
Competitive Disconnection Detection

in On-Line Mobile Robot Navigation

Yoav Gabriely1 and Elon Rimon2

1 Technion, Israel Institute of Technology yoavga@tx.technion.ac.il
2 Technion, Israel Institute of Technology elon@robby.technion.ac.il

Abstract This paper concerns target unreachability detection during on-line
mobile robot navigation in an unknown planar environment. Traditionally,
competitiveness characterizes an on-line navigation algorithm in cases where
the target is reachable from the robot’s start position. This paper introduces a
complementary notion of competitiveness which characterizes an on-line nav-
igation algorithm in cases where the target is unreachable. The disconnection
competitiveness of an on-line navigation algorithm measures the path length it
generates in order to conclude target unreachability relative to the shortest off-
line path that proves target unreachability from the same start position. It is
shown that only competitive navigation algorithms can possess disconnection
competitiveness. A competitive on-line navigation algorithm for a disc-shaped
mobile robot, called CBUG, is described. This algorithm has a quadratic com-
petitive performance, which is also the best achievable performance over all
on-line navigation algorithms. The disconnection competitiveness of CBUG is
analyzed and shown to be quadratic in the length of the shortest off-line discon-
nection path. Moreover, it is shown that quadratic disconnection competitive-
ness is the best achievable performance over all on-line navigation algorithms.
Thus CBUG achieves optimal competitiveness both in terms of connection
and disconnection paths. Examples illustrate the usefulness of connection-and-
disconnection competitiveness in terms of path stability.

1 Introduction

This paper is concerned with target unreachability detection during mobile
robot navigation in a planar environment populated by unknown obstacles.
The robot has no apriori information about the environment, but may locally
acquire this information using its on-board sensors. This class of on-line prob-
lems has a wide range of applications. Examples are navigation to various
targets for mail and material delivery in offices and factories, and planetary
exploration and sample acquisition. The most critical parameter in such tasks



2 Yoav Gabriely and Elon Rimon

is physical travel time rather than on-board computation time. Under a uni-
form velocity assumption travel time corresponds to path length. Hence in
this paper navigation algorithms are classified in terms of length of the path
traveled by the robot during algorithm execution. Before discussing target
unreachability detection, we summarize the relevant literature.

Mobile robot on-line algorithms are discussed in the robotics and compu-
tational geometry literature. Roboticists usually emphasize the type of sensors
required to achieve a given task, and the problems considered here are referred
to as sensor based motion planning [6, 7]. Notable early papers in this area de-
scribe the algorithms BUG1/BUG2 [17] and ALG1/ALG2 [20] for navigating a
two degrees-of-freedom mobile robot in an unknown planar environment using
position and tactile sensors. These works have been extended to navigation
in planar environments using vision and laser sensors [15, 16, 18, 21]. How-
ever, the performance of these algorithms is typically characterized in terms
of geometric parameters of the environment such as total obstacle perimeter,
without any reference to the length of the optimal off-line solution, denoted
lopt. As a result, these algorithms may be fooled to generate lengthy paths in
situations where the optimal off-line path is very short.

Computational geometry researchers introduced the notion of competi-
tiveness. An algorithm for a task P is said to be competitive if its solution
to every instance of P is bounded by a constant times the optimal off-line
solution. An early influential paper investigates navigation of a point robot
in an unknown planar environment consisting of m radial corridors [1]. (This
problem has its origin with a simpler problem, where a cow seeks an entry
to a pasture along an unknown fence which corresponds to two corridors [3].)
However, a point robot cannot achieve any form of competitive navigation in
general environments [1, 14, 19]. Subsequent papers discuss on-line naviga-
tion of point robots in specific classes of rectangular rooms [4, 5, 10], rooms
with square-shaped obstacles [19], and generalized streets [8, 14]. All of these
papers strive to achieve linear competitiveness (i.e. path length bounded by
a constant times lopt) in specific classes of environments.

In contrast, we depart from the point-robot paradigm and assume that
the robot is a disc of physical size D > 0. While this assumption may seem
obvious, only few papers make use of this assumption (e.g. [9]). We have
recently reported on CBUG, an on-line navigation algorithm for a size D
robot moving in a general planar environment [13]. This algorithm generates
a path whose length is bounded from above by a quadratic function of lopt.
Moreover, we have shown that any on-line navigation algorithm generates in
worst case a path whose length is bounded from below by a quadratic function
of lopt. Hence the quadratic bound of CBUG is tight.

This paper focuses on the performance of on-line navigation algorithms
in cases where the target is unreachable from the robot’s start position. This
notion is known as disconnection proofs in off-line graph search algorithms.
In the motion planning literature, disconnection proofs appear in the context
of random path planning, where an off-line sampling technique detects target



Disconnection Detection in Mobile Robot Navigation 3

S

disconnection
path

shortest
disconnection
path

D

shortest

T

D S

T

(b)(a)

Fig. 1. All disconnection paths starting from S trace an obstacle boundary sur-
rounding either S or T .

unreachability of a polyhedral robot [2]. The following on-line version of a
disconnection proof is a contribution of this paper. Let a disconnection path
be a path that starts at S and proves that a target T is unreachable (Fig-
ure 1). Let λ be the length of the disconnection path generated from S by an
on-line algorithm. Let λopt be the length of the shortest off-line disconnection
path which starts at the same S. Then an algorithm is h(λopt) disconnec-
tion competitive of if λ ≤ h(λopt) for all instances where T is unreachable
from S. Based on this definition, we first show that a navigation algorithm
must be competitive in order to be disconnection competitive. Then we es-
tablish that CBUG generates a disconnection path whose length is bounded
from above by a quadratic function of λopt. Finally, we establish that any
navigation algorithm in an unknown planar environment generates in worst
case a disconnection path whose length is bounded from below by a quadratic
function of λopt. The quadratic disconnection bound of CBUG is thus tight.

The structure of the paper is as follows. In the next section we define gen-
eralized competitiveness and introduce the notion of disconnection competi-
tiveness. The CBUG algorithm is reviewed in Section 3. Its quadratic upper
bound is summarized and shown to match the universal lower bound over all
on-line navigation algorithms. The disconnection competitiveness of CBUG is
analyzed in Section 4. It is shown that the length of the disconnection path
traveled by the robot during execution of CBUG is at most quadratic in λopt.
It is also shown that any on-line navigation algorithm generates in worst case
a disconnection path whose length is at least quadratic in λopt, implying that
up to constants CBUG has optimal disconnection competitiveness. Section 5
discusses the effect of connection-and-disconnection competitiveness on path
stability, and compares the performance of CBUG relative to non-competitive
algorithms. The concluding section mentions several open problems.

2 Definition of Disconnection Competitiveness

This section describes our basic setup, then proceeds with formal definitions of
connection and disconnection competitiveness. We assume a planar unknown



4 Yoav Gabriely and Elon Rimon

environment populated by stationary and compact obstacles. The mobile ro-
bot is a freely moving planar disc of size D > 0, where D is a given constant.
The robot is equipped with two sensors which are assumed ideal. The first
sensor measures the robot’s position with respect to a fixed reference frame.
The second is an obstacle detection tactile sensor which allows tracing of an
obstacle boundary. In addition to sensors the robot has on-board memory in
which information on the environment can be accumulated.

Next consider the parameters governing the performance of mobile robot
tasks. The three most significant parameters are physical travel time, on-board
computation time, and on-board memory. In order to simplify the ensuing
analysis, we associate physical travel time with length l of the path traveled
by the robot. As for on-board computation time, we limit our discussion to
algorithms that take polynomial time to compute each physical motion step
of the robot. Since the time required for a physical motion step is typically
several orders of magnitudes longer than the execution time of an on-board
computation step, we focus on l as the main performance parameter. Last, we
limit the discussion to algorithms whose storage requirement is at most linear
in the size of the environment.

Thus l denotes length of the path traveled by the robot, while lopt de-
notes length of the optimal off-line path. The following definition generalizes
the traditional notion of linear competitiveness to any functional relationship
between l and lopt.

Definition 1 (connection competitiveness) An on-line navigation algo-
rithm is f(lopt) competitive when its path length l is bounded from above
by a scalable function f(lopt) over all instances where the target is reachable.
In particular, l ≤ c1lopt + c0 is the traditional linear competitiveness, while
l ≤ c2l

2
opt + c1lopt + c0 is quadratic competitiveness, where the ci’s are positive

constants that depend on the robot size D.

The meaning of scalability is as follows. When performance is measured in
physical units such as meters m, one must ensure that both sides of the re-
lationship l ≤ f(lopt) posses the same units, so that change of scale would
not affect the bound. For instance, the coefficient c2 in the relationship
l ≤ c2l

2
opt + c1lopt + c0 must have units of m

−1, c1 must be unitless, and c0

must have units of m. Note that the definition of competitiveness focuses on a
particular navigation algorithm. However, our objective is to characterize the
least upper bound that can be achieved over all on-line navigation algorithms.
This objective requires the following universal lower bound.

Definition 2 A universal lower bound on the competitiveness of on-line
navigation is a lower bound g(lopt) such that l ≥ g(lopt) over all on-line navi-
gation algorithms for this task.

Note that the universal lower bound characterizes the on-line navigation task
itself, not any specific algorithm for this task. When the competitive up-
per bound of a specific algorithm matches the universal lower bound up to



Disconnection Detection in Mobile Robot Navigation 5

constants, the bound itself becomes the competitive complexity class of the
task [12]. Let us now define disconnection competitiveness. Recall that λ de-
notes length of the path traveled by the robot from a start S until it halts with
a conclusion that the target T is unreachable. Recall, too, that λopt denotes
length of the shortest off-line path which starts at the same S and proves
that T is unreachable. The following definition is analogous to the definition
of connection competitiveness.

Definition 3 (disconnection competitiveness) An on-line navigation al-
gorithm is h(λopt) disconnection competitive when its path length λ is
bounded from above by a scalable function h(λopt) over all instances where the
target is not reachable. In particular, λ ≤ c2λ

2

opt + c1λopt + c0 is quadratic dis-
connection competitiveness, where the ci’s are positive constants that depend
on the robot size D.

The last definition concerns the least upper bound on disconnection compet-
itiveness.

Definition 4 A universal lower bound on the disconnection competitive-
ness of on-line navigation is a lower bound e(λopt) such that λ≥e(λopt) over
all on-line navigation algorithms for this task.

Note that here, too, the universal lower bound is not associated with a specific
on-line algorithm, but rather characterizes the on-line navigation task itself.

3 The CBUG Algorithm

For clarity of presentation, we describe the algorithm for a point robot
equipped with position and tactile sensors, moving in a planar environment
populated by unknown obstacles. The point robot represents the configura-
tion of the disc robot, and the “obstacles” are c-space obstacles induced from
the physical ones. The principle idea of CBUG is as follows. Given a start S
and target T , the robot selects an initial ellipse with focal points S and T and
area A0, and searches for T in the portion of the ellipse accessible from S. The
search is executed with the classical BUG1 algorithm reviewed below, which
regards the bounding ellipse as a virtual obstacle3. If the target is detected
the algorithm terminates. Otherwise the robot repeats the process in ellipses
with areas 2iA0 for i = 1, 2, . . . until the target is found or determined to be
inaccessible from S (Figure 2). The basic algorithm treats the bounding ellipse
as an obstacle whose boundary must be traced by the robot. A more advanced
version of the algorithm described below does not require any tracing of the
bounding ellipse. A description of the basic algorithm follows.

3 Other sub-algorithms such as ALG1 [20] can be used, but the principle bounds
reported here would remain the same. Simulations of CBUG with BUG1 and
ALG1 as sub-algorithms are discussed below.



6 Yoav Gabriely and Elon Rimon

Basic CBUG Algorithm:
Sensors: Position and tactile sensors.
Input: A start S, a target T , an initial ellipse with focal points S and T and
area A0.

Initialization: Set S1 = S. Set initial search area A(1) = A0. Set i = 1.
Repeat

1. Starting at Si, search for T using BUG1 in ellipse of area A(i) with focal
points S and T .

2. If BUG1 terminates at T : STOP, target is found.
3. If BUG1 determines that an obstacle boundary separates S from T (see

text):
3.1 If obstacle boundary does not intersect ith bounding ellipse: STOP, target

is unreachable.
3.2 Set Si+1 at point where BUG1 terminated (see text).

4. Set A(i+1) = 2A(i). Set i = i + 1.
(End of repeat loop)

First let us review the BUG1 sub-algorithm. Under BUG1 the robot moves
from the ith start position towards the target until it hits an obstacle. Then
it circumnavigates the obstacle in a clockwise direction while recording the
closest point to the target along the current boundary as pmin. When the
obstacle circumnavigation is complete, the robot returns to pmin along the
shorter boundary segment. If the direction from pmin to T points into the
current obstacle, the obstacle necessarily separates S from T and the target is
unreachable [17]. Otherwise the robot resumes its motion to the target until
the next obstacle is encountered or the target is found.

Based on the assumption of compact obstacles, the bounding ellipses of
CBUG eventually contain a path to the target if one exists, or contain an en-
tire obstacle boundary which separates the start from the target. At this stage
the BUG1 sub-algorithm finds a path to the target if one exists or determines
target unreachability. Note that CBUG determines target unreachability only
when the separating obstacle boundary is wholly physical and does not con-
tain portions of the bounding ellipse. Also note that CBUG requires constant
memory: S and T , the current obstacle hit point, the current pmin, distances
along the current obstacle boundary, and the current search area A(i).

Example 1. Consider the execution of CBUG in the office-like environment
shown in Figure 2(a). Starting at S, the disc robot determines that the initial
ellipse blocks its path to T (Figure 2(b)). Hence it doubles the ellipse’s area
and resumes the search from the point S2 which is closest to T (Figure 2(c)).
The robot next determines that the new bounding ellipse still blocks its path
to T . Hence it doubles the ellipse’s area for the second time and resumes the
search at the point S3 (Figure 2(d)). This last search ends successfully at T .

Next we describe a practical speedup of CBUG that eliminates the need
to trace the bounding ellipses. When the robot hits an obstacle, either the



Disconnection Detection in Mobile Robot Navigation 7

S

T T

S

T

S

T

S1

S2

S3

(a) (b)

(c) (d)

initial 

ellipse

S

T T

S

T

S

T

(a) (b)

(c) (d)

S1

S2

S3

(b)(a)

(d)(c) (g)

(e) (f)

(h)

Fig. 2. (a)-(d) Execution example of the basic CBUG. (e)-(h) The modified CBUG
does not require tracing of the bounding ellipses.

entire obstacle boundary is contained inside the current bounding ellipse, or
the boundary segment which contains the hit point has its two endpoints on
the bounding ellipse. The modified algorithm requires that the robot trace
an obstacle boundary until one of two events happens. Either the robot cir-
cumnavigates the entire obstacle boundary, or it reaches an endpoint of the
boundary on the current bounding ellipse. In the latter case the robot reverses
its boundary tracing direction and continues along the obstacle boundary until
reaching the other endpoint of the boundary segment. The robot next moves
to the closets point to the target along the boundary segment, and resumes
execution of the sub-algorithm BUG1.

Example 2. An execution of the modified CBUG on the same office-like
environment is shown in Figure 2(e)-(h). Each time the robot hits an obstacle,
it initiates a clockwise circumnavigation of the obstacle boundary. In the first
and second stages the robot encounters during boundary tracing the current
bounding ellipse (Figure 2(f)-(g)). The robot consequently reverses its tracing
direction until the other endpoint of the boundary segment is encountered. In
both stages the path taken by the robot is significantly shorter than the path
taken under the basic algorithm.

The following result asserts that the path generated by CBUG to an ac-
cessible target is bounded by a quadratic function of lopt.

Proposition 3.1 ([13]) If T is reachable from S, the basic CBUG algorithm
finds the target using a path of length l satisfying the upper bound

l ≤
6π

D
l2opt + ‖S−T‖ +

6A0

D
, (1)

where lopt is length of the shortest off-line path from S to T , D is the disc-robot
size, and A0 is area of the initial ellipse.

Note that the three summands in (1) have length units, so the upper bound is
scalable. The next result asserts that the universal lower bound on connection
competitiveness is also quadratic in lopt.



8 Yoav Gabriely and Elon Rimon

Theorem 1 ([13]) Any navigation algorithm in an unknown planar environ-
ment to a reachable target generates in worst case a path of length l satisfying
the quadratic lower bound

l ≥
4π

3(1+π)2D
(1−ǫ)l2opt, (2)

where lopt is length of the shortest off-line path from S to T , D is the disc-robot
size, and ǫ>0 is an arbitrary small constant.

The theorem implies that the connection competitiveness of CBUG is tight.
On-line navigation of a disc robot in planar environments thus belongs to the
quadratic competitive complexity class. Note that (1) and (2) approach infinity
as D approaches zero. This is consistent with earlier observations that a point
robot cannot achieve any form of competitive on-line navigation in general
planar environments [1, 14, 19].

4 Disconnection Analysis of CBUG Algorithm

This section begins with a generic assertion that connection competitiveness is
necessary for disconnection competitiveness. Then we derive an upper bound
on the disconnection competitiveness of the basic CBUG algorithm. Finally,
we derive a universal lower bound on disconnection competitiveness.

Proposition 4.1 If an on-line navigation algorithm possesses an upper bound
h(λopt) on its disconnection competitiveness, it possesses an upper bound of
h(lopt+ǫ) on its connection competitiveness (ǫ is an arbitrary small constant).

Proof sketch: Consider a scenario where T can be reached from S. Let us
assume that T can be surrounded by a small disc of radius δ which is free
from obstacles. Let us further assume that the on-line algorithm guides the
robot directly to the target within this small disc. We now render the target
inaccessible by surrounding it with a disc-obstacle of radius δ. In this case the
shortest disconnection path consists of the shortest path from S to the disc,
and a loop around the disc. The length of the shortest disconnection path is
λopt = lopt + ǫ, where lopt is the original shortest off-line path from S to T
and ǫ = 2πδ − δ. By assumption any on-line disconnection path has length
λ satisfying λ ≤ h(λopt). Any disconnection path must circumnavigate the
small disc surrounding T . Hence it can be converted to a path from S to T
of length l ≤ h(λopt) − ǫ. Substituting λopt = lopt + ǫ gives the upper bound
l ≤ h(lopt+ǫ) − ǫ ≤ h(lopt+ǫ) on the connection paths. �

In the following analysis we treat the disc robot as a point equipped with
position and tactile sensors, moving in a planar c-space amidst unknown c-
obstacles. A c-space disconnection path starts at a configuration S and con-
tains a c-obstacle boundary that separates S from T . The first lemma estab-
lishes that CBUG terminates once a disconnection path appears in its current
bounding ellipse.



Disconnection Detection in Mobile Robot Navigation 9

Lemma 4.2 CBUG terminates with a conclusion that T is unreachable in
the first bounding ellipse whose interior contains a disconnection path starting
from S.

The lemma is based on the following argument. The sub-algorithm BUG1

is known to be complete both in terms of its connection and disconnection
paths [17]. Once a disconnection path which starts at S lies in the interior
of the current bounding ellipse, BUG1 finds this path and terminates CBUG

with a conclusion that T is unreachable from S.
The next lemma characterizes the shortest off-line disconnection path.

Let U be the connected component of the free c-space containing the start
S. In general, U is bounded from the outside by an outer c-obstacle, and is
punctured from the inside by internal c-obstacles. Hence there are two possible
cases of target unreachability. The first case occurs when T lies beyond the
outer boundary. In this case any disconnection path must circumnavigate the
outer boundary of U . The second case occurs when T lies inside a puncture
of U . In this case any disconnection path must circumnavigate the internal
c-obstacle boundary. The two cases are discussed in the following lemma.

Lemma 4.3 Let α be the shortest off-line disconnection path starting from
S, of length λopt. If T lies beyond the outer boundary of U , α lies in a disc
with center at S and radius λopt/2. If T lies inside a puncture of U , α lies in
an ellipse with focal points S and T and major axis of length λopt.

Proof: First consider the case where T lies beyond the outer boundary of U ,
denoted β. We may assume that β is a simple closed loop. Since T lies beyond
β, any disconnection path from S must contain the entire loop β. Since the
length of α is λopt, the length of β is at most λopt. Consider now the collection
of all loops of length at most λopt surrounding S. Clearly, a disc with center
at S and radius λopt/2 contains all such loops. In particular it contains the
loop β, and consequently it contains the path α.

Next consider the case where T lies in a puncture of U . Let γ denote the
puncture’s boundary, which we assume is a simple closed loop. The entire γ
is part of any disconnection path starting at S. In particular, the shortest
disconnection path α starts at S, contains the loop γ, and has total length
λopt. Let p denote the point where α joins γ, and let L denote the length of
γ. Any point x on γ satisfies ‖x − T‖ ≤ L/2. Hence the length of the path
from p to x along the shorter portion of γ, then from x straight toward T , has
length bounded by L. Joining the latter path with the portion of α between
S and p gives a continuous path with endpoints at S and T and total length
bounded by λopt. All such paths are contained in an ellipse with focal points
S and T and major axis of length λopt. Since x is an arbitrary point along the
loop γ, the entire disconnection path α is contained in the ellipse. �

The next lemma gives an upper bound on the area of the first bounding ellipse
of CBUG which contains a disconnection path starting from S.



10 Yoav Gabriely and Elon Rimon

Lemma 4.4 CBUG terminates with a conclusion that T is unreachable in a
bounding ellipse whose area A(n) is bounded by A(n) < π

2
(λopt+‖S−T‖)(λ2

opt+

2λopt‖S−T‖)1/2, where λopt is length of the shortest off-line disconnection path
which starts at S.

Proof: Based on Lemma 4.2, CBUG terminates with a conclusion of target
unreachability once its bounding ellipse contains a disconnection path starting
at S. It can be verified that the disc and ellipse of Lemma 4.3 are contained
in a larger ellipse with focal points S and T and major axis of length 2a =
λopt + ‖S−T‖. The latter ellipse contains the shortest off-line disconnection
path from S. It can be verified that the ellipse’s minor axis has length 2b =
(λ2

opt+2λopt‖S−T‖)1/2. The ellipse’s area is given by πab. Since CBUG doubles
the area of its bounding ellipse in each iteration, A(n) ≤ 2πab. Substituting
for a and b in the latter inequality gives the bound on A(n). �

Next we convert the bound on A(n) to a bound on path length. The conversion
is based on a key geometric fact for which we need the notion of traceable
obstacles. Let CBi be the c-space obstacle induced by an obstacle Bi for a disc
robot of size D. The traceable obstacle induced by Bi, denote Bi, is the physical
obstacle obtained by filling any internal holes in CBi and then shrinking CBi

inward by a distance of D/2. If two traceable obstacles overlap their union is
considered a single traceable obstacle. An important property of Bi is that
the area swept by the disc robot during tracing of its boundary is precisely the
area swept by the robot while tracing the boundary of the original obstacle
Bi.

Lemma 4.5 ([12]) Let a planar environment contain individually traceable
obstacles B1, . . . , Bk. Let a size-D disc robot trace the ith obstacle boundary,
and let κi be the area swept by the robot during this tracing. Let C be any simple
closed curve surrounding the k regions swept by the robot. Then

∑k
i=1

κi ≤
4A(C), where A(C) is the area of the obstacle-free points enclosed by C.

The following proposition establishes a quadratic upper bound on the discon-
nection paths generated by CBUG.

Proposition 4.6 If T is not reachable from S, the basic CBUG algorithm
concludes target unreachability along a path whose length λ satisfies the
quadratic upper bound,

λ ≤
6π

D
(λopt + ‖S−T‖)2 + ‖S−T‖ +

6A0

D
, (3)

where λopt is length of the shortest off-line disconnection path from S, D is
the disc-robot size, and A0 is area of the initial ellipse.

Note that the three summands have units of length, so the upper bound is
scalable.



Disconnection Detection in Mobile Robot Navigation 11

Proof: At the ith stage of CBUG the robot executes the sub-algorithm
BUG1 in an ellipse with focal points S and T and area A(i). The regions
swept by the robot during circumnavigation of obstacles in this ellipse (in-
cluding the obstacle formed by the ellipse) are surrounded by the ellipse’s
boundary. Identifying the latter boundary with the curve C of Lemma 4.5,
the total length of the robot’s path during circumnavigation of the obstacles
is at most 4A(i)/D. Recall now that under BUG1 the robot circumnavigates
the boundary of each obstacle at most 1.5 times. Hence the total length of
the robot’s path during boundary following is at most 6A(i)/D. Under BUG1

motion between obstacles is always directly to the target. The total length of
these motion segments equals to the net decrease of the robot’s distance from
T , which is ‖Si − T‖ − ‖Si+1 − T‖. Adding the two terms gives the ith stage
path-length bound: λi ≤ 6A(i)/D +

(

‖Si − T‖ − ‖Si+1 − T‖
)

.
Suppose that CBUG finds a disconnection path at the nth stage, such

that n > 1. Since the area of the ellipses doubles in each step,
∑n

i=1
A(i) =

A0+2A0+· · ·+2n−1A0, where A0 is the area of the initial ellipse. Since A(n) =

2n−1A0, we see that
∑n

i=1
A(i) =

∑n−1

i=1
A(i) + A(n) < 2A(n). According to

Lemma 4.4, the area of the nth ellipse satisfies the inequality A(n) < π

2
(λopt +

‖S−T‖)(λ2

opt+2λopt‖S−T‖)1/2 ≤ π

2
(λopt+‖S−T‖)2. Hence the total length of

the path traveled by the robot is bounded by λ =
∑n

i=1
λi ≤

6

D

∑n
i=1

A(i) +
∑n

i=1
(‖Si − T‖ − ‖Si+1 − T‖) < 6π

D (λopt + ‖S−T‖)2 + ‖S − T‖, where we
substituted S1 = S and Sn+1 = T . Finally, the term 6A0/D bounds the path
traveled by the robot in the case where the initial ellipse already contains a
disconnection path starting from S. �

The final result is a universal lower bound on disconnection competitiveness.

Proposition 4.7 Any navigation algorithm for unknown planar environ-
ments generates in worst case a disconnection path whose length satisfies the
quadratic lower bound

λ ≥
4π

3(1+2π)2D
(1−ǫ)λ2

opt, (4)

where λopt is length of the shortest off-line disconnection path starting from
S, D is the disc-robot size, and ǫ>0 is an arbitrary small constant.

Proof sketch: We use the environment which is used to prove the universal
lower bound on connection competitiveness [13]. This environment consists of
radial corridors emanating from S and having length r. The radial corridors
are surrounded by a circular corridor such that only one radial corridor enters
the circular corridor. The target is placed in the circular corridor. The shortest
off-line path from S to T satisfies lopt ≤ (1 + π)r, where πr is due to worst
case motion in the circular corridor to a target located opposite the entry.
Not knowing which radial corridor leads to the circular corridor, any on-line
algorithm would guide the robot in worst case through all radial corridors
before finding the entry to the circular corridor. It is shown in [13] that the



12 Yoav Gabriely and Elon Rimon

worst case on-line path from S to T in this environment has length l satisfying
l ≥ c(1−ǫ)r2, where c = 4π/3D and ǫ is an arbitrary small constant.

We now render the target inaccessible in two ways. First we place T out-
side the circular corridor so that it becomes inaccessible from S. In this case
the shortest off-line disconnection path requires radial motion from S to the
outer circular corridor, then a circumnavigation of the circular corridor. In
the second case we place T in the circular corridor and surround it by walls
located δ apart within the circular corridor. If the circular corridor is suf-
ficiently wide, T lies in a puncture of the region accessible from S. In this
case the shortest off-line disconnection path requires radial motion from S
to the circular corridor, then motion in the circular corridor until the walls
surrounding T are met. Combining the two cases, λopt ≤ (1+2π)r in this envi-
ronment. Any on-line algorithm must explore in worst case all radial corridors
before finding the entry to the circular corridor. Then it must circumnavigate
in worst case the entire circular corridor. Hence λ ≥ c(1−ǫ)r2 + 2πr. Since
r ≥ λopt/(1+2π), we obtain the lower bound λ ≥ c1(1−ǫ)λ2

opt + c2λopt, where
c1 = 4π/3(1+2π)2D and c2 = 2π/(1+2π). The latter inequality implies that
λ ≥ c1(1−ǫ)λ2

opt. �

The universal lower bounds (2) and (4) imply that CBUG has the lowest
possible connection as well as disconnection competitiveness.

5 Significance of Double Competitiveness

This section discusses some useful properties of connection-and-disconnection
competitiveness, termed double competitiveness. First and foremost, double
competitiveness ensures that an on-line navigation algorithm would not stray
away from the optimal path due to misleading sensory clues. Consider for
instance the office floor environment shown in Figure 3. The paths generated
by ALG1 (reviewed below) may stray along the outer walls arbitrarily far from
S and T . When CBUG runs ALG1 as a sub-algorithm, the search is confined
to the ellipses depicted in the figure.

Double competitiveness additionally provides some amount of path stabil-
ity. A navigation algorithm possesses path stability when its path varies con-
tinuously with the position of S and T [11]. A weaker notion of path stability
is as follows. A navigation algorithm possesses path length stability when its
path length varies continuously with S and T . This means that small changes
in S or T yield small changes in path length and hence travel time from S to
T . Classical on-line navigation algorithms such as BUG1 and ALG1 respond
to small changes in S or T with possibly unbounded path-length changes (Fig-
ure 3). However, the competitive quantities lopt and λopt are approximately
constant with respect to small changes of S and T . Hence competitive bounds
in terms of lopt and λopt automatically provide path-length bounds in response
to small changes of S and T . Under CBUG the length of all connection paths



Disconnection Detection in Mobile Robot Navigation 13

from S to T vary in the bounded interval [lopt, c1l
2
opt+c2], where c1 and c2 are

constants. Similarly, the length of all disconnection paths from S vary in the
bounded interval [λopt, c

′

1λ
2

opt+c′2], where c′1 and c′2 are constants.

T

small change in Ssmall change in S

T

Fig. 3. The paths generated by ALG1 show significant path-length jumps in re-
sponse to small changes in S. The ellipses show the total search area of CBUG.

Next we describe simulations comparing the non-competitive algorithms
BUG1 and ALG1 with CBUG. The algorithm ALG1 relies on the straight line
passing through S and T , and works as follows [20]. The robot moves from
S along the S-T line towards T until it hits an obstacle. Then it circumnav-
igates the obstacle in a clockwise direction. Whenever the robot reaches an
intersection point of the current obstacle boundary with the S-T line, denoted
p, it leaves the obstacle if two conditions are met. The point p must be closer
to T than all previous hit and leave points, and the direction from p to T
must point away from the current obstacle. Once the robot leaves an obstacle
it resumes motion along the S-T line until the next obstacle is encountered
or the target is found. If p is not a valid leave point but is a previously de-
fined hit or leave point, the robot reverses its boundary tracing direction at p.
However, the robot is not allowed any further direction reversals along the
current boundary segment. When the robot completes a loop around the cur-
rent obstacle boundary without finding a suitable leave point, it halts with
a conclusion of target unreachability. Several paths of ALG1 are depicted in
Figure 3.

In general, the double competitiveness of CBUG comes with an overhead
incurred by its search ellipses. In order to study the effect of this overhead on
average performance, we compared BUG1 and ALG1 to CBUG implementing
BUG1 and ALG1 as sub-algorithms. We tested the algorithms in the office
floor environment depicted in Figure 3. We placed S and T in three distance
ranges: ‖S − T‖≤ 10D, 10D < ‖S − T‖≤ 50D, and ‖S − T‖> 50D, where D
is the robot size. Each distance range includes 30 runs with S and T varying
within the prescribed range. Each 30 runs were subdivided into 10-run batches
corresponding to three furniture occupancy levels of the office floor.

The results listed in Table 1 give the average ratio l/lopt, where l is length
of the path generated by the algorithm and lopt is length of the shortest off-



14 Yoav Gabriely and Elon Rimon

line path from S to T . In the highest distance range S and T are roughly at
opposite corners of the office floor. In this case CBUG is inferior to BUG1 and
ALG1. In this case lopt is not much shorter than the path along the outer walls
persistently traced by BUG1. The superior performance of ALG1 is due to its
boundary tracing rule, which typically limits its wall tracing to a single room.
However, the advantage of BUG1 and ALG1 diminishes as T moves closer to
S. In the lowest distance range S and T are typically in neighboring rooms. In
this case BUG1 still follows the entire outer walls. Similarly, when T is located
just on the other side of a wall, ALG1 guides the robot along the entire outer
walls. In contrast, CBUG always recognizes when both sub-algorithms stray
away from S and T . It cuts short their wall following with the bounding
ellipses, thus ensuring paths whose average length is twice shorter than the
paths of ALG1 and eight times shorter than the ones generated by BUG1.
Simulations of cases where T is inaccessible from S are under preparation and
will be discussed in an extended version of this paper.

Distance Range BUG1 ALG1 CBUG with BUG1 CBUG with ALG1

‖S − T‖ > 50D 7.1 3.0 9.0 10.9

10D < ‖S − T‖ ≤ 50D 11.5 4.6 7.2 12.0

‖S − T‖ ≤ 10D 28.8 14.1 3.5 7.3

Table 1. Summary of average l/lopt results comparing CBUG to BUG1 and ALG1.

6 Conclusion

The paper introduced a notion of disconnection competitiveness complimen-
tary to the traditional notion of connection competitiveness. Connection com-
petitiveness concerns cases where T is reachable from S, while disconnection
competitiveness concerns cases where T cannot be reached from S. We de-
scribed a tactile-sensor based navigation algorithm for a disc-shaped robot,
called CBUG. The algorithm achieves connection as well as disconnection
competitiveness by limiting its search to a series of expanding ellipses. The
connection competitiveness of CBUG is quadratic in lopt, which matches up
to constants the universal lower bound over all on-line navigation algorithms.
The disconnection competitiveness of CBUG is quadratic in λopt, where λopt

is the shortest off-line disconnection path starting from S. The universal lower
bound on disconnection competitiveness over all on-line navigation algorithms
is also quadratic in λopt. Hence up to constants CBUG has tight connection
as well as disconnection competitiveness. However, competitiveness concerns
worst case behavior, and does not necessarily indicate efficient average behav-
ior. Simulations reveal that in practice CBUG may incur significant overhead
in certain situations.



Disconnection Detection in Mobile Robot Navigation 15

Two over-simplifications of the navigation problem discussed in this paper
are as follows. First, mobile robots are usually not disc-shaped but rather bod-
ies having three degrees of freedom. Our preliminary work on three degrees-
of-freedom mobile robots indicates that on-line navigation of simple shapes
can be achieved with cubic competitiveness. Second, CBUG assumes tactile
senors. More sophisticated sensors such as vision and laser sensors do not
have a significant advantage over tactile sensors in highly congested environ-
ments. However, practical environments tend to be reasonably sparse, and an
adaptation of CBUG to such sensors is an important open problem. Last, the
constants in the quadratic upper bounds on CBUG differ from the constants
in the quadratic universal lower bounds by a factor of about 100. The closing
of this gap is a major challenge that can yield algorithms with an improved
average performance.

References

1. R. Baeza-Yates, J. Culderson, and G. Rawline. Searching in the plane. J. of
Information and Computation, 106:234–252, 1993.

2. J. Basch, L. J. Guibas, D. Hsu, and A. T. Nguyen. Disconnection proofs for
motion planning. In IEEE Int. Conf. on Robotics and Automation, pages 1765–
1772, 2001.

3. R. Bellman. Problem 63-9. SIAM Review, 5(2), 1963.
4. P. Berman, A. Blum, A. Fiat, H. Karloff, A. Rosen, and M. Saks. Randomized

robot navigation algorithms. In SODA, pages 75–84, 1996.
5. A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar terrain. In

STOC, pages 494–504, 1991.
6. H. Choset and J. W. Burdick. Sensor based planning, part ii: Incremental

construction of the generalized voronoi graph. In IEEE Int. Conference on
Robotics and Automation, pages 1643–1649, 1995.

7. H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki,
and S. Thrun. Principles of Robot Motion. MIT Press, Cambridge MA, 2005.

8. A. Datta and C. Icking. Competitive searching in a generalized street. In 10th
ACM Symp. on Computational Geometry, pages 175–182, 1994.

9. A. Datta and S. Soundaralakshmi. Motion planning in an unknown polygo-
nal environment with bounded performance guarantee. In IEEE Int. Conf. on
Robotics and Automation, pages 1032–1037, 1999.

10. E. Bar Eli, P. Berman, A. Fiat, and P. Yan. Online navigation in a room. J. of
Algorithms, 17(3):319–341, 1996.

11. M. Farber. Instabilities of robot motion. Topology and its Applications, 140:245–
266, 2004.

12. Y. Gabriely and E. Rimon. Competitive complexity of mobile robot on-line
motion planning problems. In 6’th Int. Workshop on Algorithmic Foundations
of Robotics (WAFR), pages 155–170, 2004.

13. Y. Gabriely and E. Rimon. Cbug: A quadratically competitive mobile robot
navigation algorithm. In IEEE Int. Conf. on Robotics and Automation, pages
954–960, 2005.



16 Yoav Gabriely and Elon Rimon

14. C. Icking, R. Klein, and E. Langetepe. An optimal competitive strategy for
walking in streets. 16th Symp. on Theoretical Aspects of Computer Science,
110:405–413, 1988.

15. I. Kamon, E. Rimon, and E. Rivlin. Tangentbug: A range-sensor based naviga-
tion algorithm. Int. Journal of Robotics Research, 17(9):934–953, 1998.

16. S. L. Laubach, J. W. Burdick, and L. Matthies. An autonomous path plan-
ner implemented on the rocky7 prototype microrover. In IEEE Int. Conf. on
Robotics and Automation, pages 292–297, 1998.

17. V. J. Lumelsky and A. Stepanov. Path planning strategies for point automaton
moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2:403–430,
1987.

18. H. Noborio and T. Yoshioka. An on-line and deadlock-free path-planning al-
gorithm based on world topology. In Conf. on Intelligent Robots and Systems,
IROS, pages 1425–1430. IEEE/RSJ, 1993.

19. C. H. Papadimitriou and M. Yanakakis. Shortest paths without a map. Theo-
retical Computer Science, 84:127–150, 1991.

20. A. Sankaranarayanan and M. Vidyasagar. Path planning for moving a point
object amidst unknown obstacles in a plane: the universal lower bound on worst
case path lengths and a classification of algorithms. In IEEE Int. Conf. on
Robotics and Automation, pages 1734–1941, 1991.

21. B. Tovar, S. M. Lavalle, and R. Murrieta. Optimal navigation and object finding
without geometric maps or localization. In IEEE Int. Conf. on Robotics and
Automation, pages 464–470, 2003.


