

Proactive Information Exchange during Team Cooperation
Yu Zhang* Richard A. Volz* Thomas R. Ioerger* Sen Cao* John Yen†

 *Department of Computer Science †School of Information Science and Technology
 Texas A&M University The Pennsylvania State University
 College Station, TX 77843-3112 University Park, PA 16802
 Phone: 01-979-845-8873 Phone: 01-814-865-6174
 Fax: 01-979-862-4813 Fax: 01-814-865-6426
 {yuzhang, volz, ioerger, sencao}@cs.tamu.edu jyen@ist.psu.edu

To my Ph.D advisor, Dr. Richard A Volz, who gave me experiences in academic and
professional life.

Best,

Yu

Proactive Information Exchange during Team Cooperation

Yu Zhang* Richard A. Volz* Thomas R. Ioerger* Sen Cao* John Yen†

*Department of Computer Science †School of Information Science and Technology
Texas A&M University The Pennsylvania State University

College Station, TX 77843-3112 University Park, PA 16802
Phone: 01-979-845-8873 Phone: 01-814-865-6174
 Fax: 01-979-862-4813 Fax: 01-814-865-6426

{yuzhang, volz, ioerger, sencao}@cs.tamu.edu jyen@ist.psu.edu

Abstract We are concerned, ultimately, with multi-agent teams
involving both software and human agents in which the software
agents assist in training the humans, e.g., as virtual team members.
The software agents must be capable of utilizing the teamwork
mechanisms used by humans. In this paper, we describe how to give
agents the same implicit communication capabilities, i.e.,
observation, that humans use. We show how agents can use
observations of the environment and teammates' actions to
estimate other agents’ beliefs without bothering them with
unnecessary messages; we also show how agents can anticipate
information needs among the team and proactively exchange
information, reducing the total communication volume. To
achieve these goals, we add sensing capabilities to agents and
present algorithms that infer teammates' mental state from the
observation. Experimental data is presented that shows that the
advantage of observation in proactive information exchange as
well as enhanced team performance.

Keywords Intelligent agent, Multi-agent system, Teamwork,
Agent communication, Observation

Introduction
We are concerned, ultimately, with multi-agent teams with
both software and human agents in which the software
agents assist in training the humans, e.g., as virtual team
members. Our software agents must emulate, as closely as
possible, the teamwork mechanisms used by humans so
that we can use them for training. In this paper, we focus on
giving agents the same implicit communication capabilities,
i.e., observation, that humans use. Most proposed teamwork
structures (e.g. Cohen and Levesque’s joint intentions [1],
Jennings’ joint responsibilites [2], Huber and Durfee’s
shared plans [3], and Stone and Veloso’s role definitions
[4]) rely agents negotiating with each other, typically using
a lot of communication. In human teams, however, agents
often make decisions based upon knowledge of plans
together with observations of the environment and other
agents’ actions. For example, Tambe and Kaminka [5] use
observation to monitor failed social relationships between
agents. Here, we discuss reducing communication by
using knowledge of what agents can sense.

The context of our work is the CAST (Collaborative
Agents for Simulating Teamwork) [6] architecture. In
CAST, teamwork knowledge is represented in MALLET
(Multi-Agent Logic-based Language for Encoding
Teamwork) [8], and action rules (in Horn-clauses) and
agent knowledge are represented in JARE (Java Automatic
Reasoning Engine) [9], a Prolog-like back-chaining theorem

prover. CAST uses an algorithm, DIARG (Dynamic Inter-
Agent Rule Generator), for identifying opportunities for
deducing communication. DIARG analyzes team member
roles to identify information produced and/or needed by
each agent. The team state is tracked using a Petri Net
(which servers as a first-order approximation of a shared
mental model). The information exchange protocol, keeps
track of the teamwork status via the PN and uses the
relative frequency of information need vs. information
production to decide whether to proactively send
information or wait for information requests. One
difficulty with this approach is that significant status
information must be distributed among the agents and
there is no attempt to utilize agent sensing capabilities to
reduce what information must be sent.

A more realistic approach (from a human perspective),
is to give the agents sensing, or observing, capabilities.
Agents can infer some aspects of the mental state of other
agents by observing the environment. This, together with
inferences about what others can see, allows an agent to
decide when it does not need to send information to other
agents or whom to ask when it needs information in a
manner that reduces overall communication.

We first present preliminary contextual information.
Then, we introduce a representation of observability and
an algorithm for reasoning about it. Next we describe an
algorithm of proactive information exchange. Finally, we
present some empirical results. Our testbed is multi-agent
wumpus world, extending that introduced in Russell and
Norvig [10]. We use multiple agents with different
capabilities so that teamwork becomes important.

Preliminaries
In this section, we introduce some concepts that will be
used in subsequent sections.

Team Knowledge. Team knowledge is encoded in a team
knowledge representation language, MALLET. Goals are
achieved by assigning a team of agents to a task and then
invoking that task. Each task has one or more plans by
which it might be accomplished. Plans describe processes.
Processes consist of invocations of primitive operations,
subplans, or various constructs such as sequential, parallel,
conditional, or iteration. The syntax of processes can be
defined recursively. For example,
 (plan killwumpus()

In Proceedings of International Conference on Artificial Intelligence 2002, 341-346

(role carrier ?ca)
(role fighter ?fi (constraint (closest-to-wumpus)))
(process
 (seq (do ?ca (findwumpus))
 (do ?fi (movetowumpus))
 (do ?fi (shootwumpus)))))

Time. To simplify our initial investigation, we index time
into discrete steps, т = {tj}, not necessarily evenly spaced,
and force a synchrony of actions among the agents. At
each time step, each agent performs one step in its plan.

Action. We consider an action to be the execution of an
operation. An action Ω is a 2-tuple <Φ, Ψ>, where, Φ is
precondition of Ω, and Ψ is effect of Ω. Each precondition
and effect is a conjunction of predicates. All predicates in a
precondition must be believed before the action can be
performed. Conjuncts in the effects are known to be true
after an action is performed. Actions may be individual,
(performed by only a single team member), or they may be
performed jointly by multiple team members. The
specification of an action has the following form:

(operator <op-name> (<var>*)
 [pre-cond <cond>*]
 [effect <cond>*])

Environment. In general, the environment is a function of
time т and the actions performed by the agents. At any
time t, the environment is one element of a set E ={et} of
instantaneous states. Formally, the effect that an agent’s
action has on environment can be represented using a state
transformer function, τ : et × Ωt → et+1 (Fagin, et.al,[11]).
Thus τ(et, Ωt) denotes the environment state that would
result from performing action Ωt in environment state et.
To simplify things, we use a set of predicates in JARE to
represent portions of the state, e.g., (location carrier ?x ?y).
A JARE query returns the values of ?x and ?y for which
the predicate is true. The portions of the environment
observable to an agent are represented by such predicates.

Figure 1 Agent function cycle

Environment simulation knowledge base

Belief
maintenance

Action

belief

see

Team
knowledge

Agent
self

Agent. At each time step, each agent has function cycle:
observe, belief maintenance, and act (Figure 1).

Observation is represented as a set of rules (see next
section). At any time t, each agent has a local state, which
encapsulates all the information to which the agent has
access at time t. The agent’s knowledge base is composed
of the set of local states at different times. Since the
number of steps could be large, we keep only a limited
history (see next section). Every agent maintains its
knowledge base, which contains the agent’s observability
and the agent’s belief about other agents’ observability.

Reasoning about Observability
To define observability, we need to state both what is
observed and the conditions under which it can be seen.
The what may be any object property (of either an agent or
environment object) or an action performed by an agent.
Conditions are expressed as predicates. Both may contain
parameters, which enables a JARE query to return, e.g.,
the location of an observed object. The observation process
typically has a dependency upon time т. We handle this
by including the time of an observation with the fact that is
locally stored. We make the following assumptions:

Seeing is believing. While philosophers may entertain
doubts because of the possibility of illusion, common
sense is that, other things being equal, one should believe
what one sees (Bell and Huang [12]). Thus, we assume
that an agent believes an observed predicate persists until it
observes another predicate that negates that predicate.
Observation condition. An observation condition, OC, is
a conjunctive list of predicates. An agent can observe
property p at time t if both p and OC are true at t. An action
occurrence is represented as a predicate (including time) in
the environment, e.g.. (shootwumpus fi T). An agent can
observe an action Ω if Ω and OC are true at the time of the
observation. We assume OC includes the constraints of the
action See itself as well as the constraints of the things (p,
or Ω) to be observed (e.g., preconditions of Ω). We also
assume that every agent notices all observable predicates
and all predicates are unambiguous.
Negation representation. . It is important to be able to
reason about cases it is unknown whether the predicate is
true or false. Thus, we need to be able to say that the agent
can observe whether or not a predicate is true. For each
predicate P in environment, we create a new predicate notP
for ¬P. Everywhere throughout the domain rules, we
replace ¬P with notP. So, if the theorem prover returns
neither P nor notP as true, this means the value is unknown.
Observation
The syntax of observation is thus given as:

<observation> ::= (see <viewing>) |
(believe-can-see <believer><viewing>)

<viewing> ::= <observer><observed> <time> <cond>*
<believer> ::=<agent>
<observer> ::= <agent>
<observed> ::= <property|action>

<property> ::=(<property-name> <object> <var>*)
<action> ::=(<action-name> <doer> <var>*)
<object> ::=<agent>|<non-agent>
<doer> ::=<agent>
More formally, we use See(as, α, t) to refer the action for

agent as to observe α at time t, and CanSee(as, α, t, c) as the
capability for agent as to observe α at time t under the
observation condition c. The axiom below specifies the
occurrence of an agent’s actual sensing action:
∀as, α, t, c, CanSee(as, α, t, c) ∧ Hold(c, t) → See(as, α, t)

An agent’s inference about other agent’s observations is
based on the following axiom:
∀ab, as, α, t, c, tb
Bel(ab, CanSee(as, α, t, c), tb) ∧ Bel(ab, c, tb)

→ Bel (ab, See(as, α, t), tb)
which means at time tb, the agent ab believes as can observe
α at time t under condition c. Finally, the assumption of
“seeing is believing” is formalized as the axiom below:
∀as, α, t
See(as, α, t) → [Hold(α, t) → Bel(as, α, t)]
 ∧ [¬Hold(α, t) → Bel(as, ¬α, t)]

For the convenience of our discussion, we also take
believe-can-see(a, b, α, t) as an abbreviation of Bel(a,
CanSee(b, α, t, ca), t). A more detailed discussion about
the formalism on agent observability and proactive
information delivery can be found in [8].

Observations are presented as rules in JARE. Some
example observation rules in carrier’s knowledge base
might be as shown below. Here, the symbols ca, fi1, fi2 are
used for carrier, fighter1, fighter2, respectively:

(see ca (hasarrow ?o) ?t
(location ca ?xs ?ys ?t) (location ?o ?x ?y ?t)
(= ?xs ?x) (agent ?o))

(believe-can-see ca fi1 (location ?o ?x ?y) ?t
(location fi1 ?x1 ?y1 ?t) (location ?o ?x ?y ?t)
(= ?x1 ?x))

(believe-can-see ca fi1 (hasarrow ?o) ?t
(location fi1 ?x1 ?y1 ?t) (location ?o ?x ?y ?t)
(adjacent ?x ?x1 ?y ?y1) (agent ?o))

The semantics of observation are maintained by the
algorithm given in Figure 2. This algorithm builds beliefs
in believer’s knowledge base by checking the following:

• Observing a property
1) When the observation (see self (<prop-name>

<object> <var>*) <time> <cond>*) is made at time
t, a JARE query ((<prop-name> <object> <var>*) t
<cond>*) is made of the environment knowledge
base. The response is a list of tuples (null if
conditions are not satisfied) of variable bindings for
which the query is true. Then, self’s knowledge
base is updated with the fact ((<prop-name>
<object> <var>*) t) for each tuple of variable
bindings from the returned.

2) In the case of (believe-can-see self Ag(≠self)
<property> T <cond>*), a query is made with
respect to KBself. If the condition is satisfied at T,
self believes Ag can see the property. However,
self may or may not have knowledge of <property>,
e.g., a carrier may believe a fighter can smell stench
of wumpus if the fighter is adjacent to wumpus, but
the carrier doesn’t itself smell the stench.

/*Let self be the agent invoking the algorithms. We denote the
knowledge base for agent a by KBa, and for the environment by
KBenv. The updateKB(agent, action, KBself) algorithm is
independently executed by each agent, denoted self below, after
the completion of each step in plan in which the agent is involved.
The function update(…) used by updateKB(…) maintains time
history and coherence of KB. */

updateKB(self, action, KBself){
updateEnv(action, self); //update simulation environment

// by effects of latest action
for each conjunct in the effects of action

update(KBself, conjunct, T);
updateSelfObs(self, KBself); //by observation at T
updateSeflBel(self, action, KBself);

}

updateSelfObs(self, KBself){

for each rule in Kbself of the form (see self (prop object ?var*) ?t
cond), if ((prop object ?var*) T cond) is true in KBEnv for some
bindings of variables,

update(KBself, (name object ?var*), T)
for each such binding of values to the variables;

for each rule in KBself of the form (see self (action ?doer ?var*)
?t cond) for which cond is true in KBenv for some binding of the
variables, if the environment KB has been updated with (action
doer) since the last time self performed its observation update
(at ?t = T1),

for each conjunct of precondition of action
update(KBself, (conjunct), T1);

for each conjunct of effects of action
update(KBself, (conjunct), T1);

}

updateSelfBel(self, action, KBself){

for each rule of the form (believe-can-see self ?Ag (prop object
?var*) T cond) for which cond is true in KBself for some binding
of arguments to variables (?Ag≠self),

for each such binding of arguments to the variables
update(KBself, (believe-can-see ?Ag (prop object ?var*),
T);

for each rule of the form (believe-can-see self ?Ag (action doer
?var*) T cond) for which cond is true in KBself for some
binding of arguments to variables,

for each conjunct of the precondition of action
update(KBself, (believe-can-infer Ag conjunct), T);

for each conjunct of the effects of action
update(KBself, (believe-can-infer Ag conjunct), T);

}

Figure 2 A belief maintenance algorithm

• Observing an action
1) In the case of (see self <action-name> Agd(≠self)

<var>* T <cond>*), the query is made with respect
to KBenv. Self can make two inferences. First, self
infers that the preconditions of the action were true
just prior to time T, and that the effects of the action
are true at time T. Second, self infers that Agd
knew the preconditions just prior to time T and that
Agd can infer the effects of the action.

2) In the case of (believe-can-see self Ag(≠self)
<action-name> Agd(≠self) <var>* T <cond>*), the
query is evaluated with respect to KBself. Self add’s
tuples to KBself indicating that Ag can infer that the
preconditions of the action were true just prior to
time T, and that the effects of the action are true at
time T 1 . Similarly, tuples for Ag inferring the
effects of the action are added to KBself.

The algorithm begins with updateEnv by self’s last
action. We don’t show how updateEnv works in detail, as
that is not the principal point of this paper. Basically, the
environment simulation updates the knowledge base KBEnv
after receiving any action from the agents. Because self
can infer the effects of its own actions, the algorithm saves
these effects as new knowledge. updateSelfObs evaluates
direct property observation rules with information obtained
from KBEnv and updates KBself with the results of the
observation. updateSelfBel updates self’s beliefs on what
it can infer other by observing agents and their actions.

To avoid having the size of the knowledge base explode,
we define a duration, d. Information older than d is
deleted, except that the most recent assertion of a fact is
kept, even if it is older than the duration. The function
update manages this finite history. While at the moment,
we only utilize the most recent information added to the
knowledge base, we anticipate more complex forms of
reasoning in the future, and hence keep this finite history.

Proactive Information Exchange
The purpose of proactive information exchange is to
reduce the communication overhead as well as improve the
efficiency or performance of a team. We extend two types
of information exchanges protocols: activeAsk and
proactiveTell [6]. These protocols are used by each agent
to generate inter-agent communication. DIARG analyzes
operator preconditions and effects and builds an information
flow describing potential communication needs. An
information flow is defined as a three tuple <info,
providers, needers>, where info is the predicate name
together with zero or more arguments, providers is a list of
agents who might know such information, and needers is a
list of agents who might need to know the information.
We differentiate information into two types [6]:

1 Note, however, that self does not necessarily know what
these values are. This is useful, though, in case self needs
to make a proactive ask.

• Frequently changing but infrequently needed
information. We call these type I1;

• Infrequently changing but frequently needed
information. We call these type I2;

For any piece of information I, we define two functions,
fC and fN. fC(I) returns the frequency with which I changes.
fN(I) returns the frequency with which I is used by agents.
If fC(I)>fN(I), then I is I1 type information. If fC(I)≤fN(I),
then I is I2 type information.

For activeAsk, an agent requests the information from
other agents who may know it (determined from the
information flow); for proactiveTell, the agent tells the
information to other agents who need. An agent always
assumes others know nothing until it can observe or reason
that they do know a relevant item. Information sensed and
beliefs about others’ sensing capabilities becomes the basis
for this reasoning. First the agent determines what another
agent needs from the information flows. Second, the
observation rules are used to determine whether or not one
agent knows that another agent can sense the needed
information. Figure 3 shows the algorithm.
/*Independently executed by each agent when the agent needs the
value for an item of Information, I. */
activeAsk(self, I, KBself, T){
candidateList=null;

if (I is of type I1 and (I at t) v (notI at t) is not true in KBself for
any t ≤ T) { //self doesn’t know whether or not I is true

If there exists a x ≥ 0 such that
((believe-can-see Ag (I) T-x) v (believe-can-see Ag (notI) T-
x) v (believe-can-infer Ag (I) T-x) v (believe-can-infer Ag
(notI) T-x)) is true in KBself, {

Let xs be the smallest such value of x;
for each agent Ag≠self

if ((believe-can-see Ag (I) T-xs) v (believe-can-see
Ag (notI) T-xs) v (believe-can-infer Ag (I) T-xs) v
(believe-can-infer Ag (notI) T-xs)) is true in KBself, {

add Ag to candidateList;}
}else return null;

}
else return null;
randomly select Ag from candidateList;
Ask Ag for I;
return value received from I;

}
/* Independently executed by each agent after the agent executes
updateKB().*/
proactiveTell(Kbself,, T) {

for each conjunct I for which (I, T) is true in Kbself, consider the
information flow <I, neederList, providerList>
∀ Agn ∈ neederlist

if ((believe-can-see Agn (I) T) v (believe-can-infer Agn (I) T)
is not true in Kbself)

tell Agn (I);2
}

2 Note that there is no need to say anything about previous
time points, as those would have been handled when they
were first entered. Further, there is no need to explicitly
consider notI; if true, it will be entered as a fact on its own.

Figure 3 Proactive information exchange protocols

Experimental Results
We use a synthetic multi-agent wumpus world as our test
domain. The experiments are performed on five randomly
generated worlds with 20 by 20 cells. Each world has 20
wumpuses, 8 pits, and 20 piles of gold. The team goal is
to kill wumpuses and get the gold without being killed.
Four agents, 1 carrier and 3 fighters compose a team. The
carrier finds wumpuses and picks up gold. Fighters shoot
wumpuses. Every agent can sense a stench (from adjacent
wumpuses), a breeze (from adjacent pits), and glitter (from
the same position) of gold.

The world simulation maintains object properties and
actions, such as objects’ locations, agents’ arrows, etc. All
agents use the same KBEnv to reason about the environment
and for determining their priority of actions.

Agents may also have additional sensing capabilities,
defined by observation rules in its knowledge base. For
example, the carrier’s sensing rules may be:

(see ca (location ?o ?x ?y) ?tc //see property location
(location ca ?xc ?yc ?tc) (location ?o ?x ?y ?t)
(inradius ?xc ?yc ?x ?y rca) (= ?tc ?t))

(see ca (hasarrow ?o) ?tc //see property has arrow
(see ca (location ?o ?x ?y) ?t) (= ?tc ?t))

(see ca (shootwumpus ?o) ?tc //see action shoot
(see ca (location ?o ?x ?y) ?t) (= ?tc ?t))

(believe-can-see ca fi (location ?o ?x ?y) ?ti //belief
(location fi ?xi ?yi ?ti) (location ?o ?x ?y ?t)
(inradius ?xi ?yi ?x ?y rfi) (= ?ti ?t))

The carrier can see all objects (and their locations) within a
radius of rca. It can also sense whether or not fighters have
arrows, and see any fighter shoot a wumpus if the fighter is
within range. Further, the carrier knows that fighter fi can
see objects within rfi of fi.

Each team is allowed to operate a fixed number of 150
steps. Agents use proactiveTell to impart information they
just learned if they believe other agents will need it.
Agents use activeAsk to request two categories
information: 1) an unknown conjunct that is part of a
precondition of plan or operator, (e.g., wumpus location)
2) an unknown conjunct that is part of a constraint, such as
selecting the agent closest to the wumpus.

We use two teams, designated A and B. Except for the
observability rules, conditions of both teams are exactly
the same. All agents move at each time step. In the
absence of any target information (wumpus or gold), they
move randomly. If they are aware of a target location
requiring action on their part (shoot wumpus or pick up
gold), they move toward the target. In all cases, they avoid
unsafe locations. We report two experiments.

For the first experiment, the teams are composed as:
• Team A: The carrier can observe objects within a

radius of 5 grid cells, and each fighter can see objects
within a radius of 3 grid cells.

• Team B: None of the agents have any sensing
capabilities beyond the basic capabilities described at
the beginning of the section.

We use measures performance, reflecting the number of
wumpuses killed, amount of communication used and gold
recovered. In order to make comparisons easier, we have
chosen to have decreasing values indicate improving
performance, e.g., smaller numbers of communication
messages are better. To maintain this uniformity with
some parameters of interest, we use as our measure the
quantity not achieved by the team rather than the number
achieved, e.g., the number of wumpuses left alive rather
than the number killed. The results are shown in Table 1.

Table 1 shows that, as expected, Team A found and
killed more wumpuses than Team B. Basically, the further
the agents can see (we have run other experiments), the
more wumpuses are killed. Team A used somewhat more
messages than Team B. However, one must consider that
the more wumpuses found, the more messages that are
likely to be sent. Hence, it makes more sense to compare
the average number of messages per wumpus killed. In
these terms, the performance of Team A, is much better
than that of Team B. Hence, our algorithms for managing
the sensing capabilities of agents have been effective.

TeamA T1 T2 T3 T4 T5 T6 T7
Test1 5 10 0 32 60 4.00 2.03
Test2 4 7 0 35 58 3.62 2.18
Test3 4 8 0 38 66 4.12 2.31
Test4 5 8 0 32 58 3.86 2.03
Test5 6 10 0 24 45 3.21 1.71

TeamB T1 T2 T3 T4 T5 T6 T7
Test1 16 14 0 27 54 13.50 6.75
Test2 16 16 0 27 54 13.50 6.75
Test3 16 14 0 27 54 13.50 6.75
Test4 14 15 0 30 60 10.00 5.00
Test5 15 14 0 30 60 10.00 5.00

T1: number of wumpuses left alive
T2: amount of gold left unfound
T3: number of agent killed
T4: total number of activeAsks used
T5: total number of proactiveTells used
T6: average number of activeAsks per wumpus killed
T7: average number of proactiveTells per wumpus killed

Table 1 Experiment Results

From the first experiment, it appears that the average
communication per wumpus killed is improved with
sensing. We designed Experiment 2 to show how team
size affects this metric. We use the same sensing
capabilities for Teams A and B. However, we increased
the number of fighters from 3 to 4 and 5, respectively, in
two tests that we run.

Figure 4 shows the trend of average proactiveTell per
wumpus killed as a function of increasing team size. Team
A’s per unit communication is almost independent of size.
Team B has an obvious increase in average
communication with increasing the team size. In Team B,
a fighter kills a wumpus only after getting the wumpus
location from a carrier. So, increasing the number of
fighters will do little in terms of the number wumpus of
killed, but the communication load goes up because more
fighters must be proactively told the location of wumpuses.

We also tested several different elements which may
affect the average communication per killed wumpus
value. These elements include team starting locations
(clustered in one part of the world, or randomly scattered),
number of wumpuses, and number of carriers. We tested
these elements individually, keeping the elements not
being tested the same as in the first experiment. In all
cases, the average number of proactiveTells per wumpus
killed for Team A remained significantly better than for
Team B. Indeed, the average proactive communication
remained roughly constant for Team B, while none of the
variations significantly reduced Team A’s communication.

0

2

4

6

8

10

2 3 4 5 6

Team s ize presented by number of fighters

A
ve

ra
ge

 p
ro

a
ct

iv
eT

el
pe

r k
ill

e
d

w
um

pu
s

Team A Team B

Figure 4 The comparison of average communication with
different team size

Discussion and Conclusions
In this paper, we have presented the notion of agent
sensing as a mechanism for improving performance and
reducing inter-agent communication. We have presented
algorithms for achieving this in our agent architecture, and
we have shown experimental results that demonstrate the
effectiveness of our agent sensing algorithms.

In the future, we plan to manage time flow in a less
restrictive manner and develop additional mechanisms for
reducing inter-agent communication. For our present
proactive information algorithm to work, each agent has to
know the information needs and production of each other
agent. This is done now by the use of information flows.
However, this is too rigid. We would like to make the
recognition of needed information more dynamic. We
plan to work on a way to recognize the goals of other
agents and track the sequence of sub-goals on which an

they are working dynamically. Using this information
together with the action an agent has most recently
performed we will dynamically estimate the most likely
information needs of other agents over a finite time
horizon. Then, we can send only information unknown to
other agents that will be needed in the near future.

Acknowledgements
This work was supported in part by DoD MURI grant
F49620-00-I-326 administered through AFOSR.

References
1. Cohen, P.R., H. Levesque, and I. Smith, On Team

Formation, in Contemporary Action Theory, J.H.a.R.
Tuomela, Editor. 1997, Synthese.

2. Jennings, N., Controlling cooperative problem solving
in industrial multi-agent systems using joint
intentions. Artificial Intelligence, 1995: p. 75.

3. Huber, M. and E. Durfee. Deciding when to commit to
action during observation-based coordination. in First
International Conference on MultiAgent Systems.
1995. San Francisco, CA: MIT Press.

4. Stone, P. and M. Veloso, Task decomposition,
dynamic role assignment, and low-bandwidth
communication for real-time strategic teamwork.
Artificial Intelligence, 1999. 110(2): p. 241-273.

5. Kaminka, G.A. and M. Tambe, Robust Agent Teams
via Socially-Attentive Monitoring. Journal of
Artificial Intelligence Research, 2000. 12: p. 105-147.

6. Yen, J., Yin, J., Ioerger, T. R., Miller, M. S., Xu, D.,
and Volz, R. A., CAST: Collaborative Agents for
Simulating Teamwork. In Proceedings of the
Seventeenth International Joint Conference on
Artificial Intelligence (IJCAI2001). 2001. Seattle,
WA.

7. Yen, J., Fan, X., and Volz, R. A., On Proactive
Delivery of Needed Information to Teammates.
(Submitted to the Workshop on Teamwork and
Coalition Formation at AAMAS’02).

8. Yin, J., Miller, M. S., Ioerger, T. R., Yen, J., and Volz,
R. A., A Knowledge-Based Approach for Designing
Intelligent Team Training Systems. In Proceedings of
the Fourth International Conference on Autonomous
Agents. 2000. Barcelona, Spain.

9. Ioerger, T.R., JARE MENU. 2001.
10. Russell, S. and P. Norvig, Artificial Intelligence A

Modern Approach. 1995, NJ: Prentice Hall.
11. Fagin, R., et al., Reasoning About Knowledge. 1995,

Cambridge, MA: The MIT Press.
12. Bell, J. and Z. Huang. Seeing is believing. In Common

Sense 98'. 1998.

	dedication
	article icai-final-title.pdf

