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Probabilistic roadmap (PRM) planners [5, 16] solve apparently difficult
motion planning problems where the robot’s configuration space C has
dimensionality six or more, and the geometry of the robot and the
obstacles is described by hundreds of thousands of triangles. While an
algebraic planner would be overwhelmed by the high cost of computing
an exact representation of the free space F , defined as the collision-
free subset of C, a PRM planner builds only an extremely simplified
representation of F , called a probabilistic roadmap. This roadmap is a
graph, whose nodes are configurations sampled from F with a suitable
probability measure and whose edges are simple collision-free paths,
e.g., straight-line segments, between the sampled configurations. PRM
planners work surprisingly well in practice, but why?

Previous work has partially addressed this question by identi-
fying and formalizing properties of F that guarantee good perfor-
mance for a PRM planner using the uniform sampling measure (e.g.,
[12, 14, 15, 18, 23]). Several systematic experimental studies have also
compared various PRM planners, in terms of their sampling and con-
nection strategies (e.g., [7, 8, 21]). However, the underlying question
“Why are PRM planners probabilistic?” has received little attention
so far, and consequently the importance of probabilistic sampling mea-
sures for PRM planning remains poorly understood. Since no inherent
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randomness or uncertainty exists in the classic formulation of motion
planning problems, one may wonder why probabilistic sampling helps
to solve them.

Our work attempts to fill this gap by establishing the probabilistic
foundations of PRM planning—an effort that that, surprisingly, has
not been undertaken before—and re-examining previous work in this
context. A full version of this paper will soon appear [11]. The main
questions addressed in this work are summarized below:

Why is PRM planning probabilistic? A foundational choice in
PRM planning is to avoid the prohibitive cost of computing an ex-
act representation of F . Instead, a PRM planner uses fast probes to
test whether sampled configurations and paths are collision-free. So, it
never knows the exact shape of F , nor its connectivity. It works very
much like a robot exploring an unknown environment to build a map.
At any moment during planning, many hypotheses on the shape of F
are consistent with the information gathered so far. The probability
measure for sampling F reflects this uncertainty. Hence, PRM plan-
ning trades the cost of computing F exactly against the cost of dealing
with uncertainty. This choice is beneficial only if probabilistic sampling
is likely to lead to a roadmap that is much smaller in size than that
of an exact representation of F and still represents F well enough to
answer motion planning queries correctly. Note the analogy with PAC
learning, where one can expect to learn a concept from examples only
if the concept is assumed to have a simple representation.

Why does PRM planning work well? One can think of the nodes
of a roadmap as a network of guards watching over F . To guaran-
tee that a PRM planner converges quickly, F should satisfy favorable
“visibility” properties, more specifically a property called expansive-
ness [12]. Perhaps the main contribution of PRM planning has been to
reveal, through its emprical success, that many free spaces encountered
in practice satisfy this property, despite their high algebraic complex-
ity. This fact was a priori unsuspected, but in retrospect it is not so
surprising. Poor visibility is caused by narrow passages, which are un-
stable geometric features: small random perturbations of the workspace
geometry are likely to either eliminate them or make them wider [4].
So, narrow passages rarely occur by accident. Since visibility properties
are defined in terms of volume ratios over certain subsets of F , they do
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not directly depend on dim(C), the dimensionality of C. This explains
why PRM planning scales up reasonably well when dim(C) increases.

How important is the sampling measure? In every PRM plan-
ner, a probability measure prescribes how sampled configurations are
distributed over F . Since visibility properties are usually not uniformly
favorable across F , non-uniform measures, which strive to identify re-
gions with inferior visibility properties and allocate a higher density of
samples to them, have a critical impact on the efficiency of PRM plan-
ning. Existing PRM planners use a variety of techniques to localize re-
gions of F where visibility is expected to be less favorable. Some identify
narrow passages in the robot’s workspace and map them into configura-
tion space [6, 9, 17, 24, 25], Others, like Gaussian sampling [2] and the
bridge test [10], over-sample C, but quickly reject many unpromising
samples by detecting local geomeric features suggesting good or poor
visibility. Others exploit information gained during roadmap construc-
tion to generate and adapt sampling measures [1, 3, 12, 13, 16, 20, 22]
Experiments show that the resulting non-uniform sampling measures
dramatically improve the performance of PRM planning.

How important is the sampling source? To sample a configura-
tion, a PRM planner needs both a probability measure and a source
S of random or deterministic numbers. The “sampling measure”, a
notion firmly rooted in probability theory, and the “sampling source”
are very distinct concepts, but they have often been blurred in the lit-
erature. With the use of deterministic sources in PRM planners [19],
this distinction becomes important. Typically, a PRM planner uses
S to sample a point uniformly from the unit hypercube [0, 1]dim(C)

and then maps this point into C according to the probability mea-
sure. The source most commonly used in existing PRM planners is the
pseudo-random source that closely approximate the statistical prop-
erties of true random numbers. But some deterministic sources can
spread samples over C more evenly by minimizing discrepancy or dis-
persion [19]. However, experiments show that the choice of the source
has limited effect on the efficiency of PRM planning. When dim(C) is
small, low-discrepancy/dispersion deterministic sources achieve some
speedup over pseudo-random sources, but this speedup is very modest
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compared to that achieved by good sampling measures. It also fades
away quickly, as dim(C) increases.
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23. P. Švestka. On probabilistic completeness and expected complexity for
probabilistic path planning. Tech. Rep. UU-CS-1996-08, Utrecht Univer-
sity, Dept. of Information & Computing Sciences, Utrecht, The Nether-
lands, 1996.

24. J.P. van den Berg and M.H. Overmars. Using workspace information as
a guide to non-uniform sampling in probabilistic roadmap planners. Int.
J. Robotics Research, 24(12):1055–1071, 2005.

25. Y. Yang and O. Brock. Adapting the sampling distribution in PRM
planners based on an approximated medial axis. In Proc. IEEE Int. Conf.
on Robotics & Automation, 2004.


