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Abstract  We are concerned, ultimately, with multi-agent teams 
involving both software and human agents in which the software 
agents assist in training the humans, e.g., as virtual team members. 
The software agents must be capable of utilizing the teamwork 
mechanisms used by humans. In this paper, we describe how to give 
agents the same implicit communication capabilities, i.e., 
observation, that humans use.  We show how agents can use 
observations of the environment and teammates' actions to 
estimate other agents’ beliefs without bothering them with 
unnecessary messages; we also show how agents can anticipate 
information needs among the team and proactively exchange 
information, reducing the total communication volume.  To 
achieve these goals, we add sensing capabilities to agents and 
present algorithms that infer teammates' mental state from the 
observation.  Experimental data is presented that shows that the 
advantage of observation in proactive information exchange as 
well as enhanced team performance. 

Keywords Intelligent agent, Multi-agent system, Teamwork, 
Agent communication, Observation 

 

Introduction 
We are concerned, ultimately, with multi-agent teams with 
both software and human agents in which the software 
agents assist in training the humans, e.g., as virtual team 
members. Our software agents must emulate, as closely as 
possible, the teamwork mechanisms used by humans so 
that we can use them for training. In this paper, we focus on 
giving agents the same implicit communication capabilities, 
i.e., observation, that humans use. Most proposed teamwork 
structures (e.g. Cohen and Levesque’s joint intentions [1], 
Jennings’ joint responsibilites [2], Huber and Durfee’s 
shared plans [3], and Stone and Veloso’s role definitions 
[4]) rely agents negotiating with each other, typically using 
a lot of communication. In human teams, however, agents 
often make decisions based upon knowledge of plans 
together with observations of the environment and other 
agents’ actions.  For example, Tambe and Kaminka [5] use 
observation to monitor failed social relationships between 
agents.  Here, we discuss reducing communication by 
using knowledge of what agents can sense. 

The context of our work is the CAST (Collaborative 
Agents for Simulating Teamwork) [6] architecture. In 
CAST, teamwork knowledge is represented in MALLET 
(Multi-Agent Logic-based Language for Encoding 
Teamwork) [8], and action rules (in Horn-clauses) and 
agent knowledge are represented in JARE (Java Automatic 
Reasoning Engine) [9], a Prolog-like back-chaining theorem 

prover. CAST uses an algorithm, DIARG (Dynamic Inter-
Agent Rule Generator), for identifying opportunities for 
deducing communication.  DIARG analyzes team member 
roles to identify information produced and/or needed by 
each agent.  The team state is tracked using a Petri Net 
(which servers as a first-order approximation of a shared 
mental model). The information exchange protocol, keeps 
track of the teamwork status via the PN and uses the 
relative frequency of information need vs. information 
production to decide whether to proactively send 
information or wait for information requests.  One 
difficulty with this approach is that significant status 
information must be distributed among the agents and 
there is no attempt to utilize agent sensing capabilities to 
reduce what information must be sent. 

A more realistic approach (from a human perspective), 
is to give the agents sensing, or observing, capabilities. 
Agents can infer some aspects of the mental state of other 
agents by observing the environment.  This, together with 
inferences about what others can see, allows an agent to 
decide when it does not need to send information to other 
agents or whom to ask when it needs information in a 
manner that reduces overall communication.   

We first present preliminary contextual information.  
Then, we introduce a representation of observability and 
an algorithm for reasoning about it.  Next we describe an 
algorithm of proactive information exchange.  Finally, we 
present some empirical results.  Our testbed is multi-agent 
wumpus world, extending that introduced in Russell and 
Norvig [10].  We use multiple agents with different 
capabilities so that teamwork becomes important.   

 

Preliminaries 
In this section, we introduce some concepts that will be 
used in subsequent sections. 

Team Knowledge.  Team knowledge is encoded in a team 
knowledge representation language, MALLET.  Goals are 
achieved by assigning a team of agents to a task and then 
invoking that task.  Each task has one or more plans by 
which it might be accomplished.  Plans describe processes. 
Processes consist of invocations of primitive operations, 
subplans, or various constructs such as sequential, parallel, 
conditional, or iteration.  The syntax of processes can be 
defined recursively.  For example, 
    (plan killwumpus() 
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(role carrier ?ca) 
(role fighter ?fi (constraint (closest-to-wumpus))) 
(process 
    (seq (do ?ca (findwumpus)) 
            (do ?fi (movetowumpus)) 
            (do ?fi (shootwumpus))))) 

Time.  To simplify our initial investigation, we index time 
into discrete steps, т = {tj}, not necessarily evenly spaced, 
and force a synchrony of actions among the agents.  At 
each time step, each agent performs one step in its plan.  

Action.  We consider an action to be the execution of an 
operation.  An action Ω is a 2-tuple <Φ, Ψ>, where, Φ is 
precondition of Ω, and Ψ is effect of Ω.  Each precondition 
and effect is a conjunction of predicates. All predicates in a 
precondition must be believed before the action can be 
performed. Conjuncts in the effects are known to be true 
after an action is performed. Actions may be individual, 
(performed by only a single team member), or they may be 
performed jointly by multiple team members.  The 
specification of an action has the following form: 

(operator <op-name> (<var>*) 
    [pre-cond <cond>*] 
    [effect <cond>*]) 

Environment.  In general, the environment is a function of 
time т and the actions performed by the agents.  At any 
time t, the environment is one element of a set E ={et} of 
instantaneous states.  Formally, the effect that an agent’s 
action has on environment can be represented using a state 
transformer function, τ : et × Ωt → et+1 (Fagin, et.al,[11]).  
Thus τ(et, Ωt) denotes the environment state that would 
result from performing action Ωt in environment state et.  
To simplify things, we use a set of predicates in JARE to 
represent portions of the state, e.g., (location carrier ?x ?y).  
A JARE query returns the values of ?x and ?y for which 
the predicate is true.  The portions of the environment 
observable to an agent are represented by such predicates.   

 

Figure 1 Agent function cycle
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Agent.  At each time step, each agent has function cycle: 
observe, belief maintenance, and act (Figure 1).  

Observation is represented as a set of rules (see next 
section).  At any time t, each agent has a local state, which 
encapsulates all the information to which the agent has 
access at time t.  The agent’s knowledge base is composed 
of the set of local states at different times.  Since the 
number of steps could be large, we keep only a limited 
history (see next section).  Every agent maintains its 
knowledge base, which contains the agent’s observability 
and the agent’s belief about other agents’ observability.   

 

Reasoning about Observability 
To define observability, we need to state both what is 
observed and the conditions under which it can be seen.  
The what may be any object property (of either an agent or 
environment object) or an action performed by an agent.  
Conditions are expressed as predicates. Both may contain 
parameters, which enables a JARE query to return, e.g., 
the location of an observed object. The observation process 
typically has a dependency upon time т.  We handle this 
by including the time of an observation with the fact that is 
locally stored.  We make the following assumptions: 

Seeing is believing.  While philosophers may entertain 
doubts because of the possibility of illusion, common 
sense is that, other things being equal, one should believe 
what one sees (Bell and Huang [12]).  Thus, we assume 
that an agent believes an observed predicate persists until it 
observes another predicate that negates that predicate.   
Observation condition.  An observation condition, OC, is 
a conjunctive list of predicates.  An agent can observe 
property p at time t if both p and OC are true at t. An action 
occurrence is represented as a predicate (including time) in 
the environment, e.g.. (shootwumpus fi T).  An agent can 
observe an action Ω if Ω and OC are true at the time of the 
observation. We assume OC includes the constraints of the 
action See itself as well as the constraints of the things (p, 
or Ω) to be observed (e.g., preconditions of Ω). We also 
assume that every agent notices all observable predicates 
and all predicates are unambiguous. 
Negation representation.  .  It is important to be able to 
reason about cases it is unknown whether the predicate is 
true or false.  Thus, we need to be able to say that the agent 
can observe whether or not a predicate is true. For each 
predicate P in environment, we create a new predicate notP 
for ¬P.  Everywhere throughout the domain rules, we 
replace ¬P with notP.  So, if the theorem prover returns 
neither P nor notP as true, this means the value is unknown. 
Observation 
The syntax of observation is thus given as: 

<observation> ::= ( see <viewing>) | 
(believe-can-see <believer><viewing>) 

<viewing> ::= <observer><observed> <time> <cond>* 
<believer> ::=<agent> 
<observer> ::= <agent> 
<observed> ::= <property|action> 



<property> ::=(<property-name> <object> <var>*) 
<action> ::=(<action-name> <doer> <var>*) 
<object> ::=<agent>|<non-agent> 
<doer> ::=<agent> 
More formally, we use See(as, α, t) to refer the action for 

agent as to observe α at time t, and CanSee(as, α, t, c) as the 
capability for agent as to observe α at time  t under the 
observation condition c. The axiom below specifies the 
occurrence of an agent’s actual sensing action: 
∀as, α, t, c,  CanSee(as, α, t, c) ∧ Hold(c, t) → See(as, α, t) 

An agent’s inference about other agent’s observations is 
based on the following axiom: 
∀ab, as, α, t, c, tb 
Bel(ab, CanSee(as, α, t, c), tb) ∧ Bel(ab, c, tb) 

→ Bel (ab, See(as, α, t), tb) 
which means at time tb, the agent ab believes as can observe 
α at time t under condition c. Finally, the assumption of 
“seeing is believing” is formalized as the axiom below: 
∀as, α, t 
See(as, α, t) → [Hold(α, t) → Bel(as, α, t)] 
       ∧ [¬Hold(α, t) → Bel(as, ¬α, t)] 

For the convenience of our discussion, we also take 
believe-can-see(a, b, α, t) as an abbreviation of Bel(a, 
CanSee(b, α, t, ca), t). A more detailed discussion about 
the formalism on agent observability and proactive 
information delivery can be found in [8]. 

Observations are presented as rules in JARE.  Some 
example observation rules in carrier’s knowledge base 
might be as shown below.  Here, the symbols ca, fi1, fi2 are 
used for carrier, fighter1, fighter2, respectively: 

(see ca (hasarrow ?o) ?t 
(location ca ?xs ?ys ?t) (location ?o ?x ?y ?t) 
(= ?xs ?x) (agent ?o) ) 

(believe-can-see ca fi1 (location ?o ?x ?y) ?t 
(location fi1 ?x1 ?y1 ?t) (location ?o ?x ?y ?t) 
(= ?x1 ?x) ) 

(believe-can-see ca fi1 (hasarrow ?o) ?t 
(location fi1 ?x1 ?y1 ?t) (location ?o ?x ?y ?t) 
(adjacent ?x ?x1 ?y ?y1) (agent ?o) ) 

The semantics of observation are maintained by the 
algorithm given in Figure 2.  This algorithm builds beliefs 
in believer’s knowledge base by checking the following: 

• Observing a property   
1) When the observation (see self (<prop-name> 

<object> <var>*) <time> <cond>* ) is made at time 
t, a JARE query ((<prop-name> <object> <var>*) t 
<cond>*) is made of the environment knowledge 
base.  The response is a list of tuples (null if 
conditions are not satisfied) of variable bindings for 
which the query is true.  Then, self’s knowledge 
base is updated with the fact ((<prop-name> 
<object> <var>* ) t) for each tuple of variable 
bindings from the returned.   

2) In the case of (believe-can-see self Ag(≠self) 
<property> T <cond>*), a query is made with 
respect to KBself.  If the condition is satisfied at T, 
self believes Ag can see the property.  However, 
self may or may not have knowledge of <property>, 
e.g., a carrier may believe a fighter can smell stench 
of wumpus if the fighter is adjacent to wumpus, but 
the carrier doesn’t itself smell the stench. 

/*Let self be the agent invoking the algorithms.  We denote the 
knowledge base for agent a by KBa, and for the environment by 
KBenv.   The updateKB(agent, action, KBself) algorithm is 
independently executed by each agent, denoted self below, after 
the completion of each step in plan in which the agent is involved.  
The function update(…) used by updateKB(…) maintains time 
history and coherence of KB.  */ 

updateKB(self, action, KBself){ 
updateEnv(action, self); //update simulation environment  

// by effects of latest action  
for each conjunct in the effects of action 

update(KBself, conjunct, T); 
updateSelfObs(self, KBself);  //by observation at T 
updateSeflBel(self, action, KBself); 

} 

updateSelfObs(self, KBself){ 

for each rule in Kbself of the form (see self (prop object ?var*) ?t 
cond), if ((prop object ?var*) T cond) is true in KBEnv for some 
bindings of variables, 

update(KBself, (name object ?var*), T) 
for each such binding of values to the variables;  

for each rule in KBself of the form (see self (action ?doer ?var*) 
?t cond) for which cond is true in KBenv for some binding of the 
variables, if the environment KB has been updated with (action 
doer) since the last time self performed its observation update 
(at ?t = T1),  

for each conjunct of precondition of action 
update(KBself, (conjunct), T1); 

for each conjunct of effects of action 
update(KBself, (conjunct), T1); 

} 

updateSelfBel(self, action, KBself){ 

for each rule of the form (believe-can-see self ?Ag (prop object 
?var*) T cond) for which cond is true in KBself for some binding 
of arguments to variables (?Ag≠self), 

for each such binding of arguments to the variables 
update(KBself, (believe-can-see ?Ag (prop object ?var*), 
T); 

for each rule of the form (believe-can-see self ?Ag (action doer 
?var* ) T cond)  for which cond is true in KBself for some 
binding of arguments to variables, 

for each conjunct of the precondition of action 
update(KBself, (believe-can-infer Ag conjunct), T); 

for each conjunct of the effects of action 
update(KBself, (believe-can-infer Ag conjunct), T); 

} 

Figure 2 A belief maintenance algorithm 



• Observing an action   
1) In the case of (see self <action-name> Agd(≠self) 

<var>* T <cond>*), the query is made with respect 
to KBenv.  Self can make two inferences.  First, self 
infers that the preconditions of the action were true 
just prior to time T, and that the effects of the action 
are true at time T.  Second, self infers that Agd 
knew the preconditions just prior to time T and that 
Agd can infer the effects of the action.  

2) In the case of (believe-can-see self Ag(≠self) 
<action-name> Agd(≠self) <var>* T <cond>*), the 
query is evaluated with respect to KBself.   Self add’s 
tuples to KBself indicating that Ag can infer that the 
preconditions of the action were true just prior to 
time T, and that the effects of the action are true at 
time T 1 .  Similarly, tuples for Ag inferring the 
effects of the action are added to KBself. 

The algorithm begins with updateEnv by self’s last 
action.  We don’t show how updateEnv works in detail, as 
that is not the principal point of this paper.  Basically, the 
environment simulation updates the knowledge base KBEnv 
after receiving any action from the agents.  Because self 
can infer the effects of its own actions, the algorithm saves 
these effects as new knowledge.  updateSelfObs evaluates 
direct property observation rules with information obtained 
from KBEnv and updates KBself with the results of the 
observation.  updateSelfBel updates self’s beliefs on what 
it can infer other by observing agents and their actions.   

To avoid having the size of the knowledge base explode, 
we define a duration, d.  Information older than d is 
deleted, except that the most recent assertion of a fact is 
kept, even if it is older than the duration.  The function 
update manages this finite history.  While at the moment, 
we only utilize the most recent information added to the 
knowledge base, we anticipate more complex forms of 
reasoning in the future, and hence keep this finite history. 

 

Proactive Information Exchange 
The purpose of proactive information exchange is to 
reduce the communication overhead as well as improve the 
efficiency or performance of a team.  We extend two types 
of information exchanges protocols: activeAsk and 
proactiveTell [6].  These protocols are used by each agent 
to generate inter-agent communication.  DIARG analyzes 
operator preconditions and effects and builds an information 
flow describing potential communication needs. An 
information flow is defined as a three tuple <info, 
providers, needers>, where info is the predicate name 
together with zero or more arguments, providers is a list of 
agents who might know such information, and needers is a 
list of agents who might need to know the information.  
We differentiate information into two types [6]: 
                                                 
1  Note, however, that self does not necessarily know what 
these values are.  This is useful, though, in case self needs 
to make a proactive ask. 

• Frequently changing but infrequently needed 
information.  We call these type I1; 

• Infrequently changing but frequently needed 
information.  We call these type I2; 

For any piece of information I, we define two functions, 
fC and fN.  fC(I) returns the frequency with which I changes.  
fN(I) returns the frequency with which I is used by agents.  
If fC(I)>fN(I), then I is I1 type information.  If fC(I)≤fN(I), 
then I is I2 type information. 

For activeAsk, an agent requests the information from 
other agents who may know it (determined from the 
information flow); for proactiveTell, the agent tells the 
information to other agents who need.  An agent always 
assumes others know nothing until it can observe or reason 
that they do know a relevant item.  Information sensed and 
beliefs about others’ sensing capabilities becomes the basis 
for this reasoning.  First the agent determines what another 
agent needs from the information flows.  Second, the 
observation rules are used to determine whether or not one 
agent knows that another agent can sense the needed 
information.  Figure 3 shows the algorithm. 
/*Independently executed by each agent when the agent needs the 
value for an item of Information, I. */ 
activeAsk(self, I, KBself, T){ 
candidateList=null; 

if (I is of type I1 and  (I at t) v (notI at t) is not true in KBself for 
any t ≤ T) {  //self doesn’t know whether or not I is true 

If there exists a x ≥ 0 such that 
((believe-can-see Ag (I) T-x) v (believe-can-see Ag (notI) T-
x) v (believe-can-infer Ag (I) T-x) v (believe-can-infer Ag 
(notI) T-x)) is true in KBself, { 

Let xs be the smallest such value of x; 
for each agent Ag≠self 

if ((believe-can-see Ag (I) T-xs) v (believe-can-see 
Ag (notI) T-xs) v (believe-can-infer Ag (I) T-xs) v 
(believe-can-infer Ag (notI) T-xs)) is true in KBself, { 

add Ag to candidateList;} 
}else return null; 

} 
else return null; 
randomly select Ag from candidateList; 
Ask Ag for I; 
return value received from I; 

} 
/* Independently executed by each agent after the agent executes 
updateKB().*/ 
proactiveTell(Kbself,, T) { 

for each conjunct I for which (I, T) is true in Kbself, consider the 
information flow <I, neederList, providerList>  
∀ Agn ∈ neederlist  

if ((believe-can-see Agn (I) T) v (believe-can-infer Agn (I) T) 
is not true in Kbself) 

tell Agn (I);2  
} 
 
                                                 
2 Note that there is no need to say anything about previous 
time points, as those would have been handled when they 
were first entered.  Further, there is no need to explicitly 
consider notI; if true, it will be entered as a fact on its own. 

Figure 3 Proactive information exchange protocols



Experimental Results 
We use a synthetic multi-agent wumpus world as our test 
domain.  The experiments are performed on five randomly 
generated worlds with 20 by 20 cells. Each world has 20 
wumpuses, 8 pits, and 20 piles of gold.  The team goal is 
to kill wumpuses and get the gold without being killed.  
Four agents, 1 carrier and 3 fighters compose a team.  The 
carrier finds wumpuses and picks up gold.  Fighters shoot 
wumpuses.  Every agent can sense a stench (from adjacent 
wumpuses), a breeze (from adjacent pits), and glitter (from 
the same position) of gold. 

The world simulation maintains object properties and 
actions, such as objects’ locations, agents’ arrows, etc.  All 
agents use the same KBEnv to reason about the environment 
and for determining their priority of actions.   

Agents may also have additional sensing capabilities, 
defined by observation rules in its knowledge base.  For 
example, the carrier’s sensing rules may be: 

(see ca (location ?o ?x ?y) ?tc //see property location 
(location ca ?xc ?yc ?tc) (location ?o ?x ?y ?t)  
(inradius ?xc ?yc ?x ?y rca) (= ?tc ?t)) 

(see ca (hasarrow ?o) ?tc //see property has arrow 
(see ca (location ?o ?x ?y) ?t) (= ?tc ?t)) 

(see ca (shootwumpus ?o) ?tc //see action shoot 
(see ca (location ?o ?x ?y) ?t) (= ?tc ?t)) 

(believe-can-see ca fi (location ?o ?x ?y) ?ti //belief 
(location fi ?xi ?yi ?ti) (location ?o ?x ?y ?t) 
(inradius ?xi ?yi ?x ?y rfi) (= ?ti ?t)) 

The carrier can see all objects (and their locations) within a 
radius of rca. It can also sense whether or not fighters have 
arrows, and see any fighter shoot a wumpus if the fighter is 
within range.  Further, the carrier knows that fighter fi can 
see objects within rfi of fi.  

Each team is allowed to operate a fixed number of 150 
steps.  Agents use proactiveTell to impart information they 
just learned if they believe other agents will need it. 
Agents use activeAsk to request two categories 
information: 1) an unknown conjunct that is part of a 
precondition of plan or operator, (e.g., wumpus location) 
2) an unknown conjunct that is part of a constraint, such as 
selecting the agent closest to the wumpus.   

We use two teams, designated A and B.  Except for the 
observability rules, conditions of both teams are exactly 
the same.  All agents move at each time step.  In the 
absence of any target information (wumpus or gold), they 
move randomly.  If they are aware of a target location 
requiring action on their part (shoot wumpus or pick up 
gold), they move toward the target.  In all cases, they avoid 
unsafe locations.  We report two experiments.   

For the first experiment, the teams are composed as: 
• Team A: The carrier can observe objects within a 

radius of 5 grid cells, and each fighter can see objects 
within a radius of 3 grid cells.  

• Team B: None of the agents have any sensing 
capabilities beyond the basic capabilities described at 
the beginning of the section.  

We use measures performance, reflecting the number of 
wumpuses killed, amount of communication used and gold 
recovered.  In order to make comparisons easier, we have 
chosen to have decreasing values indicate improving 
performance, e.g., smaller numbers of communication 
messages are better.  To maintain this uniformity with 
some parameters of interest, we use as our measure the 
quantity not achieved by the team rather than the number 
achieved, e.g., the number of wumpuses left alive rather 
than the number killed.   The results are shown in Table 1. 

Table 1 shows that, as expected, Team A found and 
killed more wumpuses than Team B.  Basically, the further 
the agents can see (we have run other experiments), the 
more wumpuses are killed.  Team A used somewhat more 
messages than Team B.  However, one must consider that 
the more wumpuses found, the more messages that are 
likely to be sent.  Hence, it makes more sense to compare 
the average number of messages per wumpus killed.  In 
these terms, the performance of Team A, is much better 
than that of Team B.  Hence, our algorithms for managing 
the sensing capabilities of agents have been effective. 

 
TeamA T1 T2 T3 T4 T5 T6 T7 
Test1 5 10 0 32 60 4.00 2.03 
Test2 4 7 0 35 58 3.62 2.18 
Test3 4 8 0 38 66 4.12 2.31 
Test4 5 8 0 32 58 3.86 2.03 
Test5 6 10 0 24 45 3.21 1.71 

        
TeamB T1 T2 T3 T4 T5 T6 T7 
Test1 16 14 0 27 54 13.50 6.75 
Test2 16 16 0 27 54 13.50 6.75 
Test3 16 14 0 27 54 13.50 6.75 
Test4 14 15 0 30 60 10.00 5.00 
Test5 15 14 0 30 60 10.00 5.00 

T1: number of wumpuses left alive 
T2: amount of gold left unfound         
T3: number of agent killed 
T4: total number of activeAsks used  
T5: total number of proactiveTells used 
T6: average number of activeAsks per wumpus killed  
T7: average number of proactiveTells per wumpus killed  

Table 1 Experiment Results 

From the first experiment, it appears that the average 
communication per wumpus killed is improved with 
sensing.  We designed Experiment 2 to show how team 
size affects this metric.  We use the same sensing 
capabilities for Teams A and B.  However, we increased 
the number of fighters from 3 to 4 and 5, respectively, in 
two tests that we run.  



Figure 4 shows the trend of average proactiveTell per 
wumpus killed as a function of increasing team size.  Team 
A’s per unit communication is almost independent of size.  
Team B has an obvious increase in average 
communication with increasing the team size.  In Team B, 
a fighter kills a wumpus only after getting the wumpus 
location from a carrier.  So, increasing the number of 
fighters will do little in terms of the number wumpus of 
killed, but the communication load goes up because more 
fighters must be proactively told the location of wumpuses.   

We also tested several different elements which may 
affect the average communication per killed wumpus 
value.  These elements include team starting locations 
(clustered in one part of the world, or randomly scattered), 
number of wumpuses, and number of carriers.  We tested 
these elements individually, keeping the elements not 
being tested the same as in the first experiment.  In all 
cases, the average number of proactiveTells per wumpus 
killed for Team A remained significantly better than for 
Team B.  Indeed, the average proactive communication 
remained roughly constant for Team B, while none of the 
variations significantly reduced Team A’s communication.  
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Figure 4 The comparison of average communication with 
different team size 

 

Discussion and Conclusions 
In this paper, we have presented the notion of agent 
sensing as a mechanism for improving performance and 
reducing inter-agent communication.  We have presented 
algorithms for achieving this in our agent architecture, and 
we have shown experimental results that demonstrate the 
effectiveness of our agent sensing algorithms. 

In the future, we plan to manage time flow in a less 
restrictive manner and develop additional mechanisms for 
reducing inter-agent communication.  For our present 
proactive information algorithm to work, each agent has to 
know the information needs and production of each other 
agent.  This is done now by the use of information flows.  
However, this is too rigid.  We would like to make the 
recognition of needed information more dynamic.  We 
plan to work on a way to recognize the goals of other 
agents and track the sequence of sub-goals on which an 

they are working dynamically.  Using this information 
together with the action an agent has most recently 
performed we will dynamically estimate the most likely 
information needs of other agents over a finite time 
horizon.  Then, we can send only information unknown to 
other agents that will be needed in the near future.   
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