
Sampling-based Falsification and Verification of
Controllers for Continuous Dynamic Systems

Peng Cheng and Vijay Kumar

GRASP Lab, University of Pennsylvania, {chpeng, kumar}@grasp.upenn.edu

Abstract: In this paper, we present a sampling-based verification algorithm for
continuous dynamic systems with uncertainty due to adversaries, unmodeled distur-
bance inputs, unknown parameters, or initial conditions. The algorithm attempts
to find inputs (and resulting trajectories) that falsify the specifications of the sys-
tem thus providing examples of bad inputs to the system. The system is said to be
verified if the algorithm cannot find falsifying inputs.

The main contribution of the paper is the analysis of the effects of discretization
of the state and input spaces that are inherent to sampling-based techniques. We
derive conditions that guarantee resolution completeness. These provide sufficient,
although conservative, conditions for verifying Lipschitz continuous (but possibly
non smooth) dynamic systems without known analytical solutions. We analyze the
effects of transformations of the input and state space on these conditions. The main
results of this paper are illustrated with several simple examples.

1 Introduction

Software-enabled control of dynamical systems finds applications not only in
robotics, but also in manufacturing, fly-by-wire systems, air-traffic control,
medical instrumentation, and biotechnology. There is currently no systematic
approach to verifying controllers for systems with continuous input and state
spaces except for a very special class of simple systems for which analytical so-
lutions are readily available. Indeed, if we exclude this special class of systems,
the verification problem is generally undecidable [1].

The falsification problem is similar to the motion planning problem. In
the former, one tries to find the disturbance or adversarial inputs that result
in trajectories which violate system specifications, for example, safety. In the
later, we find inputs that guide the system to a state that satisfies specifi-
cations for the goal set. In our approach, the verification problem is solved
by showing the absence of falsifying inputs or trajectories. Thus, a system is
said to be verified if there are no falsifying inputs. Analogously, in motion
planning, one can try to prove no motion plans exist to reach the goal set.

2 Peng Cheng and Vijay Kumar

Because general verification problems are undecidable, semi-decidable ap-
proximation algorithms have been designed. Most of these algorithms [2, 8, 18]
over-approximate the reachable set to check the safety. However such algo-
rithms are limited in their ability to handle complex dynamics in high dimen-
sions. Recently, motivated by the successful application of sampling-based
techniques in motion planning [6, 11, 17, 15, 14, 16] and the strong simi-
larity between motion planning and falsification, researchers have developed
algorithms [4, 9, 12] that use sampled controls to under-approximate the con-
tinuous search space to quickly find counter examples to show that the system
is not safe. However, there is no principled way to verify system properties.

The paper presents a sampling-based verification algorithm for Lipschitz
continuous but possibly non smooth systems. The verification is achieved by
using sampling-based falsification algorithms, which iteratively construct so-
lutions with sampled controls to falsify the given safety specification. Similar
approaches have been proposed for linear systems [10] and for hybrid systems
[5]. Because sampling-based control algorithms discretize the input and state
spaces and approximate the set of trajectories (and therefore the reachable
space), it is necessary to establish a relationship between the discretization
of these spaces and the approximation of the reachable set, and quantify the
confidence level associated with the falsification or verification result. The
main goal of this paper is a set of conditions that establishes this connection.
The basic result is that a proper choice of sampling dispersion (in input and
state spaces) and an appropriate sampling algorithm will ensure that every
falsifying control with a finite time horizon will be approximated within a
desired level of fidelity by sampled controls in finite time.

This work is closely connected to previous work in which conditions for res-
olution completeness of sampling-based motion planning with differential con-
straints were established for the first time [7]. It is showed [7] that solutions to
motion planning problems for dynamic systems will always be approximated
by sample controls in finite time. Of course, no guarantees are offered for prob-
lems for which no solutions exist. The key idea is to use Lipschitz conditions
on motion equations to develop resolution-complete algorithms. The proof for
resolution-completeness relies on establishing that the reachable state set is
densely covered by the states reached by sample controls.

In the same spirit, we introduce a relaxed problem, in which the safety
specification is relaxed with a given tolerance to enlarge the set of falsifying
controls. A resolution-complete (RC) falsification algorithm is designed to
approximate falsifying controls for the relaxed problem. If no solutions are
found for the relaxed problem, then there exist no falsifying controls for the
original problem and the system is verified. This is illustrated schematically in
Fig. 1. The shaded region represents the unsafe set for the original problem.
The unsafe set of the relaxed problem shown as the set inside the dashed
line includes all points which are in the ε neighborhood of the unsafe set of
the original problem. All falsifying controls for the original problem turn into
falsifying controls with violation ε for the relaxed problem. If all trajectories

Sampling-based Falsification and Verification 3

0)~(<xg

ε<)~(xg

1
~x kx~

2
~x

Fig. 1. Verification by falsification. x̃ denotes the system trajectory and the function
g(x̃) defines the specification set or the unsafe set. Tolerance ε defines the relaxed
problem. A trajectory is said to be falsifying for the relaxed problem if g(x̃) < ε.

{x̃i} constructed from the RC falsification algorithm are outside of unsafe set
of the relaxed problem, then the system is said to be verified.

The organization of this paper is as follows. First, we formally define the
dynamic system and the falsification and verification problems in Section 2.
Section 3 provides a framework for sampling-based falsification and discusses
the complexity of the algorithms. In Section 4, we present the verification al-
gorithm through RC falsification and analyze the effects of scaling and trans-
formation on RC conditions. Several examples are used to illustrate the ap-
plication of the proposed algorithm in Section 5.

2 Falsification and Verification Problems

In this section, we formally define the dynamic systems of interest, the basic
assumptions, and the falsification and verification problems. We use standard
notation found in most books on systems theory (see, e.g., [13]).

The dynamic system is described as follows:

ẋ =
dx

dt
= f(x, u), x ∈ X, u ∈ U, (1)

in which X ⊂ <n is the state space and U ⊂ <m is the input space. We
assume that x and u are nondimensionalized. X and U are given the structure
of a metric space using the infinity norm. We will assume that these sets are
bounded and there exist Du and Dx such that ‖u−u′‖ < Du for any u, u′ ∈ U
and ‖x − x′‖ < Dx for any x, x′ ∈ X. We assume that the motion equation
satisfies the Lipschitz condition with respect to state and input. There exist
positive constants Lx and Lu such that:

‖f(x, u)− f(x′, u′)‖ ≤ Lx‖x− x′‖+ Lu‖u− u′‖ (2)

for any x, x′ ∈ X and u, u′ ∈ U . There also exists real constant Df > 0 such
that ‖f(x, u)‖ < Df for any x ∈ X and u ∈ U .

The control space U (a function space) is assumed to include all piecewise
constant controls ũ : [0, tf] → U . We will also assume that each input is only

4 Peng Cheng and Vijay Kumar

applied over a constant interval, δt, and there is a positive integer, k, such
that tf = kδt. Both these assumptions are for simplicity. The extension to
more general function spaces is described in [7].

Given a control ũ : [0, tf] → U and a state x0 ∈ X, the trajectory of the
control from x0 is

x̃(ũ, x0, t) = x0 +
∫ t

0

f(x̃(τ), ũ(τ))dτ. (3)

x̃(ũ, x0) is also used to denote the trajectory from x0 as a function of time.
The set Xinit includes all possible initial states of the system. The trajectory
space X̃ for the problem is a function space defined by:

X̃ = {x̃(ũ, x) | ũ ∈ U , x ∈ Xinit}, (4)

which could be generalized to the trajectory space for the system by replacing
Xinit with X. Assume that x̃ : [0, t1] → X and x̃′ : [0, t2] → X are two
trajectories in X̃ and t2 ≥ t1, the metric for the trajectory space is

ρx(x̃, x̃′) = |t1 − t2|+ max
(

max
t∈[0,t1]

‖x̃(t)− x̃′(t)‖, max
t∈[t1,t2]

‖x̃′(t)− x̃(t1)‖
)
.

(5)
This metric can be easily shown to satisfy the standard metric axioms.

The unsafe set or the specification set is characterized by a continuous
function g : X̃ → R. If there exists x̃(ũ, x) ∈ X̃ such that g(x̃) < 0, then
the system is unsafe. Note that both spatial and temporal constraints can be
incorporated in such functions. The function g(x̃) is assumed to be Lipschitz
continuous with respect to x̃. For any x̃, x̃′ ∈ X̃

|g(x̃)− g(x̃′)| ≤ Lbρx(x̃, x̃′). (6)

Finally, we will only consider problems with finite time horizons. Further
we require this time horizon, DT , to be a integer multiple of δt. In other words,
DT = Kδt for some positive integer K. We are now in a position to define
the verification and falsification problems.

Definition 1. Falsification problem: Find a falsifying control ũ ∈ U and
a state x0 ∈ Xinit such that g(x̃(ũ, x0)) < 0.

Definition 2. Verification problem: Verify that there does not exist any
falsifying controls ũ ∈ U with a state x0 ∈ Xinit such that g(x̃(ũ, x0)) < 0.

Definition 3. Falsifying control with violation ε: A falsifying control ũ ∈
U and a state x0 ∈ Xinit such that g(x̃(ũ, x0)) < −ε for some ε > 0.

To facilitate the proof in Section 4, we will define relaxed version of the falsi-
fication problem below.

Definition 4. ε-relaxed falsification problem Find a falsifying control ũ ∈
U and state x0 ∈ Xinit such that its trajectory x̃(ũ, x0) satisfies g(x̃(ũ, x0)) < ε.

Sampling-based Falsification and Verification 5

3 Sampling-based falsification algorithm

Because our verification algorithm is achieved through falsification, we will
first describe a sampling-based falsification algorithm, which will be converted
into a verification algorithm by RC conditions in Section 4.1. There are many
sampling-based motion planning algorithms that can be used to design fal-
sification algorithms. However, because our goal is to use the falsification
algorithm for verification, we will only use the most basic algorithm and focus
instead on its use for verification and not describe the different variants and
heuristics of sampling-based algorithms.

3.1 The basic falsification algorithm

To solve the falsification problem described in Section 2, we will assume that
we are given a state sampling dispersion bound αx, and an input sampling
dispersion bound αu. Dispersion is the radius of the largest empty ball in a
given sample point set [19]. A finite sample state set Sx ⊂ Xinit is chosen
with dispersion less than the given αx and a finite sample input set Su ⊂ U
is determined with dispersion less than αu. These bounds are illustrated in
Figure 2, in which dashed lines show the largest empty balls for the infinity
norms, and small dots in (a) and (b) represent sample states in Sx and sample
inputs in Su respectively. The algorithm iteratively constructs a search graph

set state initial:initX spaceinput :U

(a) (b)

xα≤
uα≤

Fig. 2. The given dispersion bounds αx and αu are used to determine Sx and Su.

using sample inputs in Su from sample states in Sx. The search graph is a
directed graph. Every node n corresponds to a state x(n) ∈ X. If a sample
input ul ∈ Su is applied for a duration δt from a node, nk, to generate a
control ũ ∈ U , resulting in a trajectory segment x̃(ũ, x(nk)), then this input
ul is said to have been applied for the node nk. If all inputs in Su have been
applied for a node, then that node is called expanded.

For a problem with the unsafe set described by g(x̃) < 0, the sampling-
based falsification algorithm is as follows.

1. Initialize the algorithm: Initialize the search graph by associating each
state in Sx with a new node. There are no edges in the graph.

6 Peng Cheng and Vijay Kumar

2. Select an unexpanded node in the search graph: If every node in the
search graph is expanded, then the algorithm returns.

3. Generate a trajectory segment with an unapplied sampled input: Choose
an unapplied input from Su for the selected node. Apply the sample in-
put on the selected node to generate a trajectory segment. Evaluate the
function g(x̃) with respect to the current trajectory.

4. Update the search graph: If g(x̃) ≥ 0 and the search depth is no larger
than K (described in Section 2), then the final state is associated with a
new node in the search graph and a new edge is inserted from the selected
node to the new node; otherwise, a falsifying control is returned.

5. Iterate from Step 2 until no node is selected.

3.2 The falsification algorithm with state space discretization

In many algorithms, such as [3], state space discretization is used to decrease
the computational complexity of the algorithm by restricting the maximal
number of nodes in the search graph.

The discretization is governed by the dispersion bound αx. The state space
X is discretized into a finite number of non overlapping sets so that the
maximal distance between any two states in a set is less than αx. Every set
allows at most one node in the search graph. If it contains one node, it is called
occupied; otherwise, it is called empty. Thus before inserting a node for a new
state at the end of the trajectory segment of duration δt, a check is performed
to see if the discrete set in which the new state is in, is occupied or not. If
it is occupied by an existing node, then no new nodes are added. However, a
new edge must still be inserted from the selected node to the existing node.

State space discretization directly affects the computations that need to be
performed for falsification. Because one input is applied on one unexpanded
node in each iteration, the upper bound on the number of computations will
be the product of the maximal number of nodes in the search graph and the
number of sample inputs in Su. The size of Su is |Su| = O ([Du/αu]m) .

If we do not discretize the state space, every sample input from a node in
the search graph can potentially generate a new node. Therefore, the number
of nodes in a search graph starting from a node in K steps is bounded by
summing a geometric series: O

(
(|Su|K+1 − 1)/(|Su| − 1)

)
. Potentially we can

have |Sx| = O([Dx

αx
]n) disjointed search graphs. Thus the number of iterations

of the basic algorithm without discretizing the state space is:

O
(
[Dx/αx]n [Du/αu]m(K+1)

)
. (7)

If we do discretize the state space, the number of nodes in the search
graph is bounded by the number of non overlapping sets in the partition. The
number of sets is O([Dx

αx
]n) and the number of iterations of the algorithm is

O ([Du/αu]m [Dx/αx]n) . (8)

Sampling-based Falsification and Verification 7

Thus state space discretization greatly reduces the upper bound on the
number of iterations.

4 A Resolution Complete Algorithm for Verification

In this section, the falsification algorithm in Section 3 is first converted into
a verification algorithm by adapting RC conditions for motion planning with
differential constraints in Section 4.1. The choice of dispersion bounds with
respect to the computation budget, the effects of state and input space trans-
formation on algorithm parameters are respectively provided in Sections 4.2
and 4.3.

We will first define ε-resolution completeness.

Definition 5. ε-Resolution Complete (ε-RC) falsification algorithm
Given a falsification problem, if there exists a falsifying control ũ with violation
ε > 0, then an ε-RC falsification algorithm will find a falsifying control ũ′ in
finite time.

In other words, if there exists ũ and x0 ∈ Xinit such that g(x̃(ũ, x0)) < −ε,
then an ε-RC falsification algorithm will find a control ũ′ and x′0 ∈ Xinit such
that g(x̃(ũ′, x′0)) < 0.

4.1 Verification through RC falsification

To solve the verification problem, we simply run the algorithms in Sections 3.1
and 3.2 on the ε-relaxed falsification problem. It will be shown in the following
that if αx and αu are appropriately chosen, then all falsifying controls for the
original falsification problem will be approximated and returned as solutions
of the relaxed problem. If no solution is returned, then the system is verified.

Note: The function describing the unsafe set for the ε-relaxed falsification
problem is g′(x̃) = g(x̃) − ε < 0. Therefore, if g′(x̃) = g(x̃) − ε < 0 in Step 4
of the algorithm in Section 3.1, a falsifying control will be returned.

Theorem 1. For a given ε > 0, if an ε-RC algorithm does not find a solution
with respect to the ε-relaxed falsification problem in finite time, then the system
in the original problem is verified.

Proof. Every falsifying control for the original problem is a falsifying control
with violation ε for the ε-relaxed problem, which will be approximated and
returned as a solution to the relaxed problem in finite time by an ε-RC algo-
rithm. Conversely, if no solution is returned for ε-relaxed problem, then the
system is verified. �

Recall αx and αu are the dispersion bounds for sampling in X and U . The
following theorem provides the choice of algorithm parameters to ensure that
the falsification algorithm in Section 3 is ε-resolution complete.

8 Peng Cheng and Vijay Kumar

Theorem 2. If the dispersion bounds satisfy the RC inequality λαx+γαu < σ
with

σ =
ε

Lb
, λ =

eLxδt(K+1) − 1
eLxδt − 1

, γ = LuδteLxδt e
LxδtK − 1
eLxδt − 1

, (9)

then the falsification algorithms in Section 3 are ε-RC falsification algorithms.

Proof. The proof will show that under the conditions in the above theorem,
every falsifying control ũ with violation ε will be approximated and returned
by the algorithm. The proof follows a similar reasoning as in [7]. Instead of
presenting the proof, we present the main intuition behind the idea.

As shown in Fig. 3, sampling in the control space means only an approxi-
mate solution ũ′ of a falsifying control ũ can be returned from our sampling-
based algorithm (see (a)). Furthermore, the state space discretization and
state sampling in Xinit result in discontinuities in the trajectories x̂(ũ′, x′0)
in our search graph. There is a discontinuity in (c) because xnew and x(ne)
are not the same point and the initial state x0 is approximated by x′0 in (b).
The main observation is that the dispersion bounds αx and αu bound the
variation of initial states, the trajectory discontinuities, and the control mis-
matches. Because the system is Lipschitz continuous and the time horizon is
finite, for any ũ and x0 ∈ Xinit there always exist (adapted from Theorem 2.5
in [13]) ũ′ and x′0 ∈ Xinit such that

ρx(x̃(ũ, x0), x̂(ũ′, x′0)) < λαx + γαu, (10)

in which λ and γ are given as above. Recall from (6) the function g has a

t

U

t

uα<

X

0x

'x0

xα<
)(0x,u~x~)(0

'x,'u~x~

)(0
'x,'u~x̂

newx
)(enx

)(snx

xα<

xα<

sampling space control
 todue mismatches control (a)

tiondiscretiza space stateby
 generatedity discontinuy trajector(c)nsy variatio trajector(b)

u~
'u~

Fig. 3. The intuition of RC conditions

Lipschitz constant Lb. Therefore, if there exists a falsifying trajectory x̃(ũ, x0)
with violation ε, an approximation x̃(ũ′, x′0) that satisfies

ρx(x̃, x̃′) < ε/Lb, (11)

will be a falsifying control. The conditions in the theorem immediately follow
by requiring the right side of (10) be less than the right side of (11). �

Sampling-based Falsification and Verification 9

4.2 Choice of dispersion bounds

The computational burden is determined by first determining an upper bound
Titer on running time for each iteration and the upper bound on the number
of iterations. Since the later directly depends on the dispersion bounds αx

and αu (see (8)), the RC inequality in Theorem 2 indirectly determines the
computations required for the ε-relaxed falsification problem.

This is illustrated in Fig. 4 (a) for a simple example, in which Du = Dx =
1, m = 1, n = 2, λ = 0.278, and γ = 1.43. For a given Titer, the solid lines are
iso-cost curves representing a fixed computational cost for different choices of
dispersion bounds. The closer the iso-cost lines are to the origin, the higher
the required computational cost. The straight dashed lines represents the RC
inequality in Theorem 2 for different choices of relaxation ε. The closer the
lines are to the origin, the smaller the relaxation ε. For a given computational

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

xα

uα

cDD m

u

un

x

x =][][
αα

σγαλα =+ ux

αx λi +αu γi < σi

αx λj + αu γj < σj

αx λk + αu γk < σk

αx λ* + αu γ* < σ*

αx

αu

(a) (b)

Fig. 4. (a) Selection of algorithm parameters with respect to computational re-
sources (b) Comparison of different RC inequalities

budget we can, in principle, find the minimally relaxed falsification problem,
for which the RC inequality line will be tangent to the iso-cost curve with the
given computational budget allowing us to determine the dispersion bounds.

4.3 Transformations on X and U

We have assumed that the underlying spaces are metric spaces. Often it is
necessary to introduce scaling transformations to non dimensionalize the sys-
tem so that we are not affected by using non homogeneous coordinates (for
example, Cartesian coordinates and angles) and inputs (for example, torques
and forces). But one can also imagine transforming the underlying spaces to
take advantage of dimensions along which the dynamic system may evolve
slowly (slow time scale) and focus instead on dimensions along which changes
happen more rapidly (fast time scale). In what follows, we will explore the
effects of transformations allowing for general transformation of X and U .

Consider the following transformation: x = Txx̄, u = Tuū, and t = Tct̄,
in which Tx and Tu are full rank square matrices, and Tc is a positive real

10 Peng Cheng and Vijay Kumar

number. The state space X and input space U are respectively transformed
into X̄ and Ū . If Tx = βI, Tu = βI, and Tc = β for some real constant β > 0,
then the transformation is called a uniform scaling transformation.

The transformed motion equation is

˙̄x =
dx̄

dt̄
= f̄(x̄, ū) = TcT

−1
x f(Txx̄, Tuū). (12)

The Lipschitz constants with respect to the state and input for (1) are

Lx = sup
x,u

∥∥∥∥∂f

∂x
(x, u)

∥∥∥∥ , Lu = sup
x,u

∥∥∥∥∂f

∂u
(x, u)

∥∥∥∥ , (13)

and for (12) are:

Lx̄ = Tc sup
x,u

∥∥∥∥T−1
x

∂f

∂x
(x, u)Tx

∥∥∥∥ , Lū = Tc sup
x,u

∥∥∥∥T−1
x

∂f

∂u
(x, u)Tu

∥∥∥∥ . (14)

Because matrix multiplication does not commute, Lx is different from Lx̄ for
general transformations.

RC inequalities under transformation

Theorem 3. The RC inequality after the transformation has

σ =
ε

Lb
, λ = max(Tc, ‖Tx‖∞)‖T−1

x ‖∞
eLx̄δ̄t(K̄+1) − 1

eLx̄δ̄t − 1
, (15)

and

γ = max(Tc, ‖Tx‖∞)‖T−1
u ‖∞Lūδ̄teLx̄δ̄t e

Lx̄δ̄tK̄ − 1
eLx̄δ̄t − 1

. (16)

Proof. With the given transformation, we have

ρx(x̃, x̃′) ≤ max(Tc, ‖Tx‖∞)ρx(˜̄x, ˜̄x′). (17)

The given algorithm parameters εx̄ and εū are described with respect to
the new spaces. With these algorithm parameters, for any falsifying control ˜̄u
and initial state x̄0, there exists an approximation ˜̄u and state x̄′0 such that

ρx(˜̄x(˜̄u, x̄0), ˆ̄x(˜̄u′, x̄′0)) < εx̄
eLx̄δ̄t(K̄+1)−1

eLx̄δ̄t−1
+ εūLūδ̄teLx̄δ̄t eLx̄δ̄tK̄−1

eLx̄δ̄t−1
(18)

With infinity norms on the state and input space, it can be verified that

εx̄ ≤ ‖T−1
x ‖∞εx, εū ≤ ‖T−1

u ‖∞εu. (19)

Substituting the above inequalities into (18) and requiring the right side
of (17) be less than ε/Lb will complete the proof. �
Corollary 1. The RC inequality is invariant for any uniform scaling.

Proof. With any uniform scaling, it can be verified that max(Tc, ‖Tx‖∞) =
1/‖T−1

x ‖∞ = 1/‖T−1
u ‖∞, K = K̄, δt = δ̄t, Lx = Lx̄/β, and Lu = Lū/β.

Therefore, the same RC inequality coefficients in Theorem 2 will always be
derived by substituting these equalities into the RC inequality coefficients in
Theorem 3. �

Sampling-based Falsification and Verification 11

Comparison of RC conditions with different transformations

From the above description, we can see that the derived RC inequality might
not be invariant for non-uniform scaling, such as transformation Tx = βI,
Tu = βI, and Tc = ξ > β. Assume that λi, γi, and σi are coefficients of the
derived RC inequality, which are obtained from Transformation i. Let

Ei = {(αx, αu) | αxλi + αuγi < σi, αx > 0, αu > 0}. (20)

The inequalities and set Ei are shown in Fig. 4 (b). For Transformations i, j,
and k, Transformation i is said to be superior to Transformation j if Ej ⊂ Ei.
If Ei 6⊂ Ek and Ek 6⊂ Ei, then Transformation i is neither better nor worse
than Transformation k. A transformation can be said to be “optimal” from the
standpoint of resolution completeness if the set defined by αxλ∗ + αuγ∗ < σ∗

is not the subset of Ei for all other transformations. Again this “optimal”
transformation will generate dispersion bounds that are larger so that the
maximal number of nodes, the size of Su, and therefore the computational
cost will be smaller.

5 Examples

In this section we illustrate the sampling-based falsification and verification
methodology, the use of ε-relaxation, and transformation of state and input
spaces. We choose several simple verification problems that allow easy in-
terpretation. The first problem has parametric uncertainty in inputs while
the second problem has parametric uncertainty in the initial state. The third
problem incorporates uncertainty in the form of disturbance input functions.
The final problem presents an analysis of control policies for pursuit evasion.

5.1 Verification problems

Problem 1: Verification of a system with an uncertain parame-
ter Consider a point mass which moves freely on a plane with constant but
unknown external force, u, along the y-axis (see Fig. 5 (a)). The state x of the
system includes (px, vx, py, vy) in X = [0, 15]× [1, 3]× [−1, 1]× [−1, 2], which
denote the position and velocity along x and y axes respectively. Its motion
equation is ṗx = vx, v̇x = 0, ṗy = vy, and v̇y = u, in which u ∈ U = [5, 15]
is the system parameter determining the magnitude of the constant input.
The system has initial state x0 = (0.0, 2.0, 0.0, 1.0). The system is safe if the
trajectory of the point mass from initial state x0 always stays outside of an
unsafe region (shown shaded in Fig. 5 (a)), which is a square of width d = 0.5
with its center at point (10, 0). The function defining the unsafe set1 is

1 Recall that we are considering X as a metric space with the infinity norm.

12 Peng Cheng and Vijay Kumar

g(x̃(ũ, x0)) = min
t

(‖x̃(ũ, x0, t)− [10, 0]T ‖)− 0.5 < 0.

It can be verified that g(x̃) satisfies (6) with Lipschitz constant Lb = 1.
The verification problem is to check whether the system is safe for all

inputs. There is a natural choice for the finite time horizon, DT . For t > 0.7,
py can be shown to be less than −0.5 and decreasing. Therefore, we choose
DT = 0.7. Because analytical solutions are available for this simple system, it
is straightforward to show that the system is safe. We will verify this using a
sampling-based algorithm in the next subsection.

0

X

Y

s

2d

u

Unsafe region

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

Original unsafe set at t= 10

Relaxed unsafe set at t= 10

Nominal pursuer trajectory

Nominal evader trajectory

(a) (b)

Fig. 5. Simple verification problems

Problem 2: Verification of a system with an uncertain initial state
Consider the autonomous system with no control: ẏ = 0.2y sin t2 and ṫ = 1.
We define the extended state x = [y, t]T ∈ X = [0, 2]× [0, 10]. The initial state
is unknown, but restricted to lie in the set Xinit = [0, 0.1] × 0. The system
is considered to be safe if at t = 9 seconds, ‖y(t) − 1.0‖ > 0.5. Again the
Lipschitz constant Lb for the function g is 1. The time horizon is DT = 9
seconds. We consider ε-relaxed problems with ε = 0.5 first and then 0.05.

Problem 3: Verification of a system under input disturbances
Consider the kinematic model of a UAV whose nominal inputs are constant
but are subject to bounded disturbances. The dynamics is characterized as
ẋ = (v0 + v) cos θ, ẏ = (v0 + v) sin θ, and θ̇ = w0 + w, in which v0 = 1 and
w0 = 0.1 are the nominal inputs for the system, x ∈ [0, 10], y ∈ [0, 5], and θ ∈
[0, 2π] are position and orientation, v ∈ [−0.01, 0.01] and w ∈ [−0.001, 0.001]
denote the disturbances. The system starts from the initial state (0, 0, 0) at
time 0. See Fig. 6 (a). The question is whether the system will stay in the
1.0-neighborhood of the goal position [xg, yg]T = [8.41, 4.60]T under the input
disturbance at time 10 seconds. Thus, the system is said to be unsafe if 2

‖[x, y]T − [xg, yg]T ‖ > 1.0 at t = 10. Again, the Lipschitz constant Lb = 1.
The disturbance control space consists of piecewise-constant controls with
δt = 2 seconds. We will consider ε relaxation with ε = 0.5.
2 The infinity norm is used here.

Sampling-based Falsification and Verification 13

8.32 8.34 8.36 8.38 8.4 8.42 8.44 8.46 8.48 8.5
4.55

4.56

4.57

4.58

4.59

4.6

4.61

4.62

4.63

4.64

4.65

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7.9 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

Nominal trajectory

Original unsafe set

Relaxed unsafe set
Relaxed unsafe set

Final states of constructed
trajectories

(a) (b) (c)

Fig. 6. Verification of the system under input disturbances

Problem 4: Verification of a control policy for the pursuer Con-
sider the UAV in Problem 3 as an evader and a point mass model for a pursuer
with position px and py. The pursuer captures the evader if

‖[x(t), y(t)]T − [px(t), py(t)]T ‖ < 1.0

for some t in a finite time horizon of DT = 10 seconds. The UAV has a
given nominal control input but with bounded disturbance in the input. An
open-loop trajectory (px(t) = 8.61 and py(t) = 0.46t) is computed for the
pursuer according to the nominal trajectory to achieve capture (see Fig. 5
(b)). The pursuer trajectory is verified if the pursuer can capture the evader
over any disturbance from its nominal control. Again, the Lipschitz constant
Lb = 1. The disturbance control space consists of piecewise-constant controls
with δt = 2 seconds. We will consider ε relaxation with ε = 0.5.

5.2 RC inequalities under scaling and transformation

The transformation is achieved with following diagonal matrices

Tx = Diag(a11, a22, · · · , ann), Tu = Diag(b11, b22, · · · , bmm). (21)

Problem 1: Because the control is constant, the control space is U =
{ũ | ũ(t) = c, c ∈ U}. Because the algorithm without state space discretization
is used and the initial state is a point, RC inequality will be in form γαu < σ.
We use the ε-relaxed falsification problem with ε = 0.2. With this ε, the ε-
RC inequalities after four different transformations are listed in Table 1. It
can be seen that the RC inequalities are the same for the uniform scaling
transformation between 1 and 2 (see Table 1).

Problem 2: Because input space sampling does not exist, RC inequality
for this problem will be in form λαx < σ. RC inequalities are calculated in
Table 2 (a) for a fixed Tc = 1.

Problem 3: The ε-RC inequalities are calculated in Table 2 (b) with
Tc = 1 and Tu equal to an identity matrix. The algorithm with state space
discretization is used for falsification and verification.

Problem 4: The same ε-RC inequalities are obtained as for Problem 3.

14 Peng Cheng and Vijay Kumar

Table 1. RC inequalities under different transformations

No. a11 a22 a33 a44 b11 Tc Lx̄ Lū γi σi

1 1 1 1 1 1 1 1 1 1.41 0.2

2 10 10 10 10 10 10 10 10 1.41 0.2

3 10 1 10 1 1 1 0.1 1 7.51 0.2

4 10 100 10 100 1 100 1000 1 767.64 0.2

Table 2. RC inequalities under different transformations

No. a11 a22 Lx̄ λi σi

1 1.0 1.0 8.2 1.12e32 0.5

2 10.0 1.0 1.0 8.10e4 0.5

3 100.0 1.0 0.28 1.34e3 0.5

4 1000.0 1.0 0.208 7.50e3 0.5

a11 a22 a33 Lx̄ Lū λi γi σi

1 1 1 1.01 1 2.81e4 5.61e4 0.5

10 10 1 1.01e-1 1 105.4 190.88 0.5

100 100 1 1.01e-2 1 631.5 1.06e3 0.5

1000 1000 1 1.01e-3 1 6.03e3 1.01e4 0.5

(a) (b)

5.3 Simulation results

Problem 1: Under Transformation 1 in Table 1, we choose αu = 0.141.
A sample input set Su with this dispersion bound is {5, 5.28, 5.56, · · · , 15}.
The system was verified because no solution was returned.

Problem 2: From Table 2 (a), we can see that Transformation 3 yields
the best RC inequality in terms of the lowest λ (highest dispersion). The
dispersion bound αx is chosen to be 3.7 × 10−4 to satisfy this inequality.
Sample states from Xinit are {0, 7.0 × 10−4, 1.4 × 10−3, · · · , 0.0994, 0.1} are
used for simulation. As shown in Fig. 7 (a), the final state of the trajectory
from y = 0.05 and t = 0 is returned by the ε-RC falsification problem with
ε = 0.5, and therefore, the system is not verified.

In order to investigate this problem further, the relaxation tolerance ε is
reduced to 0.05. For the same transformation, the state sampling dispersion
bound αx is calculated to be 2.5 × 10−5. Now all the final states of the ap-
proximated trajectories are outside of the 0.05-relaxed unsafe set. Therefore,
the system is verified. Three sample trajectories are illustrated in Fig. 7 (b).

Problem 3: From Table 2(b), we can see that Transformation 2 has the
best RC inequality. We chose dispersion bounds αx = 1.1 × 10−3 and αu =
2.01×10−3 which satisfy this inequality. The chosen sample input (v, w) with
the specified input dispersion is in {−0.01,−0.006,−0.002, 0.002, 0.006, 0.01}×
{0.0}. As shown in Fig. 6 (b) and (c), since the final states of all constructed
trajectories do not enter the unsafe region, the system is verified.

Problem 4: The verification algorithm runs with the same choice of the
sample input set as in Problem 3. The pursuer trajectory is verified because no
disturbance input for the evader is a falsifying control for the relaxed problem.
Note that the complexity of the proposed verification for this problem depends

Sampling-based Falsification and Verification 15

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

8

9

10

The initial state set

The reachable set

The trajectory from
the sample state

The unsafe
set at t=9

The 0.5-relaxed
unsafe set at t=9

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

6

7

8

9

10

The initial state set

The reachable set

The trajectories from
the sample states

The unsafe
set at t=9

The 0.05-relaxed
unsafe set at t=9

(a) (b)

Fig. 7. Trajectories computed by the verification algorithm for ε-relaxed problems

only on the state and input space of the evader. Increasing the number of
pursuers does not change the computational cost.

6 Conclusion

In this paper, we proposed a sampling-based verification algorithm based on
resolution complete falsification, which involves the iterative construction of
solutions that falsify the given safety specification with sampled controls. We
derive sufficient conditions for the discretization of the state and input spaces
to guarantee that we can find approximations to any falsifying control inputs,
if they exist. Thus the paper provides a novel and systematic approach to
verifying controllers for continuous dynamic systems.

While the paper presents sufficient conditions for resolution completeness,
these conditions are conservative and require a high resolution sampling in
state and input spaces for most practical problems. This is because the ver-
ification problem is extremely hard. (Recall that the path planning problem
(without dynamics) is NP-hard.) We provide a partial solution to this prob-
lem by pursuing transformations of input and state spaces that might allow
a lower resolution while guaranteeing resolution completeness. This continues
to be an area of ongoing research.

Of course heuristics can improve performance by several orders. As shown
in the RC inequality in Theorem 2, the complexity of the verification algorithm
increases exponentially with the time horizon, and dimension of the state space
and input spaces. Thus it is important to prune the search space based on
domain knowledge. Our preliminary work in this direction is discussed in [9].

Acknowledgements

We gratefully acknowledge support from NSF grant CNS-0410514 and ONR
grant FA8650-04-C-7133.

16 Peng Cheng and Vijay Kumar

References

1. R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas. Discrete abstractions of
hybrid systems. Proccedings of the IEEE, 88(2):971–984, July 2000.

2. E. Asarin, O. Bournez, T. Dang, and O. Malzer. Approximate reachability anal-
ysis of piecewise-linear dynamical systems. In Hybrid Systems : Computation
and Control. Springer Verlag, 2000.

3. J. Barraquand and J.-C. Latombe. Nonholonomic multibody mobile robots:
Controllability and motion planning in the presence of obstacles. Algorithmica,
10:121–155, 1993.

4. A. Bhatia and E. Frazzoli. Incremental search methods for reachability anal-
ysis of continuous and hybrid systems. In Hybrid Systems : Computation and
Control, Philadelphia, USA, 3 2004.

5. M. Branicky, M. Curtiss, J. Levine, and S. Morgan. Sampling-based planning,
control, and verification of hybrid systems. IEEE Proc. Control Theory and
Applications. (Accepted).

6. B. Burns and O. Brock. Sampling-based motion planning using predictive mod-
els. In IEEE Int. Conf. Robot. & Autom., 2005.

7. P. Cheng. Sampling-based Motion Planning with Differential Constraints. PhD
thesis, University of Illinois, Urbana, IL, 2005.

8. A. Chutinan and B. Krogh. Verification of infinite-state dynamic systems using
approximate quotient transition systems. IEEE Transactions on Automatic
Control, 46:1401–1410, 2001.

9. J. M. Esposito, J. Kim, and V. Kumar. Adaptive RRTs for validating hy-
brid robotic control systems. In Proc. Workshop on Algorithmic Foundation of
Robotics, 2004.

10. A. Girard and G. Pappas. Verification using simulation. In Hybrid Systems :
Computation and Control. Springer Verlag, 2006.

11. D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive configu-
ration spaces. Int. J. Comput. Geom. & Appl., 4:495–512, 1999.

12. J. Kapinski, B. Krogh, O. Maler, and O. Stursberg. On systematic simulation
of open continuous systems. In Hybrid Systems : Computation and Control.
Springer Verlag, 2003.

13. H. Khalil. Nonlinear systems. Prentice-Hall, Upper Saddle River, NJ, 1996.
14. A. Ladd and L. Kavraki. Measure theoretic analysis of probabilistic path plan-

ning. IEEE Transactions on Robotics and Automation, 20(2):229–242, April
2004.

15. S. LaValle, M. Branicky, and S. Lindemann. On the relationship between clas-
sical grid search and probabilistic roadmaps. International Journal of Robotics
Research, 24, 2004.

16. S. LaValle and J. K. Jr. Randomized kinodynamic planning. International
Journal of Robotics Research, 20(5):378–400, 2001.

17. L.Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Trans. Robot.
& Autom., 12(4):566–580, June 1996.

18. I. Mitchell and C. Tomlin. Overappoximating reachable sets by hamilton-jacobi
projections. J. of Sci. Comput., 19, Dec. 2003.

19. H. Niederreiter. Random Number Generation and Quasi-Monte-Carlo Methods.
Society for Industrial and Applied Mathematics, Philadelphia, USA, 1992.

