present results of test runs performed
where the robot autonomously executed the learned skill. The
same workpiece and environment fixture were used for both
skill learning and for autonomous skill execution. The starting
position of the robot, with the grasped workpiece, was the same
in all tests; the workpiece was not contacting the environment.
To test the execution of the skill in different starting conditions,
the position and orientation of the environment fixture were
varied between test runs.

A data logging function was added to the robot control pro-
gram to monitor the performance. The logged data included the
force sensor signals, the robot end effector position and orienta-
tion, and the classified SECF. All data was logged at a frequency
of 50 Hz.

Variations in the starting position and orientation of the envi-
ronment fixture were introduced in an attempt to produce addi-
tional sequences of SECF states. In the first four test runs, the
task stopped short of the goal by about four degrees in-axis
rotation. This was attributed to an incorrect classification by the
state classifier, because of high friction in the execution environ-
ment. To induce higher friction into the training data, the classi-
fier was retrained using data collected by sliding the workpiece
along a surface. Five additional test runs were performed. In
all five cases, the skill was successfully completed, in spite of

the position and orientation variations. Figs. 7 and 8 show re-
sults from a typical test run. Unexpected SECFs were encoun-
tered during the skill execution, but the skill model was able to
accommodate the variation, generating the appropriate control
command and, therefore, driving the task to successful comple-
tion.

VI. DISCUSSION

Although the experiments were generally successful, limita-
tions became apparent during testing. One potential problem re-
sults from the use of supervised learning for training the SECF
classifier. The approach assumes that the operator knows which
SECF classes to include in the set. While that may be trivial for
simple skills, it may not be so obvious for complex skills.

In addition, our experiences show that the training of the state
classifier is critical. Training data for the classifier should be col-
lected in a condition as close as possible to that expected in the
execution environment. This will ensure that the classifier will
be trained to handle the same real-world, difficult-to-model ef-
fects that will be encountered during skill execution. One factor
that complicated the issue was the presence of friction. If sig-
nificant friction is present in the skill execution environment,
then it must be included when collecting the training data for
the classifier.
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Fig. 8. Test run position profile.

While it is possible to collect separate training data (for a
known SECF), it may be easier to collect training data while
performing an entire skill sequence. We are currently experi-
menting with clustering algorithms which will be used to seg-
ment an entire profile of data into individual force-based clus-
ters. The clusters of vectors will then be used to train the clas-
sifier. This approach will ensure that actual conditions, such
as friction, are included in the training data. It will also elim-
inate the problem of determining which SECFs to include. The
tradeoff is that the SECF classes will not be classified on-line
during the actual demonstration, so this feedback will not be
available to the operator.

Another limitation was the method of force control used. In
this implementation, we were limited (by the robot controller)
to a 100-Hz servo rate. This was adequate for the simple
task demonstrated here, but complex tasks would most likely
require a faster servo rate. In addition, there are limitations to
using a force limit control algorithm with constant parameters
throughout the skill sequence. For instance, this simple algo-
rithm does not try to maintain a constant force if the workpiece
breaks contact with the environment. A desirable extension
would include changes in the force control parameters for each
transition between SECF steps. This may be especially useful
for more complicated skills, where it is necessary to maintain
contact during the transition period.

In spite of the limitations and problems, the skill acquisition
method worked remarkably well. We have succeeded in com-
pleting tasks for which others have reported failure [17]. Al-
though the experiments involved a relatively simple skill, we
feel the results validate the assembly skill model. The event-
based approach proved to be a good idea and useful in accom-
modating variations in the environment. The interactive pro-
gramming environment also proved to be a good idea, especially
in letting the operator select the events that would be used. Our
experience is that this made skill acquisition a great deal easier
because the skill demonstration did not have to be done per-
fectly.

VII. CONCLUDING REMARKS

This research has been inspired by the vision of intelligent
robot tools and assistants working successfully in unstructured
environments. We have addressed this problem by investigating
methods of transferring assembly skills to robots by observing
a human-performed demonstration of the skill. Specifically, the
focus here has been on learning force-based skills, rather than
position-based skills, without requiring detailed geometric in-
formation. The ability to quickly transfer force-based skills to
robots will dramatically increase the functional capabilities of
our envisioned intelligent robot tools and assistants.

As a skill model, we have presented a theoretical framework
for combining force control with reference velocity commands.
This combined control, along with the use of force-based qual-
itative states, makes the approach suitable for unstructured en-
vironments. In this paper, we have concentrated on the contact
portion of the task. We would envision that, eventually, the tech-
nique would be combined with either vision or shared control
with a human operator.

The methodology presented supports 6-DOF motion and in-
cludes difficult-to-model effects such as friction. The experi-
ments discussed show how a skill can be acquired in the pres-
ence of such effects and even if the demonstrated task is not per-
fect. The results also show how the learned skill can complete a
task successfully in spite of significant position and orientation
variations.
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