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Abstract: Planning corridors among obstacles has arisen as a central problem in
game design. Instead of devising a one-dimensional motion path for a moving entity,
it is possible to let it move in a corridor, where the exact motion path is determined
by a local planner. In this paper we introduce a quantitative measure for the quality
of such corridors. We analyze the structure of optimal corridors amidst point ob-
stacles and polygonal obstacles in the plane, and propose an algorithm to compute
approximations for optimal corridors according to our measure.

1 Introduction

The task of planning a natural path for a moving entity that avoids obstacles
plays an important role in robotics, as well as in game design. The problem
is often solved by constructing a graph that discretizes the environment, and
extracting a collision-free path from this graph. The nodes of such a graph may
be the cells of a uniform grid (see, e.g., [17]), or — according to Probabilistic
Roadmap (Prm) paradigm [1, 5] — free configurations that are randomly
chosen, attempting to capture the connectivity of the free configuration space.

A common drawback of the above methods is that they output a fixed path
in response to a query. This is often not the ideal solution for motion planning,
as it lacks flexibility to avoid local hazards (such as small obstacles, other
moving entities, etc.) that are encountered during the motion. It also leads
to predictable, and possibly unrealistic motions, which are not suitable for
some applications, such as computer games. One approach for tackling these
problems is a potential-field planner, in which the moving entity is attracted
to its goal configuration, and repelled by obstacles, or other moving entities
(see, e.g., [6]). However, this approach is prone to get stuck in local minima
of the potential field; while there are methods that help in resolving such
situations (see, e.g., [7]), they may still not yield valid motions at all.
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We would therefore like to indicate the global direction of movement for the
moving entity, while leaving enough flexibility for some local planner to avoid
local hazards. An ideal solution for this is to use corridors, which have recently
been introduced in the game design field [15]. Corridors are defined as a union
of balls whose center points lie along a backbone path. The radius of the balls
is determined by the clearance (i.e., the distance to the nearest obstacle) along
the backbone path. The more restricted task of locally planning the motion
around the backbone path can be successfully performed by potential-field
methods. In order to guarantee that the local planner operates on a restricted
environment, the radii of the balls are upper bounded by some predetermined
value.1 As a result, rather than moving along a fixed path, the moving entity
moves within a corridor around the backbone path. This gives a strict global
direction of movement, yet provides the local flexibility we look for.

Planning within corridors has many applications. It has been used to plan
motions for coherent groups of entities, where the backbone path provides
the global motion of the group [3]. The interactions between entities of the
group are locally controlled by a social potential-field method [16]. Corridors
have also been used to plan the motion of a camera that follows a moving
character (a guide) [12]. If the guide moves along the backbone path, the
corridor gives the flexibility for the camera to swerve if necessary. Another
advantage of corridors is that they allow for non-holonomic and kinodynamic
planning, if the motion of a single entity (or multiple entities) is planned using
a potential field method within the corridor [4]. This is very difficult to achieve
and incorporate into a fixed path. A common property of the applications of
corridors is that the moving entity is small compared to the scale of the
environment. In many fields (open field robotic navigation, games, etc.) this
is indeed the case.

The problem we consider in this paper is how to plan a good corridor. A
good corridor is short, avoiding unnecessary detours, and at the same time
it should be wide (up to some prescribed maximum) to provide local ma-
neuvering space. These requirements often contradict. Given start and goal
configurations and a set of obstacles, the shortest collision-free path is con-
tained in the visibility graph of the obstacles; see, e.g., [9]. However, such a
path is incident to obstacle boundaries and cannot serve as a backbone path
of a valid corridor. If one is only concerned with clearance, allowing paths that
are as long as needed, then such paths are easily found using the Voronoi dia-
gram of the given obstacles [14]. It is also possible to consider interpolates of
these two structures, named visibility–Voronoi diagrams, as suggested in [19].
Indeed, a good corridor makes a good trade-off between length and clearance.

In this paper we introduce a measure for the quality of corridors, and
present methods to plan corridors that are (nearly) optimal with respect to
this measure amidst point obstacles or polygonal obstacles in the plane.

1 The fact that the radii of the balls are bounded is also a major difference between
a corridor and the medial axis transform of the free workspace.
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The rest of this paper is organized as follows. In Section 2 we formally
define corridors and introduce the quality measure. Section 3 discusses prop-
erties of optimal corridors amidst point obstacles in the plane, and in Section 4
we generalize our results to polygonal obstacles. We give some concluding re-
marks and future-work directions in Section 5.

2 Measuring Corridors

A corridor C = 〈γ(t), w(t), wmax〉 in a d-dimensional workspace (typically
d = 2 or d = 3) is defined as the union of a set of d-dimensional balls whose
center points lie along the backbone path of the corridor, which is given by the
continuous function γ : [0, L] −→ R

d, where L is the length of γ. The radii
of the balls along the backbone path are given by the function w : [0, L] −→
(0, wmax]. Both γ and w are parameterized by the length of the backbone
path. In the following, we will refer to w(t) as the width of the corridor at
point t. The width is positive at any point along the corridor, and does not
exceed wmax, a prescribed desired width of the corridor.

Given a corridor C = 〈γ(t), w(t), wmax〉 of length L in R
d, the interior

of the corridor is thus defined by
⋃

t∈[0,L]B (γ(t);w(t)), where B(p; r) is an
open d-dimensional ball with radius r that is centered at p. In typical motion-
planning applications we are given a set of obstaclesO that the moving entities
should avoid. The interior of the corridor should be disjoint from the interior
of the given obstacles, otherwise it is an invalid corridor. In this paper we
study the problem of computing valid corridors amidst obstacles in the plane.

2.1 The Weighted Length Measure

As we have already indicated, a good corridor must be short — namely its
backbone path should avoid unnecessarily long detours — and its width should
be as wide as some predefined maximum in order to allow maximal flexibil-
ity for the motion within the corridor. The corridor should contain narrow
passages only if they allow considerable shortcuts.

If we examine the intersection of the corridor C = 〈γ(t), w(t), wmax〉 with
an orthogonal (d−1)-dimensional hyperplane at γ(t), the volume of the cut is
proportional to wd−1(t). Thus, in order to combine the two desired properties
of the corridor as discussed above, we define the weighted length L∗(C) of a
corridor C = 〈γ(t), w(t), wmax〉 to be:

L∗(C) =

∫

γ

(

wmax

w(t)

)d−1

dt . (1)

We wish to minimize the weighted length by either shortening the back-
bone path or by extending the corridor’s width (up to wmax). Given a start
position s ∈ R

d and a goal position g ∈ R
d, a corridor C = 〈γ(t), w(t), wmax〉

satisfying γ(0) = s and γ(L) = g is optimal if for any other valid corridor C′

connecting the two endpoints we have L∗(C) ≤ L∗(C′).
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Our weighting scheme can be directly applied for extracting backbone
paths from Prms that contain cycles [11, 13], where instead of considering
the Euclidean length we try to minimize the weighted length of the backbone
path we compute, in order to obtain a better corridor. However, for some
sets of obstacles we can actually devise a complete scheme for computing an
optimal corridor, as we show in the rest of this paper.

2.2 Properties of an Optimal Corridor

Observation 1 If for some portion of the backbone path γ of a corridor C,
we have w(t) < min{c(γ(t)), wmax} for t ∈ [t0, t0 + τ ] (τ > 0), where c(p) is
the clearance of the point p, namely its distance to the nearest obstacle, we
can improve the quality of the corridor by letting w(t)←− min{c(γ(t)), wmax}
for each t ∈ [t0, t0 + τ ].

Given a set of obstacles and a wmax value, we can associate the bounded
clearance measure ĉ(p) with each point p ∈ R

d, where ĉ(p) = min{c(p), wmax}.
Using the observation above, it is clear that the width function of an optimal
path C = 〈γ(t), w(t), wmax〉 is simply w(t) = ĉ(γ(t)). Note that ĉ(γ(t)) is a
continuous function along any path γ.

Lemma 2 Given a set of obstacles and wmax, the backbone path of the opti-
mal corridor connecting any given start position s with any goal position g is
smooth.

Proof. We have already observed that the weight function of the optimal
corridor connecting s and g is the bounded clearance function of the backbone
path and it is a continuous function. Assume that γ contains a sharp turn (a
C1-discontinuity). Let us shortcut the sharp turn using a circular arc of radius
r (as r approaches 0 the approximation is tighter). Let `1 be the length of the
original path segment we shortcut and let `2 be the length of the circular arc.
It is easy to show that there exist r̂ > 0 and some constants A1 > A2 > 0
such that for each 0 < r < r̂ we have `1 ≥ A1r and `2 = A2r. If the maximal
width w∗ along the original path segment is obtained at some point p∗, then
as the distance of any point p along the circular arc from p∗ is bounded by Kr,
where K is some constant, and as the weight function is continuous, we can
write w∗ −w(p) < Mr for some positive constant M . Let L∗

1 be the weighted
length of the original path segment and let L∗

2 be the weighted length of the
circular arc. We can write:

L∗

1

L∗

2

≥
wmax

w∗
l1

wmax

w∗−Mr
l2

=
w∗ −Mr

w∗
· A1

A2
.

As A1 > A2, we can choose 0 < r < min
{

w∗

M

(

1− A2

A1

)

, r̂
}

such that the

entire expression above is greater than 1. We thus have L∗

1 > L∗

2, and we
managed to decrease the weighted length of the corridor, in contradiction to
its optimality. We conclude that γ(t) must be a smooth function. ut
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At several places in this paper we apply infinitesimal analysis, where we
assume that the bounded clearance measure (hence the weight function) is
not continuous. Assume that we have some hyperplaneH in R

d that separates
two regions, such that in one region the bounded clearance is w1 and in the
other it is w2. Minimizing the weighted length between two endpoints that are
separated by H is equivalent to applying Fermat’s principle, stating that the
actual path between two points taken by a beam of light is the one which is
traversed in the least time. The optimal backbone thus crosses the separating
hyperplane once, such that the angles α1 and α2 it forms with the normal
to H obey Snell’s Law of refraction,2 with w1 and w2 playing the role of the
“speed of light” in the respective regions:

w2 sinα1 = w1 sinα2 . (2)

3 Optimal Corridors amidst Point Obstacles

In this section we consider planar environments cluttered with point obstacles
p1, . . . , pn ∈ R

2 and a preferred corridor width wmax. Given two endpoints
s, g ∈ R

2, we show how to compute a (near-)optimal corridor that connects s
and g.

3.1 A Single Point Obstacle

Let us assume we have a single point obstacle p. Without loss of generality we
assume p is located at the origin. We start with computing an optimal corridor
between two endpoints whose distance from p is smaller than or equal to wmax.
Note that the width of such a corridor at γ(t) along its backbone is ‖γ(t)‖.

We first approximate the optimal backbone by a polyline: for any ∆r > 0,
if we look at the circles of radii ∆r, 2∆r, 3∆r, . . . that are centered at the
origin, each two neighboring circles define an annulus; since ∆r is small we
assume that the distance from p of all points in the kth annulus is constant
and equals k∆r. Consider the scenario depicted in Figure 1(a), where γ enters
one of the annuli at some point A, where ‖A‖ = r1, and leaves this annulus
at B, where ‖B‖ = r2 = r1 +∆r. The angles that the backbone path forms
with pA and pB are α1 and β1, respectively. When entering the annulus we
have w1 = r1 and w2 = r2, so applying Equation (2) we can express the
refracted angle α2, using sinα2 = r2

r1
sinα1. By applying the Law of Sines on

the triangle 4pAB, we get r2
sin(π−α2)

= r1
sin β1

, therefore:

sinβ1 =
r1

r2
sin(π − α2) =

r1

r2
sinα2 = sinα1 .

2 See, e.g., http://scienceworld.wolfram.com/physics/SnellsLaw.html for the
details and for a detailed proof. See also Mitchell and Papadimitriou [10], who
used this observation in a similar setting of the problem.
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B
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α2
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p = (0, 0)
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α2

α3

α1
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x
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0

∆y2

∆y3

∆y1

(a) (b)

Fig. 1. Analysis of the optimal backbone path in the vicinity of a single obstacle:
(a) near a point obstacle p = (0, 0), (b) near a line segment supported by x = 0.

Thus β1 = α1. Taking ∆r −→ 0, we obtain a smooth curve γ, such that the

angle that ∇γ(t) forms with
−−−→
pγ(t) is a constant ψ. It is possible to show that

a curve that has this property must be segment of a logarithmic spiral (also
named an equiangular spiral)3 whose polar equation is given by r(t) = aebθ(t),
where a is a constant and b = cotψ. See, e.g., [2] for a proof of this latter fact.

Proposition 3 Given a single point obstacle located at the origin, a start
position s = rse

iθs and a goal position g = rge
iθg (in polar coordinates),

where rs, rg ≤ wmax, the backbone of the optimal corridor connecting s and
g is a spiral arc supported by the logarithmic spiral r = a∗eb

∗θ. Since both s

and g lie on this spiral, we have (assuming θs 6= θg, otherwise the optimal
backbone path is simply a line segment):

a∗ = rg
θs

θs−θg · rs−
θg

θs−θg , b∗ =
1

θg − θs
· ln rg

rs
. (3)

We now consider the case where the clearance of the two endpoints ex-
ceeds wmax, namely the two endpoints of our path lie outside the closure of
the disc B(p;wmax). There are two possible scenarios: (i) The straight line
segment sg does not intersect B(p;wmax); in this case, this segment is the
backbone of the optimal corridor. (ii) sg intersects B(p;wmax). In this lat-
ter case the optimal backbone path is a bit more involved. Consider some
backbone path γ connecting s and g. It is clear that the intersection of γ
with B(p;wmax) comprises a single component, so we denote the point where
the path enters the disc by s′ and the point where it leaves the disc by g′

3 http://www-groups.dcs.st-and.ac.uk/∼history/Curves/Equiangular.html
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p
s

s′

s∗

wmax

g
g∗

g′

(see the illustration to the right). As s′ and g′ lie
on the disc boundary, their polar representation
is s′ = wmaxe

iθs′ and g′ = wmaxe
iθg′ , so we use

Equation (3) and obtain a∗ = wmax and b∗ = 0.
The optimal path between s′ and g′ therefore
lies on the degenerate spiral r = wmax, namely
the circle that forms the boundary of B(p;wmax).
We conclude that the optimal backbone path be-
tween s and g must contain a circular arc on the boundary of B(p;wmax).
As according to Lemma 2 this path must be smooth, it should comprise two
line segments ss∗ and g∗g that are tangent to the disc and a circular arc that
connects the two tangency points s∗ and g∗ (see the dashed path in the figure
above). Note that as there are two possible smooth paths from s to g we select
the shortest one.

3.2 Multiple Well-Separated Point Obstacles

Let us now go back to our original setting, where we are given a set of point
obstacles O = {p1, . . . , pn}, along with a preferred width wmax, and wish
to compute the optimal corridor from s to g, where we assume that c(s) =
mini ‖s− pi‖ ≥ wmax and c(g) = mini ‖g − pi‖ ≥ wmax.

In case the points are well separated — that is, for each i 6= j the discs
B(pi;wmax) and B(pj ;wmax) are disjoint in their interiors (implying that ‖pi−
pj‖ ≥ 2wmax), we can follow the same arguments we used above for a single
obstacle and conclude that the optimal backbone is either the straight line
segment sg (in case it is free, namely its interior does not intersect the interior
of any of the discs), or it comprises circular arcs and line segments that connect
them.

We can therefore construct the visibility graph of the dilated obstacles and
use it to construct optimal paths. The vertices of this graph are the endpoints
of the free bitangents to two dilated obstacles, which in turn are represented
as graph edges. In addition, each two neighboring tangency points on a disc
B(pi;wmax) are connected by a circular arc. Given a path-planning query,
namely two endpoints s and g, we treat s and g as vertices and add all free
tangents from s and from g to the discs as graph edges. If the segment sg is
free, we add it to the graph as well. We then perform Dijkstra’s algorithm
from s to find the shortest path to g in the resulting graph. The weight ω(e)
given to each graph edge e is its weighted length, which simply equals its
length in this case.

Proposition 4 Given a set O of n point obstacles in the plane that are well-
separated with respect to wmax, and two endpoints s and g with clearance at
least wmax, it is possible to compute the optimal corridor connecting s and g
in O(E logn) time using the visibility graph of the dilated obstacles, where E
is the number of visibility edges in this graph.
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3.3 Corridors amidst Point Obstacles: The General Case

p1

v

p2

p4

p5

p6

p3

We now consider the case where the
endpoints s and g have arbitrary
clearance, namely the dilated obsta-
cles B(p1;wmax), . . . , B(pn;wmax) are
not necessarily pairwise disjoint in
their interiors. The boundary of M =
⋃n
i=1 B(pi;wmax) comprises whole cir-

cles and circular arcs, such that a com-
mon endpoint of two arcs is a reflex ver-
tex. We now construct V , the Voronoi
diagram of the points, and compute the
intersection V∩M, namely the portions of the Voronoi edges contained within
the union of the dilated obstacles. Note that reflex vertices are equidistant
to two point obstacles, so they serve as the connection points between the
Voronoi edges and the boundary arcs of M. We will refer to the Voronoi
edges in V ∩M, together with the circular arcs that form the boundary ofM,
as the bounded Voronoi diagram of the point set O = {p1, . . . , pn}, which we
denote V̂(O). The figure to the right shows the bounded Voronoi diagram of
six points; the boundary of M is drawn is solid lines and the Voronoi edges
are dotted.

Note that V̂(O) partitions the plane into two-dimensional cells of two
types: Voronoi regions of the point obstacles, and regions where the clearance
is larger than wmax. Given two points s′ and g′ that belong to the same cell
κ, we know that:

• If κ is a cell whose clearance is greater than wmax, the optimal backbone
path between s′ = (x1, y1) and g′ = (x2, y2) is the straight line segment
σ that connects them, provided that σ does not intersect any feature of
V̂(O). The weighted length of this segment simply equals the Euclidean
distance ‖g′ − s′‖ =

√

(x2 − x1)2 + (y2 − y1)2.
• If κ is a Voronoi cell of a point obstacle pi, the optimal backbone path

between s′ and g′ is a spiral arc σ centered at pi, provided that σ does not
intersect any feature of V̂(O). If s′ = r1e

iθ1 and g′ = r2e
iθ2 are the polar

coordinates of the endpoints with respect to pi, the weighted length of σ
is given by (recall that from Equation (3) we have b = 1

θ2−θ1
· ln r2

r1
):

L∗(σ) =

∫ θ2

θ1

wmax

r(θ)

√

r2(θ) +
(dr

dθ

)2
(θ) dθ =

∫ θ2

θ1

wmax

aebθ

√

1 + b2aebθ dθ =

=

∫ θ2

θ1

wmax

√

1 + b2 dθ = wmax

√

1 + b2(θ2 − θ1) =

= wmax

√

(θ2 − θ1)2 + (ln r2 − ln r1)2 .

In addition, the features of V̂(O) are also locally optimal, namely they can
serve as backbone paths of optimal corridors (see Figure 2(a)). We already
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ψ2

q2
q1

q1

q2
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ψ

v1

v2

ψ

q1

q′

q2

v2

p1

p2

y =
αx+

β

v1

(a) (b) (c)

Fig. 2. (a) The spiral arc connecting q1 and q2 (dashed) crosses the Voronoi edge
v1v2; the optimal backbone path between q1 and q2 therefore comprises two spiral
arcs that shortcut v1 and v2 (solid arrows) and portions of Voronoi edges. (b) Short-
cutting two adjacent Voronoi vertices v1 and v2 by a single spiral arc. (c) Shortcut-
ting two Voronoi vertices by a cross-cell curve, which is a smooth concatenation of
two spiral arcs. Both arcs have a common tangent y = αx + b, which crosses the
Voronoi edge v1v2 at q′.

know that portions of the circular arcs that form the boundary of M are
locally optimal, and that the weighted length of such a circular arc simply
equals its length. The Voronoi edges are also locally optimal: given s′ and g′

on the same Voronoi edge, the optimal backbone path that connects them is
simply the straight line segment s′g′ which coincides with the Voronoi edge.

Following the construction of the visibility graph of the dilated point obsta-
cles (Section 3.2), it is possible to add visibility edges to the bounded Voronoi
diagram, namely to consider every free bitangent of two circular arcs, every
free line segment from a reflex vertex tangent to a circular arc and every free
line segment between two reflex vertices.4 However, a path extracted from
such a graph may pass through Voronoi vertices and reflex vertices, thus it
may contain sharp turns. According to Lemma 2, such a path cannot serve
as a backbone to an optimal corridor. We can try and rectify this problem
by introducing a shortcut edge between each pair of Voronoi edges that are
incident to a common Voronoi vertex (see Figure 2(a) for an illustration),
and between each pair consisting of a Voronoi edge and a visibility edge that
are both incident to a common reflex vertex. However, this is not sufficient.
We can show that it is sometimes possible to shortcut two Voronoi vertices v1
and v2 at once by connecting two Voronoi edges that are separated by another
edge using a single curve. This curve may be contained in a single Voronoi
cell, as in the example depicted in Figure 2(b), or it may cross the Voronoi
edge v1v2 at some point q′ (see Figure 2(c)). We should continue and examine
the possibility of shortcutting k > 2 Voronoi vertices by considering sequences
of (k + 1) contiguous Voronoi edges and trying to locate an endpoint q1 on
the first edge and q2 on the last edge that are connected by a smooth curve

4 The resulting construct is the visibility–Voronoi diagram of the obstacles; see [19]
for more details.
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comprising spiral arcs. This operation is not trivial, and requires solving a
system of low-degree polynomial equations with 2(Nc + 1) unknowns, where
Nc is the number of crossings between the shortcut curve and the Voronoi
diagram. In some scenarios it may be possible to construct shortcuts to Θ(n)
Voronoi vertices by considering sequences of Θ(n) contiguous Voronoi edges,
thus the size of the augmented diagram may blow up exponentially.

We therefore devise an approximation algorithm based on the structure
of the bounded Voronoi diagram V̂(O) and the planar partition it induces.
Given ε > 0, we subdivide the line segments and the circular arcs that form

the features of V̂(O) into small intervals of length c(I)
wmax

ε (as ε is small, we
consider the clearance of an interval I to be constant and denote it c(I)).
Notice that the intervals are shorter in regions where the clearance is smaller,
and that each interval has weighted length ε. Hence, if Λ is the total weighted
length of the features of V̂(O), then there are Λ

ε
intervals in total. Let us now

define a graph D whose set of nodes equals the set of intervals I. Each interval
is incident to two of the cells defined by the bounded Voronoi diagram, and
we connect I1, I2 ∈ I by an edge if and only if they are incident to a common
cell. This edge is a line segment in a cell where the clearance is larger than
wmax, a spiral segment in a Voronoi region of one of the point obstacles, a
circular arc on the boundary of a dilated obstacle, or a straight line segment
on a Voronoi edge. In addition, an edge should not cross any of the features of
V̂(O). Using a brute-force algorithm that checks each candidate edge versus

the O(n) diagram features, D can be constructed in O
(

Λ2

ε2
n
)

time.

Given two endpoints s and g, we can connect them to the graph and use
Dijkstra’s algorithm to compute a near-optimal backbone connecting s and g

in O
(

Λ2

ε2

)

time. Let γ∗ be the backbone path of the optimal corridor between

s and g, which comprises k = O(n) segments γ1, . . . , γk (a path segment may
be a straight line segment, a spiral arc, a portion of a circular arc or a portion
of a Voronoi edge). We next show that each such segment is approximated by
an edge in the graph D we have constructed.

Lemma 5 For each segment γi of the optimal backbone path γ∗, there exists
an edge e in D such that L∗(e) < L∗(γi) + 2

√
2ε.

Proof. Let us denote the endpoints of the path segment γi by q1 and q2, and
let I1 and I2 be the intervals that contain these endpoints, respectively.

In case γi is a straight line segment in a cell κ whose clearance is greater
than wmax, then its weighted length simply equals ‖q2 − q1‖, the Euclidean
distance between its endpoints. In the graph D there exists an edge connecting
I1 and I2, and we denote its endpoints by q̃1 and q̃2. By the construction of

the intervals, we know that ‖qj − q̃j‖ ≤ c(Ij)
wmax

ε = ε (for j = 1, 2), hence:

‖q̃2 − q̃1‖ < ‖q2 − q1‖+ 2ε .

Similar arguments hold when γi is a circular arc with clearance wmax.
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In case γi is a segment on a Voronoi edge, the graph D contains a segment

q̃1q̃2 that in the worst case extends c(q1)
wmax

ε to one side of q1 and c(q2)
wmax

ε to the
other side of q2. Since the contribution of each of these extensions is wmax

c(qj)

times its length (for j = 1, 2), the weighted length of q̃1q̃2 is at most 2ε more
than L∗(γi).

The case where γi is a spiral arc contained in a Voronoi cell of a point
obstacle pi is a bit more involved. Let q1 = r1e

iθ1 and q2 = r2e
iθ2 be the

polar coordinates of γi’s endpoints with respect to pi, then we have L∗(γi) =
wmax

√

(θ2 − θ1)2 + (ln r2 − ln r1)2. D contains a spiral arc connecting I1 and

I2, and we denote its endpoints by q̃j = r̃je
iθ̃j ∈ Ij (for j = 1, 2). As c(qj) = rj ,

we know that the length of each of these two intervals is ‖Ij‖ =
rj

wmax

ε. If we

denote ∆θj = θj − θ̃j , we can write:

sin

(

∆θj

2

)

<
1
2‖Ij‖
rj

=
ε

2wmax
.

As for small angles sinφ ≈ φ, we conclude that |∆θj | < ε
wmax

. At the same

time, |∆rj | = |rj − r̃j | < εrj

wmax

, thus we have:

|ln r̃j − ln rj | <
∣

∣

∣

∣

ln

(

rj

(

1 +
ε

wmax

))

− ln rj

∣

∣

∣

∣

= ln

(

1 +
ε

wmax

)

.

As ln(1 + x) ≈ x for small x values, we conclude that | ln r̃j − ln rj | < ε
wmax

.
The length of the approximated spiral arc contained in D can therefore be at
most L∗(γi) + 2

√
2ε. ut

Corollary 6 For each two endpoints s and g, it is possible to use the graph

D and compute a near-optimal backbone path γ̃ connecting s and g in O
(

Λ2

ε2

)

time, such that L∗(γ̃) < L∗(γ∗) +O(n)ε.

4 Optimal Corridors amidst Polygonal Obstacles

In this section we generalize the data structures introduced in Section 3 to
compute optimal corridors amidst polygonal obstacles. As we did in case of
point obstacles, we first examine how an optimal backbone path looks like
in the vicinity of a single obstacle. Note that the polygon P can be viewed
as a collection of points (vertices) and line segments (edges), such that the
distance of a point q ∈ R

2 to P is attained on a polygon vertex or in the
interior of an edge. We can thus subdivide the plane into regions, such that
the identity of the closest polygon feature is the same for all points in any of
the regions. Using the analysis we performed in Section 3.1 we already know
that the optimal backbone path in a region closest to a polygon vertex is an
arc of a logarithmic spiral. We now study the case of two points that lie in a
region closest to a polygon edge.
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Without loss of generality, we shall assume that the polygon edge we con-
sider is an arbitrarily long segment of the vertical line x = 0, and analyze the
optimal backbone path γ between two points s and g, whose distance from
this line is less than wmax (see Figure 1(b) for an illustration). Note that the
width of the corridor at γ(t) = (x(t), y(t)) simply equals |x(t)|.

We begin by approximating the backbone path by a polyline. Assume that
γ(t) passes through a point p0 = (x0, 0) and forms an angle α0 with the line
y = 0 perpendicular to the obstacle. For any ∆x > 0 we can define the lines
x = x0, x = x0+∆x, x = x0+2∆x, . . ., where each two neighboring lines define
a vertical slab; since ∆x is small we assume that the distance of all points
in the slab from the obstacle is constant and equals x0 + k∆x. We can now
use Equation (2) and write: sinα1 = x0+∆x

x0

sinα0, sinα2 = x0+2∆x
x0+∆x

sinα1 =
x0+2∆x

x0

sinα0, . . ., sinαk = x0+k∆x
x0

sinα0. If we examine the kth slab we can
write x = x0 + k∆x, so we have:

∆yk = ∆x tanαk = ∆x · sinαk
√

1− sin2 αk
= ∆x · x sinα0

√

x2
0 − x2 sin2 α0

. (4)

Letting ∆x tend to zero we obtain a smooth curve. We can use Equation (4)
to express the derivative of the curve and we obtain:

y′(x) = lim
∆x−→0

∆yk

∆x
=

x sinα0
√

x2
0 − x2 sin2 α0

, (5)

y(x) = − 1

sinα0

√

x2
0 − x2 sin2 α0 +K . (6)

As the point (x0, 0) lies on the curve, it is easy to see that the constant K
equals x0 cotα0.

Observe that y(x) is defined only for x < x0

sinα0

. When x = x0

sinα0

the
path is reflected from the vertical wall and starts approaching the obstacle.
We note that squaring and re-arranging Equation (6) we obtain that x2 +

(y − x0 cotα0)
2 =

(

x0

sinα0

)2

, thus we conclude that γ is a circular arc, whose

supporting circle is centered at C = (0, x0 cotα0) and its radius is x0

sinα0

.

Proposition 7 Given a start position s = (xs, ys) and a goal position g =
(xg, yg) in the vicinity of a segment supported by x = 0 and with 0 < xs, xg ≤
wmax, the backbone of the optimal corridor between these two endpoints is a
circular arc supported by a circle of radius r∗ that is centered at (0, y∗), where
(we assume that ys 6= yg, otherwise the optimal backbone path is simply the
line segment sg):

y∗ =
ys + yg

2
+

x2
g − x2

s

2(yg − ys)
, (7)

r∗ =

√

1

2
(x2
s + x2

g) +
1

4
(yg − ys)2 +

(x2
g − x2

s)
2

4(yg − ys)2
. (8)
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4.1 Moving amidst Multiple Polygons

We are given a set P = {P1, . . . , Pk} of polygonal obstacles having n vertices
in total, along with a preferred corridor width wmax.

We first mention that if the polygons are well-separated, namely the dis-
tance between each Pi and Pj (1 ≤ i < j ≤ k) is more than 2wmax, we
can use the visibility graph of the dilated polygons to plan optimal backbone
paths. The dilated obstacles in this case are Minkowski sums of the polygonal
obstacles with a disc of radius wmax and their boundary comprises line seg-
ments, which correspond to dilated polygon edges, and circular arcs, which
correspond to dilated vertices. Visibility edges in this case correspond to line
segments tangent to two circular arcs. Proving that the visibility graph in-
deed contains optimal backbone paths is done exactly the same as we did in
Section 3.2 for point obstacles.

In case there exist narrow passages between the obstacles, we generalize the
construction detailed in Section 3.3 to polygons, and introduce the bounded
Voronoi diagram of the set of polygons P . Note that in this case we have
Voronoi chains that are sequences of Voronoi edges. A Voronoi edge may be
induced by two polygon vertices or by two polygon edges, in which case it is
a line segment, or by a polygon vertex and an edge of another polygon, in
which case it is a parabolic arc. Thus, the Voronoi chains are smooth curves
that are piecewise linear or piecewise parabolic and are equidistant to two
nearest polygons; see, e.g., [8] for more details. The bounded Voronoi diagram
V̂(P) also contains edges that separate the Voronoi cells of adjacent polygon
features, namely a polygon edge and a vertex incident to this edge. These
edges are line segments perpendicular to the obstacles (see Figure 3 for an
illustration).

Observe that if we are given two points on the same Voronoi chain, then
the locally optimal backbone path between them is simply the segment of
the chain they define. This is clear in case of point obstacles, as the edges
are straight line segments. In case of chains that separate Voronoi cells of
polygons and may contain parabolic arcs this fact is less obvious. However,
we are able to prove that parabolic arcs are also locally optimal — namely,
it is not possible to shortcut such an arc by choosing a shorter route that is
closer to one of the polygons, as such a route always has a larger weighted
length. This proof is rather technical and we refer the reader to [18] for its
details.
V̂(P) subdivides the plane into cells of three types: regions where the

clearance is larger than wmax, Voronoi cells of polygon vertices, and Voronoi
cells of polygon edges. We have already encountered cells of the first two
types in the bounded Voronoi diagram of a set of points (Section 3.3). We
also know from Proposition 7 that if we have two points in the Voronoi cell
of a polygon edge, the optimal backbone path connecting them is a circular
arc whose center lies on this edge. Assume, without loss of generality, that
the obstacle edge lies on the line y = 0 and that the center of the circular arc
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g s

wmax

(a) (b)

Fig. 3. (a) A near-optimal backbone path (dashed) amidst polygonal obstacles,
overlayed on top of the the bounded Voronoi diagram of the obstacles. Boundary
edges are drawn in light solid lines, Voronoi chains between polygons are dotted,
and Voronoi edges that separate cells of adjacent polygon features are drawn in a
light dashed line. The bounded Voronoi diagram was computed using the software
described in [19]. The backbone path was computed using an A∗ algorithm on a fine
grid discretizing the environment. (b) Zooming on a portion of the path; notice the
shortcuts that the path takes.

a is the origin, and let r∗eiθ1 and r∗eiθ2 be the arc endpoints. The weighted
length of the circular arc is therefore given by (note that r(θ) = r∗):

L∗(a) =

∫ θ2

θ1

wmax

r∗ sin θ

√

r2(θ) +
(dr

dθ

)2
(θ) dθ =

∫ θ2

θ1

wmax

sin θ
dθ =

= wmax

(

ln
1− cos θ

sin θ

)∣

∣

∣

∣

θ2

θ1

= wmax

(

ln tan
θ2

2
− ln tan

θ1

2

)

.

The approximation algorithm given in Section 3.3 can also be extended
to handle polygonal obstacles. In this case we also consider intervals that lie
on Voronoi edges that separate the Voronoi cell of each polygon into simple
regions — thus, each region is induced by a polygon vertex, a polygon edge,
or correspond to regions where the clearance is above wmax. We can show that
Lemma 5 also applies for the circular arcs inside a Voronoi cell of a polygon
edge: Let γi be such a circular arc and let I1 and I2 be the intervals containing
its endpoints q1 and q2, receptively. D contains a circular arc σ connecting

I1 and I2, and we denote its endpoints q̃j = r̃je
iθ̃j ∈ Ij (for j = 1, 2). As

c(qj) = r∗ sin θj , we know that the length of each interval is ‖Ij‖ =
r∗ sin θj

wmax

ε.

If we denote ∆θj = θj − θ̃j , we can write:

sin

(

∆θj

2

)

<
1
2‖Ij‖
r∗

=
ε

2wmax
sin θj .
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As for small angles sinφ ≈ φ, we conclude that |∆θj | < ε
wmax

sin θ. If we use

the fact that f(x+∆x) ≈ f(x)+f ′(x)∆x (for small ∆x) with f(x) = ln tan x
2 ,

we can bound the weighted length of σ (recall that f ′(x) = 1
sin x in our case):

L
∗(σ) = wmax

„

ln tan
θ2 + ∆θ2

2
− ln tan

θ1 + ∆θ1

2

«

<

wmax

„

ln tan
θ2

2
+

ε sin θ2

wmax

·
1

sin θ2

− ln tan
θ1

2
+

ε sin θ1

wmax

·
1

sin θ1

«

= L
∗(γi) + 2ε .

Corollary 8 Given a set of polygonal obstacles P having n vertices in total,
let Λ be the total weighted length of the bounded Voronoi diagram V̂(P) with
respect to a given wmax value. Given ε > 0, we can construct a graph D over

the intervals of V̂(P) in O
(

Λ2

ε2
n
)

time, such that for each two endpoints s and

g it is possible to use D and compute a near-optimal backbone of a corridor
C connecting s and g. L∗(C) is at most O(n)ε more than the weighted length
of the optimal corridor connecting s and g.

5 Conclusions and Future Work

In this paper we have introduced a measure for the quality of corridors and
studied the structure of optimal corridors amidst point obstacles and polyg-
onal obstacles in the plane. We have devised an approximation algorithm for
computing near-optimal corridors amidst obstacles. We are also investigating
methods to speed up our approximation algorithm, as well as design simple
practical methods to compute good corridors. We are interested in extending
our result to corridors in three dimensions as well.

In some applications having a winding backbone path decreases the quality
of the corridor. We can therefore augment the weighted length function by
considering the curvature of the backbone path γ as follows:

L∗

µ(C) =

∫

γ

(

wmax

w(t)

)d−1

dt+ µ

∫

γ

w(t)κ(t)dt , (9)

where κ(t) is the curvature of γ(t), and 0 < µ ≤ 1 is the weight we give to
the curvature measure. We are able to show that in case of well-separated
obstacles, optimal corridors under the L∗

µ measure are still contained in the
visibility graph of the obstacles dilated by wmax. We are still exploring meth-
ods of computing optimal corridors in the case of denser scenes.
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