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Summary. This paper presents artificial constraints as a method for guiding heuris-
tic search in the computationally challenging domain of motion planning among
movable obstacles. The robot is permitted to manipulate unspecified obstacles in
order to create space for a path. A plan is an ordered sequence of paths for ro-
bot motion and object manipulation. We show that under monotone assumptions,
anticipating future manipulation paths results in constraints on both the choice of
objects and their placements at earlier stages in the plan. We present an algorithm
that uses this observation to incrementally reduce the search space and quickly find
solutions to previously unsolved classes of movable obstacle problems. Our planner
is developed for arbitrary robot geometry and kinematics. It is presented with an
implementation for the domain of navigation among movable obstacles.

1 Introduction

A robot that can move obstacles out of its way is capable of more autonomous
tasks. For example, in Figure 1, the robot cannot directly plan a path to the
goal. By manipulating four objects, the robot changes its configuration space
and opens free space for a path. This capacity comes at the cost of computa-
tional complexity. We explore a method for allowing robots to constrain their
action space and create computationally manageable search spaces.

A simple path planning task in the movable obstacle domain becomes a
complex manipulation planning problem with a partially specified goal. The
robot can change its own configuration and the configurations of other ob-
jects. Each of these changes alters the workspace of the robot by increasing
or decreasing the free space for future motions. The size of the search space
is exponential in the number of movable objects. Furthermore, the branching
factor of forward search is linear in the number of all possible world inter-
actions [1]. A simplified variant of this domain involving only one movable
obstacle is NP-hard.[2] More recent results demonstrated NP-hardness results
for trivial problems where square blocks are pushed in block-size increments
on a planar grid.[3]
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Fig. 1. A simulated solution to a problem of Navigation Among Movable Obstacles.
The robot is instructed to reach the goal. After constructing a plan, it first moves
the three smaller objects to the niches. The robot uses the new free space to move
the table. Finally it clears a path and navigates to the goal.

In this paper we show that allowing one interaction with each object and
reverse planning let the robot constrain its initial search space. We do not es-
cape the curse of dimensionality. The proposed method of artificial constraints
enables fast heuristic search in a domain where standard proximity heuristics
provide little or no insight. We demonstrate that our method is directly ap-
plicable to robot tasks in a simulated domain. Furthermore, we introduce a
problem formulation and runtime analysis that form a basis for future work.

2 Related Work

Obstacles moving along specified trajectories is a problem addressed by
bounding the velocities of the obstacles and augmenting the configuration
space with time.[4] A point in the free space ensures that a configuration is
valid at the given time in which it takes place. This approach has been ex-
tended to kinodynamic domains, [5] as well as real-time deformable plans.[6]
These algorithms do not allow the robot to affect the world.

Initial work in coordinating robot motions can be found in [7, 8, 9]. Most re-
cent research that deals with robots repositioning multiple objects is in assem-
bly planning. Assembly planners focus on separating a collection of parts and
typically ignore the robot/manipulator. Domain operators also allow unassem-
bled parts to be removed to “infinity.”[10, 11]

In the movable obstacle domain, objects cannot move unless manipulated
by the robot. The motion of the objects is constrained to the workspace of
the robot, while the robot is constrained to move along collision-free paths.
Rearrangement planning is the domain that is most closely related. [12, 13,
14] The final configurations of all objects are specified, and the robot must
find coordinated transport paths. For instance, when a manipulation path
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to the goal collides with other objects, [14] heuristically selects intermediate
configurations for interfering obstacles.

In our domain, final configurations for objects are unspecified. Hence the
robot must decide not only where to move objects but which objects must be
moved. [15] searched a graph of robot paths, allowing objects to be pushed
away from the robot trajectory. This method is effective on small problems,
but easily encounters local minima. [1] and [16] propose to consider joining
regions of robot free space and constructing graphs of interfering obstacles
respectively. Neither planner handles objects that interfere with the motion
of other objects. [17] ignores the robot, but offers some insight into graph-
based chronological and spatial coordination of movable objects.

[15, 1, 16, 14] were developed for mobile robots. Our work addresses the
problem generally for any kinematic structure of the robot. This is important
when considering manipulation problems where robot geometry varies signif-
icantly for different portions of the workspace. We will base our domain on
configuration space operators first described in [12]. Our constraint approach
is related to [8], however we do not assume a priority on object motions, rather
we must search the space of object choices and orders.

3 Movable Obstacle Domain

In this section, we develop a geometric model for movable obstacles. Our
choice of space and operators make the presented approach general for any
robot kinematics in the framework of rigid body motion and prehensile ma-
nipulation. Section 7 gives an example of how the tools developed in this
framework can be applied to a specific robot problem.

Consider a path planning problem in a 2D or 3D Euclidian space that
contains a set of fixed objects OF = {F1, . . . , Ff} and a set of movable objects
OM = {O1, . . . , Om}. The space also contains an n degree of freedom robot, R.
While paths are not explicitly parameterized by time, we will use the variable
t to refer to a chronological ordering on states and operations. A world state
at time-step t is the tuple consisting of t, the robot configuration rt and the
configuration qt

i of each movable object: W t = (t, rt, qt
1, q

t
2, . . . , q

t
m).

Let CW be the space of all possible W t. We permit the robot to move one
object at a time. Consequently, we are interested in subspaces or slices of CW :

CR(W t) = ({r}, qt
1, q

t
2, . . . , q

t
m) - the slice of robot configurations, and

COi(W
t) = (rt, qt

1, q
t
2, . . . , {qi}, . . . , qt

m) - configurations of object Oi.

Observe that any slice is parameterized by the positions of other objects.
Following [18] we define free space to be the subspace of collision free
configurations. First consider the configuration space obstacles (CO). Let
A(q) = {x ∈ Rk|x is a point of object A in configuration q}. For any set of
points S in Rk, a configuration space obstacle in CB is the set: COB(S) =
{p ∈ CB |B(p) ∩ S 6= ∅}. Let q be a configuration of object A and p be a
configuration of object B. Since no two objects can occupy the same space in
Rn, CO is symmetric:

p ∈ COB(A(q))⇒ B(p) ∩A(q) 6= ∅ ⇒ q ∈ COA(B(p)) (1)
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To simplify notation, let COqi

R = COR(Oi(qi)) and COqi

Oj
= COOj

(Oi(qi))
represent obstacles due to Oi in CR and COj

respectively.
Let COA(B) be the complement of COA(B) in CA. The free space of a

movable object, Cfree
A (W t), is the set of configurations where the object is not

in collision with fixed or movable obstacles.

Cfree
Oi

(W t) =
⋂
k

COOi
(Fk)

⋂
Oj 6=Oi

CO
qt

j

Oi
(2)

Collisions between a moving object and the robot are treated separately
from Eq. 2 since the motion of an object also implies the motion of the robot.
Cfree

R (W t) is expressed analogously in terms of COR.
In spaces with external forces, such as gravity, objects will not remain

static in arbitrary configurations. Manipulated objects must be released in
placement configurations Cplace

Oi
(W t) ⊆ Cfree

Oi
(W t). When solving three di-

mensional problems, we propose form closure to develop this set. In our two
dimensional examples, we assume gravity is orthogonal to the object plane
and hence Cplace

Oi
(W t) = Cfree

Oi
(W t).

Having defined the sets of free configurations for the robot and movable
objects, we now address the allowable interactions between the robot and the
environment. Following [12], we define two parameterized operators on the
Cspace: Transit and Transfer. Transit creates a path for the robot. Transfer
represents the motion of the robot and a single movable object.

Transit: We first define a continuous path τ in the configuration space of
the robot: τ : [0, 1] → r for r ∈ CR. τ(ri, rj) will shorten the notation for a
path where τ [0] = ri and τ [1] = rj . The Transit operator is a function that
maps a world state and path to another world state.

Transit : (W t, τ(rt, rt+1))→W t+1 (3)

This operator is valid if and only if the following condition holds:

τ(s) ∈ Cfree
R (W t) ∀s ∈ [0, 1] (4)

Transfer: When an object is rigidly grasped, its configuration is fully deter-
mined by a transformation of the generalized pose of the robot end effector.
K : CR → x (x ∈ Rn) is the kinematic mapping of robot configurations to
end effector positions/orientations. We will consider a discrete or sampled set
of grasps for each movable object: GS(Oi) = {GOi}. Each GOi is a rigid
transform from the robot pose to a configuration of Oi. GOi(K(r)) = q states
that the robot configuration r grasps Oi in configuration q.

For any grasp Gk
Oi
∈ GS(Oi), the Transfer operator maps a world state

and a path in CR to a new state where the robot and an object are displaced:

Transfer : (W t, Oi,Gk
Oi

, τ(rt, rt+1))→W t+1 (5)

Notice that for any robot path τ we can compute τOi for the object as the
path τOi = GOi(K(τ)). A valid Transfer operator must satisfy:



Planning Among Movable Obstacles with Artificial Constraints 5

τ(s) ∈ Cfree
R (W t) ∪ CO

qt
i

R τOi(s) ∈ C
free
Oi

(W t) ∀s ∈ [0, 1] (6)

τOi
(0) = qt

i (7)

τOi
(1) ∈ Cplace

Oi
(W t) (8)

R(τ(s)) ∩Oi(τOi
(s)) = ∅ ∀s ∈ [0, 1] (9)

Eq. 8 requires that the final configuration of the object be statically stable.
Eq. 9 ensures that the robot does not collide with obstacle Oi.

4 Motions of Multiple Objects

The problems we are interested in are realistic domains with numerous
movable objects. Due to the dimension of these spaces, finding meaning-
ful sub-domains and heuristics takes precedence over completeness. In ear-
lier work [1] we observed that Cfree

R can be partitioned into disjoint subsets
{C1, C2, . . . , Cd} such that a robot in configuration ri ∈ Ci can access any
configuration in Ci via a Transit operation but no configuration in Cj 6= Ci.

Our planner detected objects that could be moved in order to give the
robot access to other components of Cfree

R . For two subsets Ci, Cj ∈ Cfree
R (W t)

and a border obstacle Ol we pursued a k-length sequence of Transit and
Transfer operations that yield a merged component Cmrg ⊂ Cfree

R (W t+k):

Cmrg = (Ci ∪ Cj

⋃
CO

qt
l

R )
⋂

CO
qt+k

l

R (10)

∀ri, rj ∈ Cmrg there exists τ(ri, rj) s.t. ∀s(τ [s] ∈ Cmrg) (11)

Based on the concept of connecting free space components, we defined the
class of linear problems (LP ). A problem has a linear solution when there
exists a sequence of free space components {C1, C2, . . . , Cn} such that merg-
ing adjacent components Ci and Cj does not constrain the Cspace required
to merge adjacent Ck and Cl where (i < j ≤ k < l). [1] presented a resolu-
tion complete algorithm for problems in L1, where only one object must be
displaced to merge two components.

Extending [1] to Lk problems where up to k objects may be moved to
connect free space components is challenging even for k = 2. In the best case,
every robot path between two components would pass through two objects,
O1 and O2, allowing the planner to locally search the joint motion space of
size |O1|×|O2|. However, as seen in Figure 1, the path between Ci, Cj ∈ Cfree

R
might only pass through one object (the table). A complete L2 planner must
consider all possibilities for the choice of second object. In general, for Lk

problems, we may need to enumerate 2k−1 possible sets of objects that do not
directly interfere with a path to the goal.

4.1 Proposed Hierarchy

In order to manage the increased complexity when local search requires the
motion of multiple objects, we propose further classification of the movable
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obstacle domain to monotone plans. In assembly planning, monotone plans
refer to plans where each application of an operator yields a subassembly that
is part of the final assembly [11]. We do not enforce a final assembly and define
monotone plans as those in which a transferred object cannot be moved again:

W t+1 = Transfer(W t, Oi,Gk
Oi

, τ) ⇒ qT
i = τOi(1) (T > t) (12)

Monotone search decouples the joint motion space of objects into individual
path plans. The search must decide which objects to displace, the Transfer
paths for each object and the ordering of object motion.

Notice that any plan can be expressed as a sequence of monotone plans:

PlanNM = . . . , τ1, (Oi, τ2), τ3, (Oj , τ4), τ5, (Oi, τ6), τ7, . . . ≡
PlanM1 = . . . , τ1, (Oi, τ2), τ3, (Oj , τ4), τ5 and PlanM2 = (Oi, τ6), τ7, . . .(13)

Let W 6 be the world state after the operation Transit(W 5, τ5), prior to the
second displacement of Oi. We refer to W 6 as an intermediate world state. A
problem can be characterized in its non-monotone degree by the number of
intermediate states necessary to construct a sequence of monotone plans.

We propose the following classes of problems:

Lk Linear problems where components of Cfree
R can be connected in-

dependently. k is the maximum number of objects that must be
displaced to connect two components.

NL Non-linear problems that require the planner to consider interac-
tions between keyholes.

M Monotone problems where each object needs to only be displaced
once throughout the plan.

NMi Non-monotone problems that can be expressed as i monotone
problems with intermediate states.

A planner can operate in the space of one or two of these classes. For instance
a planner in L3NM6 would seek linear solutions that require manipulating at
most three objects and using six intermediate states to merge two free space
components. Our proposed algorithm operates in LkM .

5 Artificial Constraints

The monotone class of problems helps organize the study of movable objects.
It still preserves a number of the computational challenges of our domain. The
planner determines a subset {O1, . . . , O

′
m} = O′

M ⊂ OM of movable objects
to displace. It constructs a valid set of paths {τO1 , . . . , τO′

m
} for displacing the

objects and {τ1, . . . , τm+1} Transit operations between grasps. Additionally,
the planner decides an ordering for object motion. This section will analyze
the retained problem complexity and present our solution.
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5.1 Complexity of Forward Search

Suppose we were to perform a standard forward search of obstacle motion.
In the monotone case, we do not need to consider all possible Transit and
Transfer paths. At each time-step t we select an object Oi for motion and
a goal configuration qt+2

i ∈ Cplace
Oi

(W t+2). We verify that there exists a robot
configuration rt+1 ∈ Cfree

R (W t) that satisfies qt
i = Gk

Oi
(K(rt+1)) for some k.

Additionally, we check the existence of valid paths:

Transit(W t, τ1(rt, rt+1)) and
Transfer(W t+1, Oi,Gk

Oi
, τ2(rt+1, rt+2))

such that qt+2
i = Gk

Oi
(K(rt+2)) (14)

Assume that verification could be performed in constant time, and that the
number of placements is O(dn), where d is the resolution of each of the n
dimensions of COi

. Typically, n = 3 or 6. At t = 0, this algorithm would select
from m objects and dn configurations for each object: O(mdn). Expanding
the search to depth 2, there are now m−1 objects and dn placements for each
object: O(mdn × (m − 1)dn). This algorithm has an asymptotic runtime of
O(mdn × (m− 1)dn × ...× 2dn × dn) = O(m!dnm).

The difficulty lies in finding an informed heuristic for the exponentially
large space of object placements. A good placement for the object is one that
respects the motion of subsequent obstacles. Since the motion of future objects
is postponed in the search, good placements are unknown.

5.2 Reverse Search

Reverse planning is common in assembly problems. However, the implementa-
tion and motivation of reverse planning is different in our domain. Assembly
planners have fixed goal configurations for all objects in which the motion of
the objects is typically highly constrained. Consequently, the reverse search
space has a much smaller branching factor due to actual constraints.

In the domain of movable obstacles, the final configuration is not pre-
determined, hence object motion must be planned from the initial state.
Search reversal is performed in regard to the ordering of object motions (i.e.
a Transfer of the last object is performed as the first step of the search).
At the start of search, the branching factor is large due to the non-existence
of goal configurations. However, artificial constraints yield significant space
reduction when searching prior motions.

Artificial Constraints

Let W 0 be the initial world state. Assume that at some future time step t > 0,
the robot will perform a Transit(W t, τ t(rt, rt+1)) operation. This operation
is valid only when τ t(s) ∈ Cfree

R (W t) (Eq. 4). Let qt
j be the configuration of

obstacle Oj at time t. By the definition of free configuration space (Eq. 2):
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τ t(s) 6∈ COR(Oj(qt
j)) (15)

Due to the symmetry of CO (Eq. 1), we can invert this relationship.

qt
j 6∈ COOj (R(τ t(s))) ∀s ∈ [0, 1] (16)

The robot motion along τ t defines a swept volume in Rn. Let V (τ t) be the
volume of points occupied by the robot during its traversal of τ t:

Transit(W t, τ t(rt, rt+1))→ V (τ t) =
⋃

s∈[0,1]

R(τ t(s)) (17)

qt
j 6∈ COOj

(V (τ t)) (18)

Analogously, if we assume a valid Transfer(W t, Oi,Gk
Oi

, τ(rt, rt+1)) at step
t (t > 0), we would define V (τ t, Oi,Gk

Oi
) as the volume of points occupied by

the robot and the object during their joint motion:

Transfer(W t, Oi,Gk
Oi

, τ t(rt, rt+1))→

V (τ t, Oi,Gk
Oi

) =
⋃

s∈[0,1]

[R(τ t(s)) ∪Oi(τ t
Oi

(s))] (19)

From Eq. 6 we find

τ t(s) 6∈ COR(Oj(qt
j)) τ t

Oi
(s) 6∈ COOi(Oj(qt

j))) (j 6= i). (20)

Due to the symmetry of CO:

qt
j 6∈ COOj

[R(τ t(s)) ∪Oi(τ t
Oi

(s))] ∀s ∈ [0, 1] (21)

qt
j 6∈ COOj (V (τ t, Oi,Gk

Oi
)) (22)

Eq. 18 and 22 indicate that the swept volume of any Transit or Transfer
operation in W t places a constraint on the configurations of movable objects:
V t = V (τ t) or V (τ t, Oi,Gk

Oi
) respectively. Since objects remain fixed unless

moved by Transfer, then for some final time T :

q0
j 6∈ COOj

(V T ) or there exists a time t(0 ≤ t < T ) such that

Transfer(W t, Oj ,Gk
Oj

τ t(rt, rt+1)) and τ t
Oj

(1) 6∈ COOj (V
T ) (23)

Due to our assumption of monotone plans, if the initial configuration of an ob-
stacle conflicts with V T , there is exactly one Transfer operator that displaces
it to a non-conflicting configuration at some time-step t (t < T ).

6 Algorithm

In order to apply the method of artificial constraints, our planner consists of
two modules: obstacle identification and constraint resolution. Obstacle iden-
tification decides the last object that will be manipulated prior to reaching
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(a) Problem (b) P0
last (Unsolved) (c) P1

last (Solved) (d) P2
last

Fig. 2. Plast selects the last object for manipulation by the robot. The planner is
called for alternative selections (c), and for preceding subgoals (d).

the goal or a subgoal. Constraint resolution plans a Transfer path for this
object and the following Transit to the goal. The two paths form artificial con-
straints. We detect objects that violate the constraints in W 0 and recursively
plan corresponding Transfer and Transit operations. The first grasping con-
figuration identified by a successful resolution step is used as the preceding
subgoal for obstacle identification. Both modules backtrack on their choices
when the algorithm fails to resolve the constraints.

6.1 Obstacle Identification

The search is initialized by a constrained relaxed planner Plast. [1] OL ← Plast

operates in CR. It is permitted to pass through movable configuration space
obstacles with a heuristic one-time cost for entering any object. Plast finds a
path to the goal and selects the last colliding obstacle, OL, to schedule for
manipulation. In Figure 2(b), P0

last selects the table.
Constraint resolution, described in Section 6.2, validates the heuristic se-

lection with a sequence of Transit and Transfer operations. If no such se-
quence is possible, Plast is called again, prohibiting any transition into CO

q0
i

R .
Since constraint resolution fails on the table, P1

last selects the couch for motion
in Figure 2(c). We ensure completeness over the selection of final objects by
aggregating Oavoid, a set of prohibited transitions for Plast.[1]

When resolution is successful, Plast is called with the goal of reaching the
initial grasping configuration identified by constraint resolution. Figure 2(d)
shows that after successfully scheduling the manipulation of the couch, P2

last
selects the chair for motion. Finally, when Plast finds a collision-free path to
the subgoal, the algorithm terminates successfully.

6.2 Constraint Resolution

Let T index the final time step of the plan and t be the current time step. We
will maintain the following sets:

Ot
f - the set of objects Oi scheduled for manipulation after time t.

Ot
c - the set of objects scheduled for motion prior to time t.

Vt - the union of all artificial constraints V t′(t < t′ < T ).
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(a) Problem (b) Manipulation Plan (c) Constraint Resolution

Fig. 3. (a) To free a goal path in W T , P chooses to manipulate the couch in W T−2.
(b) The planner selects the manipulation of the couch that minimizes collision. (c)
In W T−4 our planner manipulates the table to clear space for transferring the couch.

VT is initialized as an empty volume of space. OT
f and OT

c are empty sets.
We begin by applying OL ← Plast and adding OL to OT

c . Constraint
resolution attempts to move all objects from Oc to Of . Objects may be added
to Oc when they interfere with manipulation. The following three procedures
are performed recursively. Each iteration of recursion will plan from state W t,
such that operations that follow time step t are assumed to be known.

(1) Choosing an Obstacle and Grasp

First, we select an obstacle Od ∈ Ot
c. We then choose a grasp, Gk

Od
from a pre-

defined set {G1, ...,Gn}. Each grasp corresponds to a robot configuration rgi.
If the robot is redundant the space of inverse kinematic solutions is sampled,
yielding a set of robot configurations {rg1, rg2, ..., rgn}.

From the set of grasping configurations we select rt−2 such that for some
k: Gk

Od
(rt−2) = qt−2

d = q0
d. The grasp transform specifies that the robot

configuration rt−2 is grasping object Od in the objects initial configuration.
We plan a path τg(r0, r

t−2) to verify that the grasp configuration can be
reached by the robot without passing through previously scheduled obstacles
in their initial configurations:

τg(s) 6∈ (
⋃

Oi∈Ot
f

CO
q0

i

R ) ∪ CO
q0

d

R ∀s ∈ [0, 1] (24)

If such a path does not exist, the planner searches over alternative grasps.

(2) Dual Planning for Transfer and Transit

The Transit operation to the subsequent grasp, or goal, occurs after the
Transfer of an object. Chronologically it should be planned first. However,
we have not yet determined the initial configuration for Transit since it is
equivalent to the final configuration of the Transfer task. We propose assem-
bling the Transit path from two segments: τ1 is a path from the initial grasp
of the object to rT and τ2 is the Transfer path of the object. The robot
returns to its initial grasping configuration, rt−1, during transit.

τ1) Plan a partial path τ1 from rt−2 to rt. The path must not pass through
any future scheduled obstacle:

τ1(s) 6∈
⋃

Oi∈Ot
f

CO
q0

i

R ∀s ∈ [0, 1] (25)
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Notice that taken alone this path is not intended for a Transit operation.
In the world state W t−2, object Od may still block this path. We choose
this path heuristically to pass through the least number of objects in their
initial configuration and minimize euclidian path length. If no such path
is possible, a different grasp, rt−2, is selected.

τ2) Plan Transfer(W t−2, Od,Gk
Od

, τ t−2
2 ). The robot configuration at the

start of the plan is τ2(0) = rt−2. The final configuration of the robot
must be selected by the planner. Given that τ2 maps to the object path
Gk

Od
(τ2) → τ2Od

, we require the paths to adhere to the following con-
straints:

τ2(s) 6∈
⋃

Oi∈Ot
f

CO
q0

i

R τ2Od
(s) 6∈

⋃
Oi∈Ot

f

CO
q0

i

Od
∀s ∈ [0, 1] (26)

τ2Od
(1) 6∈ COOd

[R(τ1(s)) ∪R(τ2(s))] ∀s ∈ [0, 1] (27)
τ2Od

(1) 6∈ COOd
(Vt) (28)

Eq. 26 states that the object and the robot may not pass through the
configuration space obstacles of future scheduled objects. Eq. 27 states
that the final configuration of Od may not interfere with neither path
segment τ1 nor τ2. Eq. 28 requires the final configuration of Od to be
consistent with the artificial constraints imposed by future motion.

Merging τ1 and τ2 into a single τ , we can define the operation Transit(W t−1, τ).
The transit is valid after the obstacle has been displaced.

(3) Composing Artificial Constraints
Having selected Transfer and Transit operations in W t, we can advance the
search to W t−2. To do so, we will update the three sets described earlier:

Ot−2
f ← Ot

f ∪ {Od} (29)

Vt−2 ← Vt ∪ V (τ1) ∪ V (τ2, Od,Gk
Od

)

= Vt ∪R(τ1(s)) ∪R(τ2(s)) ∪Od(τ2Od
(s)) ∀s ∈ [0, 1] (30)

Ot−2
c ← {Oi | Oi 6∈ Ot−2

f ∧ q0
i ∈ COOi(V

t−2)} (31)

Eq. 29 fixes the configuration of Od to the initial configuration and marks it
as resolved in future states. Eq. 30 updates the artificial constraint to include
the Transfer and Transit in W t−2 and W t−1 respectively. Eq. 31 updates
the set of conflicting objects that must be moved earlier than W t−2 to resolve
the constraints.

6.3 Depth First Search

Section 6.1 and 6.2 detailed the components of our planner. We now introduce
pseudo-code that reflects the structure of the search. Identify-Obstacle is
called to initialize the plan. The algorithm is implemented as depth first search
to conserve space required for planning and help with the interpretability. �
indicates a successful base case while (nil) reflects backtracking.
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Identify-Obstacle(rt, (Vt,Of ,Oc))
1 Oavoid ← ∅
2 while OL ← Plast(W 0, rt,Oavoid) 6= nil
3 do
4 if OL = none return �
5 Oc ← {OL}
6 (Plan, rt−n, (Vt−n,Ot−n

f ))← Resolve-Constraints(rt, (Vt,Of ,Oc))
7 if Plan 6= nil
8 then PastP lan← Identify-Obstacle(rt−n, (Vt−n,Ot−n

f ,Ot−n
c ))

9 if PastP lan 6= nil
10 then return (PastP lan append Plan)
11 Oavoid ← Oavoid ∪ {OL}
12 return nil

Resolve-Constraints(rt,Vt,Ot
f ,Ot

c)
1 if Ot

c = ∅ return �
2 for each Od ∈ Oc

3 do
4 Choose rt−2 : Gk

Od
(rt−2) = q0

d

5 s.t. exists τg(r0, r
t−2) satisfying Eq. 24

6 Choose τ1(rt−2, rt)
7 Satisfying Eq. 25
8 Choose τ2(rt−2, rt−1)
9 Satisfying Eq. 26− 28

10 if no valid choices
11 then return nil
12 determine (Ot−2

f ,Vt−2,Ot−2
c ) by Eq. 29− 31

13 (Plan, rt−n, (Vt−n,Ot−n
f ,Ot−n

c ))←
14 Resolve-Constraints(rt−2, (Vt−2,Ot−2

f ,Ot−2
c ))

15 if Plan 6= nil
16 then Plan append Transfer(W t−2, Od,Gk

Od
τ2(rt−2, rt−1))

17 Plan append Transit(W t−1, τ2 + τ1)
18 return (Plan, rt−n, (Vt−n,Ot−n

f ,Ot−n
c ))

19 return nil

7 Implementation
The algorithm described in this paper is entirely general for two and three
dimensional spaces with arbitrary configuration spaces for the manipulator.
In this section we will discuss our implementation of the algorithm in the
domain of Navigation Among Movable Obstacles (NAMO) [1].

NAMO is two dimensional domain where obstacles are represented by
polygons. The robot is a circular disc that can grasp objects when the center
of the disc is at a given distance from pre-defined contact points. The domain
is selected due to its interpretability and the simple property of object place-
ment: Cplace

Oi
(W t) ⊂ COi

(W t). The figures in this paper are constructed by the
implemented planner in our NAMO simulation environment.
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(b) Search for Subgoal 1

(c) Search for Subgoal 2

(a) Problem and Solution

Fig. 4. A search tree for the given example. Large upward arrows indicate back-
tracking when an object cannot be resolved.

7.1 Planning Details
When constructing a plan for the NAMO domain, we directly apply the algo-
rithm in Section 6 by selecting a computational representation of paths and
artificial constraints:

• For paths, we choose a grid planner based on an evenly spaced dis-
cretization of CR. The robot configuration space has three dimensions:
(R × R × SO(2)). Robot paths are planned in a matrix of resolution
(10cm, 10cm, 10o) in each dimension respectively. This yields a simple,
resolution complete search space.
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• In the two dimensional domain, artificial constraints are sets of points in
R2. Due to the rotation of objects, these sets could have complex curved
boundaries. To reduce constraint verification (collision detection) to poly-
gon intersection, we construct swept volumes using a local convex hull
approximation method similar to [19] and [20]. We create local bounding
polygons for the object and robot throughout the path.

• All obstacles and artificial constraints are rasterized in the form of an
occupancy grid of the environment. Set membership in world coordinates
is confirmed by verifying the occupancy of grid cells.

Choosing a Transit path (τ1) in CR is performed using A∗. The heuristic is
euclidian distance with a penalty for entering COR(Oi) for the first instance
of Oi along the path. This heuristic is selected to minimize the number of
objects that will violate the artificial constraint in the preceding plan.

Analogously, since Transfer paths (τ2) have no explicit goal, we use best
first search to make a selection. The first path and resulting state encountered
by the search that satisfy the artificial constraints are chosen by the planner.
Heuristically, we penalize states where robot or the transferred object enter
movable configuration space obstacles.

7.2 Results

The implemented planner was tested on a number of examples, including all
the figures presented in this paper. Table 1 summarizes the running times on
an Intel Pentium M 1.6Ghz processor.

Table 1. Quantities of objects and running times for examples in Figures 1-4.

Fig.1 Fig.2 Fig.3 Fig.4
# Objects 4 4 4 9

# Transferred 4 2 2 6
Planning Time 0.77s 0.05s 0.10s 2.08s

Of the presented examples, Fig. 1, 2 and 4 cannot be solved by existing plan-
ners [15, 1, 16]. In Fig. 3, the proposed method is asymptotically faster than [1]
due to the early selection of Transit paths as constraints in contrast to path
validation during Transfer search. However, this choice precludes complete-
ness in the proposed implementation. In L1 problems, [1] will discover remote
Transit paths that are not considered by the proposed implementation.

We find these results encouraging towards the implementation of this plan-
ner on a real robot system. Since the planner searches locally in the configu-
ration space of the robot, the same algorithm can be applied directly to very
high dimensional configuration spaces by replacing grid search methods with
sampling-based alternatives.

7.3 Complexity

Since Identify-Obstacle never considers an obstacle more than once at any
level of the search tree, it can generate at most m! sequences. Each sequence



Planning Among Movable Obstacles with Artificial Constraints 15

can contain m objects to be resolved by Resolve-Constraints. A breadth
first search of CR of resolution d in n dimensions has runtime O(dn). The
overall algorithm is asymptotically O(m!dn). This is a vast overestimate. In
most cases only a few sequences will satisfy the conditions of the planner.

Notice, however, that each of three “Choose” statements in Resolve-
Constraints is an opportunity for backtracking (Lines 4, 6 and 8). Selecting
a different simple path for Transfer or Transit will yield distinct artificial
constraints for the remainder of the search. While enumerating all possible
simple paths for robot motion and manipulation is computationally expensive,
selecting a subset of these paths may prove to be valuable.

8 Conclusion and Future Work
In this paper, we have presented a general planner for movable obstacles in
arbitrary configuration spaces. The heuristic methods of artificial constraints
have proven to be fast and effective in resolving complex examples from the
sample domain of Navigation Among Movable Obstacles.

Future work will consider the possibility of reducing the number of ob-
ject orderings and examining alternative object paths. Some likely classes of
heuristics are the following:

Accessibility Constraints - Currently we search through all orderings of ob-
jects that violate an artificial constraint. However, clearly some objects
cannot be reached by the robot before others are moved. These objects
must be moved at a later time-step.

Path Heuristics - Reverse search carries significant advantages to forward
search in selecting alternative paths. Simply by finding paths that ex-
plore distinct, or distant, portions of space we would change the topology
of artificial constraints and therefore open distinct possibilities for prior
object placements.

In addition to the investigation of heuristics, it will be interesting to study the
potential for using artificial constraints to determine the necessity of interme-
diate states. Doing so will enable planners to address the greater challenges
of non-monotone problems.
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