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Abstract: In this paper, we address a particular flavor of the motion planning
problem, that is, the gait generation problem for underactuated variable inertia
mechanical systems. Additionally, we analyze a rather general type of mechanical
systems which we refer to as mixed systems. What is unique about this type of
mechanical system is that both non-holonomic velocity constraints as well as in-
stantaneous conservation of the generalized momentum variables defined along the
allowable motion direction completely specify the systems velocity.

By analyzing this general type of mechanical systems, we lay the grounds for a
general and intuitive analysis of the gait generation problem. Through our approach,
we provide a novel framework not only for classifying different types of mechanical
systems, but also for identifying a partition on the space of allowable gaits.

By applying our techniques to mixed systems which according to our classifica-
tion are the most general type of mechanical systems, we verify the generality and
applicability of our approach. Moreover, mixed systems yield the richest family of
allowable gaits, hence, superseding the gait generation problem for other simpler
types of mechanical systems. Finally, we apply our analysis to a novel mechanical
system, the variable inertia snakeboard, which is a generalization of the original
snakeboard that was previously studied in the literature.

1 Introduction

It is straight forward to analyze the motion of a mechanical system due to
a particular set of inputs or generalized forces. In fact, this is done by solv-
ing a set of second order non-linear differential equations of motion, usually
referred to as the Euler-Lagrange equations of motion. In most cases, the so-
lution of this set of differential equations is numerically computed, since in
general they do not yield a closed form solution. The gait generation problem
involves solving the reverse problem, that is, finding a set of inputs that will
cause a desired behavior of motion of the mechanical system. Given, the highly
non-linear nature of the governing equations of motion, one can appreciate the
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difficulty and complexity of the gait generation problem for mechanical sys-
tems. To further complicate the gait generation problem, we gear our analysis
toward underactuated mechanical systems, that is, systems that do not have
as many actuators as the number of degrees of freedom. Finally, we also seek
to verify the generality of our gait generation techniques by analyzing, accord-
ing to our classification, the most general type of mechanical systems and by
ensuring that the systems do not benefit from a fixed inertia property which
considerably simplifies the expressions of the equations of motion.

In our prior work, we unified the gait generation approach for two seem-
ingly different families of mechanical systems, principally kinematic and purely

mechanical systems in [12] and [14], respectively. Even though, these two fam-
ilies of systems belong to the opposite ends of a spectrum where at one end
are purely mechanical systems whose motion is governed solely by the conser-
vation of momentum while at the other end are principally kinematic systems
whose motion is governed solely by the existence of a set of independent non-
holonomic constraints that fully constrain the systems velocity, we devised a
rather simple gait evaluation tool which is equally applicable to both types
of systems. The fact that we proved that momentum, is null for the case of
purely mechanical systems and non-existent for the case of the principally
kinematic systems allowed us to intuitively generate geometric gaits for both
systems.

Nonetheless, for mixed system, in general we can not neglect the system’s
momentum as it could be the dominating contributing factor of motion for
certain gaits. At the core of our dynamic gait analysis is a deep understanding
of a generalized notion of the systems momentum and its time evolution. We
attain this goal through a twofold reduction or simplification of the equations
of motion. First, as shown in the prior work, we utilize the symmetry in
the laws of physics to represents the evolution of the momentum as a first
order differential equation. Additionally, we devised a second reduction step
to further simplify the expression of this evolution equation so that we can
use to intuitively generate dynamic gaits.

In this paper, we generate gaits for a novel mechanical system, the vari-

able inertia snakeboard, shown in Fig. 1(a). This system is a generalization
of the original snakeboard, (Fig. 1(b)), which was extensively studied in the
literature, [2, 8], and which we analyzed in [13]. Both snakeboards belong to
the mixed type systems, that is, the non-holonomic constraints do not fully
span the fiber space. Thus, the generalized non-holonomic momentum must be
instantaneously conserved along certain directions which for the above snake-
boards are rotations about the wheel axes intersections. However, the inertia
of the original snakeboard is independent of the base variables1 which greatly
simplifies the gait generation analysis. Thus, we consider the variable inertia

1 Changing the base variables, rotor and wheel axes angles, in Fig. 1(b) will neither
change the position of the system’s center of mass, nor change its inertia about
that point.
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Fig. 1. A schematic of the variable inertia snakeboard in (a) and original snakeboard
in (b) depicting their configuration variables.

snakeboard, which as its name suggests, has a non-constant inertia, to verify
the generality and applicability of our gait analysis techniques.

Utilizing our gait generation techniques we design curves in the actuated
base space which represents the internal degrees of freedom of the robot to
translate and rotate the variable inertia snakeboard in the plane. In other
words, we will generate gaits by using the actuated base variables to control
the un-actuated variables of the fiber space which denote the “position” of
the system with respect to a fixed inertial frame. Thus, our goal is to design
cyclic curves in the base space, which after a complete cycle, produce a desired
motion along a specified fiber direction, hence, effectively moving the robot to
a new position. We start by presenting the following related prior approaches.

Sinusoidal inputs: Ostrowski et. al. expressed the dynamics of a me-
chanical system in body coordinates and were able to represent it as an affine
non-linear control system. Then by taking recourse to control theory, they
were able to design sinusoidal gaits and specify the gait frequencies. Nonethe-
less, the gait amplitudes were empirically derived [9]. Ostrowski et. al. used
their gait generation analysis to generate gaits for the original snakeboard
(Fig. 1(b)) [8]. Moreover, Chitta et. al. developed several unconventional lo-
comoting robots, such as the robo-trikke and the rollerblader, [4, 10], then used
Ostrowski’s techniques to generate sinusoidal gaits for these novel locomoting
robots. Prior work related to Ostrowski’s can also be found in [1, 7, 15].

Kinematic reduction: The work done by Bullo et. al. in [3] on kinematic
reduction of simple mechanical systems is closely related to our work. They
define a kinematic reduction for simple mechanical systems, or in other words,
reduce the dynamics of a system so that it can be represented as a kinematic
system. Then they study the controllability of these reduced systems and for
certain examples, they were able to generate gaits for these systems. In fact,
Bullo et. al. have designed gaits for the original snakeboard (Fig. 1(b)) which
we analyzed in [13]. In this paper, we introduce one type of gait, a purely

kinematic gait, which is structurally similar to gaits proposed by Bullo et. al.

in [2]; however, we have a different way of generating these gaits.
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2 Background Material

Here we present a rather abbreviated introduction to Lagrangian mechanics,
introduce mixed systems, and finally we present several mechanics of locomo-
tion results which we shall utilize to generate gaits for mixed systems.

Lagrangian mechanics: The n-dimensional configuration space of a me-
chanical system, usually denoted by Q, is a trivial principal fiber bundle; that
is, Q = G×M where G is the fiber space which has a Lie group structure and
M is the base space. In this paper we assume the Lagrangian of a mechanical
system to be its kinetic energy. Moreover, we assume that the non-holonomic
constraints that are acting on the mechanical system can be written in a Pfaf-
fian from, ω(q) · q̇ = 0, where ω(q) is a k × n matrix and q̇ represents an
element in the tangent space of the configuration manifold Q.

Associated with the Lie group structure of the fiber space, G, we can
define the action, Φg, and the lifted action, TgΦg, which act on the entire
configuration manifold, Q, and tangent bundle, TQ, respectively. Since we can
verify that both the Lagrangian and non-holonomic constraints are invariant
with respect to these action, we can express the system’s dynamics at the
Lie group identity2 as was shown in [5]. In other words, we eliminate the
dependence on the placement of the inertial frame. This invariance allows us
to compute the reduced Lagrangian, l(ξ, r, ṙ), which according to [8] will have
the form shown in (1) and the reduced non-holonomic constraints shown in
(2) as we demonstrated in [12].

l(ξ, r, ṙ) =
1

2

„
ξ
ṙ

«T

M̃

„
ξ
ṙ

«

=
1

2

„
ξ
ṙ

«T „
I(r) I(r)A(r)

AT (r)IT (r) m̃(r)

«„
ξ
ṙ

«

(1)

ω̄(r)

„
ξ
ṙ

«

=
`
ω̄ξ(r) ω̄r(r)

´
„

ξ
ṙ

«

= 0 (2)

Here M̃ is the reduced mass matrix, A(r) is the local form of the mechanical
connection, I(r) is the local form of the locked inertia tensor, that is, I(r) =
I(e, r)3, and m(r) is a matrix depending only on base variables. Finally, recall
that ξ is an element of the Lie algebra and is given by ξ = TgLg−1 ġ, where
TgLg−1 is the lifted action acting on a tangent space element ġ.

Mixed systems: Such systems are a general type of dynamic mechani-
cal system that are subject to a set of non-holonomic constraints which are
invariant with respect to the Lie group action. Hence, a mechanical system
whose configuration space has a trivial principal fiber structure, Q = G×M ,
and is subjected to k non-holonomic constraints, ω(q) · q̇ = 0, is said to be
mixed if the number of constraints acting on it is less than the dimension of

2 Note that the elements of the tangent space at the fiber space identity form a Lie
algebra which is usually denoted by g.

3 e is the Lie group identity element.
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the system’s fiber space (0 < k < l), the constraints are linearly independent
(det(ω(q)) 6= 0), and the constraints are invariant with respect to the Lie
group actions (ω(q) · q̇ = ω(Φg(q)) · TgΦg(q̇) = 0).

Mechanics of locomotion: Now we borrow some well-known results
from the mechanics of locomotion, [6], upon which we shall build our own
gait generation techniques. For a mixed system, according to [8] the system’s
configuration velocity expressed in body coordinates, ξ, is given by the re-

construction equation shown in (3), where A(r) is an l × m matrix denoting
the local form of the mixed non-holonomic connection, Γ (r) is an l × (l − k)
matrix, and p is the generalized non-holonomic momentum. We can compute
this momentum variable by p = ∂l

∂ξ
Ω̄T where Ω̄T is a basis of N (ω̄ξ), the null

space of ω̄ξ. Then using (1) we compute the expression for p as shown in (4).

ξ = −A(r)ṙ + Γ (r)pT (3)

pT = Ω̄
∂l

∂ξ
= Ω̄ (Iξ + IAṙ) =

`
Ω̄I Ω̄IA

´
„

ξ
ṙ

«

(4)

ṗ = pT σpp(r)p + pT σpṙ(r)ṙ + ṙT σṙṙ(r)ṙ (5)

Moreover, for systems with a single generalized momentum variable4, its
evolution is governed by a first order differential equation5 shown in (5), where
the σ’s are matrices of appropriate dimensions whose components depend
solely on the base variables. Later in the paper, we will utilize both (3) and
(5) and rewrite them in appropriate forms that will help us generate gaits.

Example: Now we introduce our example system, the variable inertia
snakeboard, which is composed of three rigid links that are connected by two
actuated revolute joints as shown in Fig. 1(a). The outer two links have mass,
m, concentrated at the distal ends and an inertia, j, while the middle link is
massless. Moreover, attached to the distal ends of the outer two links is a set
of passive wheels whose axes are perpendicular to the robot’s links. The no
sideways slippage of these two sets of wheels provide the two non-holonomic
constraints which act on the system.

We attach a body coordinate frame to the middle of the center link and
align its first axis along that link. The location of the origin of this body
attached frame is represented by the configuration variables (x, y) while its
orientation is represented by the variable θ. The two actuated internal degrees
of freedom are represented by the relative inter-link angles (α1, α2).

Hence, the variable inertia snakeboard has a five-dimensional (n = 5)
configuration space Q = G × M , where the associated Lie group fiber space

4 For systems with more than one momentum variables, (5) will be a systems of
differential equations involving tensor operations as was shown in [1, 5].

5 Recall that these equations are the dynamic equations of motion along the fiber
variables expressed using the generalized momentum variables.
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denoting the robot’s position and orientation in the plane is G = SE(2),
the special Euclidean group. The base space denoting the internal degrees of
freedom is M = S × S. The Lagrangian of the variable inertia snakeboard in
the absence of gravity is computed using L(q, q̇) = 1

2

∑
3

i=1
(miẋ

T
i ẋi + jiθ̇

2

i ).
Let 2L and R be the length of the middle link and the outer links, respectively.
Moreover, to simplify some expressions we assume that the mass and inertia
of the two distal links are identical, that is, mi = m and ji = j = mR2. Given
that the fiber space has an SE(2) group structure, we can compute the body
velocity representation of a fiber velocity where we have ξ = TgLg−1 ġ, that is

ξ1 = cos(θ)ẋ − sin(θ)ẏ, ξ2 = sin(θ)ẋ + cos(θ)ẏ, and ξ3 = θ̇.

I = mR

0

B
@

2
R

0 − sin(α1) + sin(α2)
0 2

R
cos(α1) − cos(α2)

− sin(α1) + sin(α2) cos(α1) − cos(α2)
L2+2R2

R/2
+ cos(α1)+cos(α2)

1/2L

1

C
A(6)

IA = mR

0

@

− sin(α1) sin(α2)
cos(α1) − cos(α2)

2R + L cos(α1) 2R + L cos(α2)

1

A and m̃ = mR

„
2R 0
0 2R

«

(7)

ω̄ξ =

„
− sin(α1) cos(α1) R + L cos(α1)
sin(α2) − cos(α2) R + L cos(α2)

«

and ω̄r =

„
R 0
0 R

«

(8)

The above transformation allows us to verify the Lagrangian invariance
and to compute the reduced Lagrangian. Thus, the components of the reduced
mass matrix as is shown in (1) are given in (6) and (7). Note that the reduced
mass matrix is not constant as was the case for the original snakeboard [13]
and it depends solely on the base variables, α1 and α2. Similarly we can write
the non-holonomic constraints in body coordinates for the variable inertia
snakeboard where the components of (2) are given in (8). Moreover, note that
the variable inertia snakeboard has a three-dimensional fiber space, SE(2),
and it has two non-holonomic constraints, one for each wheel set. We have
verified that these constraints are invariant with respect to the group action
and we know that these non-holonomic constraints are linearly independent
away from singular configurations. Thus, we conclude that the variable inertia
snakeboard a mixed type system.

Using the above computed components of the reduced mass matrix in
(6) and (7) and the non-holonomic constraints in (8), we can easily compute
the reconstruction equation shown in (3) and the generalized non-holonomic
momentum as shown in (4). For the sake of brevity, we will not present the
explicit structure of these expressions. Finally, utilizing the generalized non-
holonomic momentum and the reconstruction equations, we can rewrite the
original Euler-Lagrange equations of motion in terms of the generalized non-
holonomic momentum to arrive at the momentum evolution equation, (5).
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3 Scaled Momentum

Rewriting the system dynamics in terms of the generalized non-holonomic mo-
mentum yields a rather simple expression of the equations of motion as shown
in (3) and (5). Nonetheless, we can clearly see that the generalized momentum
is not zero for all time as was the case purely mechanical systems, thus, when
we integrate the reconstruction equation the second dynamic, Γ (r)pT term
does not vanish. Analyzing this dynamic term is rather complicated since
one can not solve for the generalized momentum in a closed from. In fact,
Bullo et. al. avoided this computing second term by considering gaits that
nullify it. We, on the other hand, will introduce a new momentum variable
that will simplify the dynamic terms analysis which will allow us to generate
a richer family of gaits.

Now we manipulate (5) to a more manageable form which allows us to in-
tuitively evaluate the dynamic phase shift. At this point we will limit ourselves
to systems that have one less velocity constraint than the dimension of the
fiber space, i.e., l−k = 1. This assumption leaves us with only one generalized
momentum variable and forces the term σpp(r) = 0 in (5) as was explained
in [8]. Moreover, first order differential equation theory confirms that an inte-
grating factor, h(r), exists for (5). Hence, the assumption l−k = 1 allows us to
easily find a closed form solution for the integrating factor for the momentum
evolution equation (5). In our future work, we will address the existence of
this integrating factor for systems for which the above assumption does not
hold. Thus, we define the scaled momentum as ρ = h(r)p and rewrite (3) and
(5) to arrive at

ξ = −A(r)ṙ + Γ̄ (r)ρ, and (9)

ρ̇ = ṙT Σ̄(r)ṙ, (10)

where Γ̄ (r) = Γ (r)/h(r) and Σ̄(r) = h(r)σṙṙ(r). Now that we have written
the reconstruction and momentum evolution equations in our simplified forms
shown in (9) and (10), we are ready to generate gaits by studying and ana-
lyzing the three terms, A(r), Γ̄ (r), and Σ̄(r). In fact, we will use A(r) and
Γ̄ (r) to respectively construct the height and gamma functions while we use
Σ̄(r) to study the sign definiteness of the scaled momentum.

4 Gait evaluation

In this section, we equate the position change due to any closed base-space
curve to two decoupled terms. Then, we present how to design curves in
such a way to exclusively ensure that any of these terms is non-zero along
a specified fiber direction, that is, effectively synthesizing two types of gait
associated with each of the decoupled terms. In the next section, we will define
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Fig. 2. The three height functions, (F1, F2, F3), and three gamma functions,
(G1, G2, G3), corresponding to the three fiber directions in body representation,
(ξ1, ξ2, ξ3), for the variable inertia snakeboard are depicted in (a) through (f). The
darker colors indicate the positive regions which are separated by solid lines from
the lighter colored negative regions.

a partition on the space of allowable gaits such that we can generate gaits by
relating position change to either one of the decoupled terms or both. For the
first case, we exclusively use the gait synthesis tools presented in this section
while for the second case we define another type of gaits that simultaneously
utilizes both gait synthesis tools.

We define a gait as a closed curve, φ, in the base space, M , of the robot.
We require that our gaits be cyclic and continuous curves. Having written
the body representation of a configuration velocity in a simplified manner as
seen in (9), we solve for position change by integrating (9). Defining ζ as the
integral of ξ and then integrating each row of (9) with respect to time we get

∆ζi =

Z t1

t0

ζ̇idt =

Z t1

t0

ξidt =

Z t1

t0

 

−

mX

j=1

A
i
j(r)ṙ

j +

l−kX

j=1

Γ̄ i
j (r)ρj

!

dt

=

Z Z

Φ

mX

o,j=1,o<j

Ā
i
oj(r)drodrj

| {z }

IGEO

+

Z l−kX

j=1

„

Γ̄ i
j (r)

Z “

ṙT Σ̄(r)ṙ
”j

dt

«

dt

| {z }

IDY N

(11)

Note that the first term can be written as a line integral and then by using
Stokes’ theorem we equate it to a volume integral. As for the second term we
just substitute for the scaled momentum, ρ, using (10). Hence, we equated
position change to two integrals, IGEO which computes the geometric phase
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shift and IDY N which computes the dynamic phase shift. Next, we analyze
how to synthesize gaits using the two independent phase shifts.

4.1 Evaluating geometric gaits

For simplicity, we limit ourselves to two-dimensional base spaces, that is, (m =
2). This allows us to equate the geometric position change contribution, IGEO,
due to any gait, φ, by computing the volume integral

∫ ∫
φ

F i(r1, r2)dr1dr2,

where F i =
∂Ai

2

∂r1

− ∂Ai

1

∂r2

’s are the well-defined height function associated with

the fiber velocity ξi. Then, we generate geometric gaits by studying certain
properties of the height functions: Symmetry to study smaller portions of the
base space, Signed regions to control the orientation of the designed curves as
well as the magnitude of the the geometric phase shift, and Unboundedness

to identify singular configurations of the robot.
By inspecting the above properties of the height functions we are able

to easily design curves that only envelope a non-zero volume under a desired
height function while it encloses zero volume under the rest of the height func-
tions. For example, Closed non-self-intersecting curves that stay in a single
signed region are guaranteed to enclose a non-zero volume and Closed self-

intersecting curves that span two regions with opposite signs and that change
orientation as they pass from one region to another are also guaranteed to
enclose a non-zero volume. On the other hand, Closed non-self-intersecting

curves that are symmetric about odd points are guaranteed to have zero vol-
ume and Closed self-intersecting curves that are symmetric about even points

are guaranteed to have zero volume. Note that these rules do not impose any
additional constraints on the shape of the input curves.

4.2 Evaluating dynamic gaits

Now, we will analyze the second term in (11), to propose gaits that ensure
that IDY N is non-zero along a desired fiber direction. Note that for each
fiber direction the integrand of IDY N in (11) is composed of the product of
two terms, the gamma function, Γ̄ i(r), and the scaled momentum variable, ρ.
Thus, by analyzing the Σ̄ matrix in (11) we propose families gaits that ensure
that the scaled momentum variable is sign-definite. Then, we analyze the the
gamma functions in a similar way to how we analyze the height functions,
that is, we study their symmetry, signed regions, and unbounded regions.
Note that, we do not use Stokes’ theorem on the gamma functions as we did
for the height functions, since the dynamic phase shift is equated to a time
definite integral not to a path integral as was the case for the geometric phase
shift. Thus, by picking gaits that are located in a same signed region of Γ̄ i(r),
we ensure the integrand of IDY N is non-zero along a desired fiber direction.

Example: Now we compute the height and gamma functions for the vari-
able inertia snakeboard. The expressions for this particular system are rather
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complicated and we will not present them in this paper; however, the expres-
sions can be found in [11] and we depict the graphs of the three height and
gamma functions in Fig. 2(a)−(c) and (d)−(f), respectively. These functions
have the following properties which we will utilize later to generate gaits.

• F2 = G2 = 0 for α1 = −α2,
• F3 = G3 = 0 for α1 = α2,
• F1 and G1 are even about both lines α1 = α2 and α1 = −α2,
• F2 and G2 are even about α1 = α2 and odd about α1 = −α2,
• F3 and G3 are odd about α1 = α2 and even about α1 = −α2.

5 Gait generation for mixed system

In this section, we utilize our geometric and dynamic gait synthesis to generate
gaits for mixed systems. Next, we define a partition on the allowable gait space
which allows us to independently analyze IGEO and IDY N and generate gaits
using our synthesis tools. We respectively label the two families of gaits as
purely kinematic and purely dynamic gaits. Moreover, we propose a third type
of gait that simultaneously utilizes both shifts, IGEO and IDY N , to produce
motions with relatively larger magnitudes. We label this family of gaits as
kino-dynamic gaits.

5.1 Purely kinematic gaits

Purely kinematic gaits are gaits whose motions is solely due to IGEO, that is,
IDY N = 0 for all time. A solution for such a family of gaits is to set ρ = 0
in (11) which sets the integrand of IDY N to zero. Thus, we define purely
kinematic gaits as gaits for which ρ = 0 for all time. Note that for purely
mechanical systems p = ρ = 0 by definition and for principally kinematic sys-
tems IDY N = 0 since p = ∅. Hence, any gait for these two types of systems is
necessarily purely kinematic. However, for mixed systems, we generate purely
kinematic gaits by the following two step process:

• Solving the scaled momentum evolution equation, (10), for which ρ = ρ̇ =
0. This step defines vector fields over the base space whose integral curves
are candidate purely kinematic gaits.

• Using our geometric gait synthesis analysis on the above candidate gaits
to concatenating parts of integral curves that enclose a non-zero volume
under the desired height functions.

Sometimes, purely kinematic gaits are referred to as geometric gaits, since
the produced motion is solely due to the generated geometric phase as de-
fined in [1]. Moreover, purely kinematic gaits are structurally similar to gaits
proposed by Bullo in his kinematic reduction of mechanical systems in [3].
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Fig. 3. (a) Plot indicating the negative regions (lighter colored regions) of the base
space where ∆ρ < 0. (b) Two vector fields defined over the base space whose integral
curves are purely kinematic gaits. The solid lines are integral curves of the vector
fields which we will utilize to generate purely kinematic gaits. The solid dots indicate
the negative regions of ∆ρ where the vector fields are not defined.

The vector fields defined above essentially serve the same purpose of the de-
coupling vector fields presented in Bullo’s work.

Example: For the variable inertia snakeboard, we can easily design purely
kinematic gaits by solving for the right hand side of (10) equal to zero. Since
the right hand side of (10) is a quadratic in the base velocites6, we ensure that
the term ∆ρ(α1, α2) = Σ̄2

1
Σ̄2

1
− Σ̄1

1
Σ̄2

2
≥ 0. A plot of a ∆ρ/max(∆ρ) is shown

in Fig. 3(a). The light colored regions indicate that ∆ρ(α1, α2) < 0, that is, we
can never compute any velocities for which ρ̇ = 0. In other words, we should
avoid these regions of the base space while designing purely kinematic gaits.

Away from the negative regions of ∆ρ(α1, α2), we design purely kinematic
gaits for the variable inertia snakeboard. The right hand side of (10) has four
unknowns, (α1, α2, α̇1, α̇2). Thus, at each point in the base space, that is,
fixing (α1, α2), we need to solve the velocities (α̇1, α̇2) for which the right
hand side is zero. Since, we have two unknowns and one equation, we solve
for the ratios, α̇1

α̇2

and α̇2

α̇1

for which the right hand side is zero. Thus, ignoring

the magnitudes of the base velocities, the two ratios α̇1

α̇2

and α̇2

α̇1

define the
slopes of vectors at each point in the base space which we use to define vector
fields over the entire base space as depicted in Fig. 3(b). Hence, any part of
an integral curve of the above vector fields is necessarily a purely kinematic
gait. For example, the families of lines, l1 = {α2 = α1 + kπ, k ∈ Z} and
l2 = {α2 = −α1 +2kπ, k ∈ Z} are the simplest integral curves we could define
whose velocities exactly match the above vector fields.

6 For the original snakeboard, we verified in [13] that the right hand side of the
scaled momentum evolution equation is not a quadratic. This simplified the gener-
ation of purely kinematic gaits and mislead us into believing that purely kinematic
gaits could be defined everywhere on the base space.
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Purely Kinematic Purely Dynamic Kino-dynamic

Polygon
ACEGA

α1 = π
4
(1 − sin(t) − 2 sin2(t))

α2 = π
4
(1 + sin(t) − 2 sin2(t))

α1 = −

1
√

2

`
π
2

sin(t) + π
4

cos(t)
´

α2 = 1
√

2

`
−

π
2

sin(t) + π
4

cos(t)
´

Polygon
ABFECBFGA

α1 = π
10

(2 sin(3t) − 5)
α2 = π

6
(sin(t) − 3)

α1 = 1
√

2

`
π
2

sin(2t) + π
4

sin(t)
´

α2 = −

1
√

2

`
π
2

sin(2t) − π
4

sin(t)
´

Polygon
ACDHGEDHA

α1 = π
4
(2 sin(t) + 1)

α2 = π
4
(2 sin(t) − 1)

α1 = 1
√

2

`
π
3

sin(2t) + π
3

sin(t)
´

α2 = 1
√

2

`
−

π
3

sin(2t) + π
3

sin(t)
´

Table 1. Three proposed gaits of each family for the variable inertia snakeboard.

To design a purely kinematic gait that will move the variable inertia snake-
board along say the ξ1 direction, we pick any closed integral curve that will
enclose a non-zero volume solely under the first height function. Using the
above lines, we know that the polygon given in the first row of the first col-
umn of Table 1 and depicted in Fig. 3(b) will move the snakeboard along
the ξ1 direction. Similarly we construct two other polygons shown in the sec-
ond and third rows of the first column of Table 1 as depicted in Fig. 3(b) to
respectively locomote the snakeboard along the ξ2 and ξ3 directions.

Inspecting the above polygonal gaits, we found out that they pass through
the snakeboard’s singular configurations, (α1, α2) = {(π

2
,−π

2
), (−π

2
, π

2
)},

(Fig. 2(a) − (c)). So rather than solving numerically for other integral curves
of the vector fields and solve for other possible gaits which is a tedious pro-
cess, we simply shrunk the above proposed gaits around the center of the base
space as shown in Fig. 3(b). These curves closely, but not exactly, match the
vector fields. So we shall expect a change in the scaled momentum value as we
traverse these gaits since they are an approximate solution. The motions of the
variable inertia snakeboard due to these gaits are depicted in Fig. 4(a) − (c).
Note, the small magnitudes of motion due to the small volumes under the
height functions. However, we can clearly see that the gaits move the variable
inertia snakeboard along the x and y directions in Fig. 4(a) and Fig. 4(b),
respectively, and rotate the snakeboard in Fig. 4(c).

Finally, recall that, our analysis is done in body coordinates, ξi’s, which
are related by the map TgLg−1 to the fiber variables, ġi’s. Since, the fiber space
for the variable inertia snakeboard is SE(2) which is not Abelian, the map
TgLg−1 is non-trivial; hence, one should not expect a direct correspondence
between say ξ1 and ẋ. This explains the non-pure fiber motions in Fig. 4(a),
where motion along ξ1 transforms to major motion along x and minor motion
along the y axis.

5.2 Purely dynamic gaits

As the name suggests, purely dynamic gaits are gaits that produce motion
solely due to the dynamic phase shift, that is, IGEO = 0 while IDY N 6= 0.
These gaits are relatively easy to design since these are gaits that enclose no
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Fig. 4. The actual motion that the variable inertia snakeboard will follow as the
base variables follow the three purely kinematic depicted in the first column of Table
1 shown respectively in a, b, and c; three purely dynamic gaits depicted in the second
column of Table 1 shown respectively in d, e, and f ; and three kino-dynamic gaits
depicted in the third column of Table 1 shown respectively in g, h, and i. The initial
and final configurations for each gait are shown in gray and black colors, respectively,
while the dotted line depicts the trace of the origin of the body-attached coordinate
frame.

“volume” in the base space. Note that all systems that have only one base
variables have gaits that are necessarily purely dynamic, since setting m = 1
in (11) will yield IGEO = 0. For example, all the gaits for robo-Trikke robot
which was studied by Chitta et. al. in [4] are necessarily purely dynamic since
there exists only one base variable. As for systems with more than one base
space variable, it is still relatively easy to construct purely dynamic gaits.
Such gaits do not enclose any area in the base space. A simple solution would
be to ensure that a gait retraces the same curve in the second half cycle of
the gait but in the opposite direction.

Thus, we propose the following purely dynamic families of gaits: {r1, r2} =

{
∑n

i=0
ai (f(t))

i
, f(t)}, where f(t) = f(t + τ) is a periodic real function and
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ai’s are real numbers. We can verify that these gaits will have zero area in the
base space (r1, r2). Moreover, we can verify that for the above family of gaits,
the scaled momentum variable is sign-definite, that is, ρ ≤ 0 or ρ ≥ 0 for all
time. Then, generating purely dynamic gaits reduces to the following simple
procedure:

• Select gaits from the above described family and check the sign of the
scaled momentum variable ρ.

• Analyze the gamma functions depicted in (9) and (11) to pick the gait
that ensures that the integrand of IDY N is non-zero for the desired fiber
direction.

Example: For the variable inertia snakeboard, we construct three purely
dynamic gaits depicted in the second column of Table 1. The motion due to
these gaits are respectively shown in Fig. 4(d)−(f). For instance, we designed
the first gait in the second column of Table 1 such that ρ ≤ 0 for all time. The
gait is located close to the center of the base space and is symmetric about
the line α1 = −α2; moreover, only the first gamma function is non-zero and
even about the line α1 = −α2 while the second and third gamma functions
is odd about this line. Thus we expect a non-zero IDY N only along the ξ1

direction. This motion, is largely transformed to motion along the x direction
as shown in Fig. 4(d). Similarly, we designed the other two gaits to move the
variable inertia snakeboard along the y direction, (Fig. 4(e)) and to rotate it
along the θ direction, (Fig. 4(f)).

5.3 Kino-dynamic gaits

Finally, we have the third type of gaits which we term as kino-dynamic gaits.
These gaits have both IGEO and IDY N not equal to zero, that is, the motion
of the system is due to both the geometric phase shift as well as the dynamic
phase shift which are associated with IGEO and IDY N , respectively. We design
kino-dynamic gaits in a two step process.

• First we do the volume integration analysis on IGEO to find a set of can-
didate gaits that move the robot in the desired direction.

• The second step it to compute IDY N for the candidate gaits and verify
that the effect of IDY N actually enhances the desired motion.

Essentially, kino-dynamic gaits are variations of purely kinematic gaits. In
a sense, we start by generating a purely kinematic gait but by neglecting the
constraints that the gaits has to be an integral curve of the vector fields that
prescribes the purely kinematic gaits. Thus, we know that scaled momentum
is not necessarily zero for all time, that is, IDY N 6= 0. Then, we pick the
gaits for which the magnitude of IDY N additively contribute to that of IGEO,
hence, effectively producing fiber motions with bigger magnitudes.
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Example: For the variable inertia snakeboard, we can generate kino-
dynamic gaits by using the volume integration analysis to produce candidate
gaits. For example, to generate a gait that rotates the variable inertia snake-
board in place, we start by designing a curve in the base space that envelopes
a non-zero volume only under the third height function of the variable inertia
snakeboard (Fig. 2(c)). A figure-eight type curve with each of its loops having
opposite orientation and lying on the opposite side of the line α1 = α2, will
envelope non-zero volume only under the third height function. This curve is
the last curve in the third column of Table 1. We simulated this proposed gaits
and indeed it does rotate the variable inertia snakeboard along the θ direction
as shown in (Fig. 4(i)). Similarly, we designed two other curves depicted in the
first and second rows of the last column of Table 1 to move the variable inertia
snakeboard along the x direction, (Fig. 4(g)), and the y direction ,(Fig. 4(h)).

In this section we have generated three of each type of gaits that moved
the variable inertia snakeboard in any specified global direction. Moreover,
we have the freedom to choose from several of the types of gaits that we
have proposed earlier. It is worth noting that the purely kinematic and purely
dynamic gaits were the easiest to design since we are exclusively analyzing
either IKIN or IDY N and not both at the same time as is the case for kin-
dynamic gaits.

6 Conclusion

In this paper, we studied mixed non-holonomic systems and designed three
families of gaits, purely kinematic, purely dynamic, and kino-dynamic gait,
to move such systems along specified fiber directions. This work is a general-
ization over our prior work where we used one type of the gaits defined here
to analyze two other systems, purely mechanical and principally kinematic.
Moreover, our technique affords better flexibility in choosing the parameters
of the suggested gaits and reduces the need for intuition about how to to
manually adjust these parameters.

One of the contributions of this paper is the introduction of the scaled mo-
mentum variable which greatly simplified our gait generation analysis. This
new variable allowed us to rewrite both the reconstruction as well as the mo-
mentum evolution equation in simpler forms that are suitable for our gait
generation techniques. Another contribution is the introduction of the novel
mechanical system, the variable inertia snakeboard. This system is similar
enough to the original snakeboard that we can relate our results to this well
known system, but at the same time it did not over simplify the gait gen-
eration problem. In fact, through analyzing the variable inertia snakeboard,
we identified regions in the base space where purely kinematic gaits are not
possible. There are no such regions for the original snakeboard.

This paper constitutes a first step towards developing an algorithmic gait
synthesis technique. Our next step would be to relax the assumptions we made
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such that we can analyze system with more than two-dimensional base spaces
and systems with more than one generalized momentum variable. Ideally, we
would like to develop an algorithm whose inputs are the system’s configuration
space structure, its Lagrangian, and the set of non-holonomic constraint acting
on the system. The algorithm would automatically generate gaits that will
move the system along a desired global direction with a desired magnitude.
However, we still need to develop several additional tools to complete this gait
generating algorithm.
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